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Introduction

Since its inception, the theory of integrable systems has been intimately related
to that of differential geometry: both the integrable PDE that arise and their
infinite-dimensional symmetry groups often have a rich geometrical interpretation.
Perhaps the most famous example of this is the relation between constant negative
Gauss surfaces in R3, their Bäcklund transformations and the integrable sin-Gordon
equation.

In this paper, I describe another system of this kind also known to the great dif-
ferential geometers of the 19th century: isothermic surfaces. That isothermic sur-
faces in R3 constitute an integrable system was first observed in modern times by
Cieśliński–Goldstein–Sym [CGS] whose work was taken up by Burstall, Hertrich-
Jeromin, Pedit and Pinkall [BHPP], [HP] who emphasized the conformal invariance
of the theory and the relation with the general theory of curved flats [FP1].

Here, I will indicate how the entire theory of isothermic surfaces goes through in
arbitrary codimension with no loss of integrable structure. Along the way, we shall
find an extraordinarily beautiful and efficient method, originally due to Vahlen [V],
of doing conformal geometry via 2× 2 matrices with values in a Clifford algebra.

1. Isothermic surfaces

We begin in the setting of classical local differential geometry: let f : Ω ⊂ R2 → R
n

be an immersion of a simply connected subset of the plane.

Say that f is isothermic if there is a second non-constant map f c : Ω → R
n, the

dual surface or Christoffel transform, such that

df ∧ df c = 0. (1.1)

Here we view df and df c as Rn-valued 1-forms and df∧df c as a 2-form with values
in the Clifford algebra Cln of Rn.

Recall that Cln is the unital associative algebra generated by Rn subject only to
the relations

x · y + y · x = −2(x, y)1,

for x, y ∈ Rn. (Here ( , ) is the Euclidean inner product of Rn.) Thus (1.1) reads

dfX · df cY = dfY · df cX ,
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for X,Y ∈ TpΩ and p ∈ Ω.

To clarify the meaning of (1.1), equip Ω with the conformal structure induced by
f . Then

1. For z a conformal co-ordinate, (1.1) holds if and only if ∂f c/∂z is propor-
tional to ∂f/∂z̄.

In particular, f c is weakly conformal.
2. (1.1) implies that (df, df c)2,0 is a non-zero holomorphic quadratic differen-

tial whence f c is an immersion off a discrete set.
To summarise: f c is a branched conformal immersion with tangent planes parallel
to those of f but with the opposite orientation. Moreover f c is isothermic also with

(f c)c = f.

The structure equations for f now give:
3. f (and hence f c) has flat normal bundle so that all shape operators com-

mute.
4. Choose z = x+ iy so that (df,df c)2,0 = dz2 (such co-ordinates clearly exist

away from the discrete zero-set of this differential). Then ∂/∂x and ∂/∂y
simultaneously diagonalises all the shape operators of f (and f c).

Otherwise said, (x, y) are conformal curvature line (CCL) co-ordinates for
f and f c.

In the classical literature, a surface was said to be isothermic if it admitted CCL
co-ordinates about each point. The following result, due to Christoffel [C] when
n = 3, shows that this formulation coincides, at least locally, with ours:

Theorem 1.1. Let f : Ω→ R
n be an immersion with CCL co-ordinate z = x+ iy

and corresponding conformal factor u: (df, df) = e2udzdz̄. Then the Rn-valued
1-form given by

e−2u

(
∂f

∂z
dz̄ +

∂f

∂z̄
dz
)

(1.2)

is closed so that there is a dual surface f c with ∂fc/∂z = e−2u∂f/∂z̄.

When n = 3, there are many examples of isothermic surfaces available in the
classical literature:

• surfaces of revolution: here (1.2) amounts to an ODE for the profile curve
of the dual.

• quadrics: in this case there may not be a globally defined dual surface fc

since (df, df c)2,0 is a non-zero holomorphic differential.
• surfaces of constant mean curvature H 6= 0: let n be a field of unit normals

to such an f . Then the parallel surface given by

f c = f +
2
H
n

is a dual surface of constant mean curvature 1/H.
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• (non-umbilic) minimal surfaces: here the dual surface is just the Gauss map
n : Ω→ S2.

In this case, the converse provided by Theorem 1.1 has independent interest:
let g : Ω ⊂ C→ C∪{∞} = S2 ⊂ R3 be a meromorphic function viewed, via
stereographic projection, as a map into S2. Since S2 is totally umbilic, the
standard co-ordinate z on Ω is CCL so that Theorem 1.1 provides a dual
minimal surface gc = f via (1.2) which reads:

∂f

∂z
=

1
g′
(

1
2 (1− g2), i2 (1 + g2), g

)
which we recognize as the Enneper–Weierstrass formula in co-ordinates for
which the Hopf differential is −dz2.

So far, we have been doing Riemannian geometry but it turns out that isothermic
surfaces belong in the wider arena of conformal geometry:

Theorem 1.2. Let f be isothermic and T : Sn = R
n ∪ {∞} → Sn be a conformal

diffeomorphism. Then T ◦ f is isothermic also.

2. Conformal geometry and Clifford algebras

A standard model for the conformal geometry of the n-sphere Sn = R
n ∪{∞} is to

view Sn as the projective light cone in a Minkowski space (for a modern account,
see [Bry]).

Thus, let Rn+1,1 be the standard (n + 2)-dimensional vector space equipped with
the inner product ( , ) = x2

1 + · · ·+ x2
n+1 − x2

n+2 and set

L = {v ∈ Rn+1,1 : (v, v) = 0}.

Then the projective light cone PL is diffeomorphic to Sn and the linear action
of the orthogonal group O(n + 1, 1) descends to an action on PL by conformal
diffeomorphisms giving a finite cover

O(n+ 1, 1)→ Mob(n)→ 1

of the Möbius group Mob(n) of conformal diffeomorphisms of Sn.

In this context, the inverse of stereographic projection requires a choice of “zero”
and “infinity”: v0, v∞ ∈ L with (v0, v∞) = −1

2 , and then reads

x 7→ [x+ v0 + (x, x)v∞] ∈ PL \ 〈v∞〉, (2.1)

for x ∈ 〈v0, v∞〉⊥ ∼= R
n.

It will be convenient for us to work with Vahlen’s reformulation of conformal geom-
etry [V] (see also [A] and the detailed account in [P]) which amounts to replacing
O(n+ 1, 1) with Pinn+1,1.
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For this, let Cln+1,1 be the Clifford algebra of Rn+1,1 with group of units Cl×n+1,1.
We distinguish two involutions of Cln+1,1:

(a) The grading involution: a 7→ ã, the unique automorphism with ṽ = −v for
v ∈ Rn+1,1.

(b) The transpose: a 7→ at, the unique anti-automorphism with vt = v for
v ∈ Rn+1,1.

The Clifford group Γn+1,1 is defined by

Γn+1,1 = {a ∈ Cl×n+1,1 : avã−1 ∈ Rn+1,1 for all v ∈ Rn+1,1}.

Clearly, Γn+1,1 has a representation on Rn+1,1 which turns out to be orthogonal
and we have an exact sequence

1→ R
× → Γn+1,1 → O(n+ 1, 1)→ 1.

Vahlen’s theory rests on the following basic observation: Cln+1,1 is isomorphic to
the algebra M2(Cln) of 2× 2 matrices with entries in Cln. Indeed, define Rn+1,1 ⊂
M2(Cln) by

R
n+1,1 = {

(
v λ
µ −v

)
: v ∈ Rn+1,1, λ, µ ∈ R}

and note that (
v λ
µ −v

)2

=
(
v2 + λµ 0

0 v2 + λµ

)
∈ R

so that
(

0 1
0 0

)
and

(
0 0
1 0

)
are light-like with inner product − 1

2 .

We now have

Theorem 2.1 [V].
(
a b
c d

)
∈ Γn+1,1 if and only if a, b, c, d ∈ Γn ∪ {0} and

(i) adt − bct ∈ R×;
(ii) act, bdt, atb, ctd ∈ Rn

In this setting, the map (2.1) Rn → PL reads

x 7→
(
x −x2

1 −x

)
and one finds that the action of Γn+1,1 by conformal diffeomorphisms of Rn ∪ {∞}
is given by the following attractive formula:(

a b
c d

)
x = (ax+ b)(cx+ d)−1 ∈ Rn ∪ {∞}.

To make contact with our theory of isothermic surfaces, we first realise the Lie
algebra on+1,1 of O(n+ 1, 1) as

on+1,1 = {
(
ξ η
ζ −ξt

)
: η, ζ ∈ Rn, ξ ∈ [Rn,Rn]⊕ R}. (2.2)
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We now see that our main equation (1.1) is a Maurer–Cartan (zero-curvature)

equation: indeed, let α =
(

0 α1

α2 0

)
be an on+1,1-valued 1-form on Ω (thus the

αi are Rn-valued). The Maurer–Cartan equation dα+ 1
2 [α ∧ α] = 0 reads

dαi = 0, [α1 ∧ α2] = 0

so that α1 = df and α2 = df c for f , f c a dual pair of isothermic surfaces!

These Maurer–Cartan equations are a special case of a general class of integrable
systems to which we now turn.

3. Curved flats: an integrable system

According to Ferus–Pedit [FP1], a map φ : M → N = G/K of a manifold into a
pseudo-Riemannian symmetric space is a curved flat if the curvature tensor RN of
N vanishes on TM :

RN |∧2 dφ(TM) = 0.

Definition. A framing of φ is a map F : M → G such that π ◦ F = φ where
π : G→ G/K is the coset projection.

The curved flat condition amounts to a condition on the Maurer–Cartan form α =
F−1dF of a framing F . Indeed, use the symmetric decomposition g = k⊕p to write

α = αk + αp

and then φ is a curved flat if and only if [αp ∧ αp] = 0 in which case the Maurer–
Cartan equations decouple to give:

dαk + 1
2 [αk ∧ αk] = 0

dαp + [αk ∧ αp] = 0

[αp ∧ αp] = 0.

(3.1)

The main observation is that (3.1) holds if and only if each connection in the
pencil d + αk + λαp, λ ∈ R is flat. Thus the curved flat system amounts to a
zero-curvature equation with spectral parameter and the whole machinery of inte-
grable systems theory (loop groups, dressing actions, Hamiltonian formulation and
algebro-geometric solutions) is available for its study.

In particular, when M is simply connected, we can integrate to get Fλ : M → G
with

F−1
λ dFλ = αk + λαp

and thus a curved flat φλ = π ◦ Fλ : M → N . So we see that curved flats come in
1-parameter families.

With a suitable choice of gauge transformation, the system (3.1) can be put into
several canonical forms. For example, under the assumption that all images of αp
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are K-conjugate maximal abelian subspaces of p, the system amounts to the n-
dimensional system associated to the rank n symmetric space G/K introduced by
Terng to study isometric immersions between space forms [T] (see also [FP2]) and
flat Egoroff metrics [TU].

Again, with no extra assumptions, F0 : M → K can be used to gauge αk away
giving a new frame with α̃ = ãp and structure equations

dα̃p = 0 = [α̃p ∧ α̃p].

We call this the flat frame of the curved flat φ.

In the case at hand, we take N = G̃1,1(Rn+1,1), the Grassmannian of oriented
2-planes in Rn+1,1 on which the metric has signature (1, 1)—this is an O(n+ 1, 1)-
symmetric space with invariant metric of signature (n, n). An element of N is
uniquely determined by the ordered pair of light-lines it contains so that we have
a diffeomorphism

N ∼= Sn × Sn \∆.

Under the identification (2.2) the corresponding symmetric decomposition of on+1,1

is the usual decomposition into diagonal and off-diagonal 2× 2 matrices.

Pulling all this together, we see that a flat frame F of a curved flat φ : Ω → N
amounts to a pair of dual isothermic surfaces f , f c via

F−1dF =
(

0 df
df c 0

)
.

Moreover, such a pair gives rise to a 1-parameter family of maps φλ = (fλ, f̂λ) :
Ω→ Sn × Sn \∆ framed by Fλ satisfying

F−1
λ dFλ =

(
0 λdf

λdf c 0

)
.

Finally, we can recover our original dual pair from the family (fλ, f̂λ) by observing
that f0 ≡ 0, f̂0 ≡ ∞ and

f =
∂fλ
∂λ

∣∣∣∣
λ=0

: Ω→ T0S
n ∼= R

n

f c =
∂f̂λ
∂λ

∣∣∣∣∣
λ=0

: Ω→ T∞S
n ∼= R

n

Let us now turn to the geometry of the surfaces fλ, f̂λ : Ω→ Sn.

4. The Bianchi–Darboux transform

Consider a curved flat φ = (f, f̂) : Ω→ Sn × Sn \∆. Use stereographic projection
to view f, f̂ : Ω→ R

n and set g = f̂ − f . One shows that φ has a framing given by

F =
(
f̂g−1 f
g−1 1

)
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and then the structure equations (3.1) give

df ∧ g−1df̂g−1 = 0 = d(g−1df̂g−1)

so that f is isothermic with dual surface f c satisfying

df c = g−1df̂g−1. (4.1)

Similarly f̂ is isothermic and

d(f̂)c = g−1dfg−1

from which one deduces that
f̂ c = f c + g−1 (4.2)

Moreover, one can easily check that

(df, df c) = (df̂ , df̂ c)

from which it follows that f and f̂ have the same CCL co-ordinates and we have
proved:

Theorem 4.1. f and f̂ are both isothermic surfaces with the same CCL co-
ordinates.

Remark. For n = 3 this result is due to Burstall–Hertrich-Jeromin–Pedit–Pinkall
[BHPP] and for n = 4 it is due to Hertrich-Jeromin–Pedit [HP].

There is a beautiful geometric relationship between f and f̂ : we know that

Im df = Im df c = Im g−1df̂g−1

from which it follows that the tangent spaces of f are obtained by reflecting those
of f̂ in the affine hyperplane orthogonal to g through f + g/2. Thus, both f and f̂
are tangent to a 2-sphere centered in that hyperplane and we have:

Theorem 4.2. f and f̂ are the enveloping surfaces of a 2-parameter family of
2-spheres and have the same conformal structure and curvature lines.

2-parameter families of spheres (sphere congruences) with the property that the en-
veloping surfaces have the same conformal structure and curvature lines are known
in the classical literature as conformal Ribeaucour sphere congruences. It turns out
that, modulo some degenerate situations, all such sphere congruences arise this way
and we have the following result proved in [BHPP] when n = 3:
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Theorem 4.3. φ = (f, f̂) : Ω → N is a curved flat if and only if f , f̂ are the
enveloping surfaces of a non-degenerate conformal Ribeaucour 2-sphere congruence.

When n = 3, it is a theorem of Darboux [D] that any isothermic surface f arises as
an enveloping surface in this way. Bianchi [B1][B2] took up these ideas, christened
the second enveloping surface f̂ the Darboux transform of f and showed how Dar-
boux transforms are obtained by solving a linear differential system indexed by an
auxiliary parameter r ∈ R×.

In arbitrary co-dimension, these results still hold as can be seen by using ideas of
Hertrich-Jeromin–Pedit for the n = 4 case: given isothermic f with dual f c and
r ∈ R×, we note that rf c is also a dual surface of f and we can find a Darboux
transform by rearranging (4.1) into a Riccati equation for g:

dg = grdf cg − df. (4.3)

This equation is easily shown to be integrable and, for any solution, we have that
f + g is a Darboux transform of f . Moreover, if g solves (4.3) then

d(rg)−1 = (rg)−1df(rg)−1 − df c

so that f c + (rg)−1 is a Darboux transform of f c and, comparing with (4.2), a
Christoffel transform of f+g. Thus we have proved a result of Bianchi [B2] (n = 3)
and Hertrich-Jeromin–Pedit [HP] (n = 4):

Theorem 4.4. Darboux and Christoffel transforms commute.

There is a second formulation of the equation (4.3) which coincides with Bianchi’s:
our Riccati equation is the projectivisation of the integrable linear system

dω + αω = 0

where ω : Ω→ R
n+1,1 and, as usual, α is the flat one form

(
0 df

rdf c 0

)
. Solving

for ω with initial condition in L gives ω : Ω→ L and g = [ω]. This linear system is
gauge equivalent to that of Bianchi.

At this point, everything becomes very reminiscent of the general theory of Bäcklund
transforms developed by Terng–Uhlenbeck [TU]: in fact, the framing Fλ may be
viewed as a map into a certain loop group and then the Darboux transform can be
viewed as dressing this map by a “simple factor” in the sense of [TU] with poles
at ±

√
r. Once this is established, results like the Bianchi permutability theorem

[B1] for iterated Darboux transforms follow simply from entirely general principles.
The details of this story will appear elsewhere.
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