
Harmonic tori in Lie groups

Francis E. Burstall
School of Mathematical Sciences, University of Bath

Bath, BA2 7AY, United Kingdom

From: "Geometry and topology of submanifolds, III"

World Scientific, 1991, pp. 73-80

1 Introduction

In recent years, there has been considerable interest in the construction and parametri-
sation of harmonic maps of Riemann surfaces into a compact Lie group (this is the
principal chiral model of the Physicists). After contributions by many workers, the
case where the domain is a Riemann sphere is now quite well understood (see [1,9,10,
11]). Here the key idea is to associate to such harmonic maps, auxiliary holomorphic
maps into the infinite dimensional Kähler manifolds of based loops in the group. In as
much as this method reduces the problem to the study of (albeit infinite dimensional)
complex analytic objects, one may view this approach as a twistorial construction.

These ideas do not seem to generalise to higher genus domains. However, progress
has been made in this and related problems when the domain is a torus: Hitchin [4]
studied harmonic 2-tori in S3; Pinkall-Sterling [5] studied constant mean curvature
tori in R3 (the Gauss maps of which are harmonic tori in S2); and, very recently,
Ferus-Pedit-Pinkall-Sterling have dealt with minimal (i.e. harmonic, conformal) tori
in S4 [2]. In all these cases, a complex analytic object arises, although this time it has
a rather different flavour: here one has an algebraic curve, the spectral curve and the
equations of interest reduce to a linear flow on the Jacobian of this curve. This is, of
course, a familiar situation in the theory of integrable Hamiltonian systems (c.f. [3]).

In this note I wish to show how at least part of the above programme can be carried
though for harmonic 2-tori in any compact Lie group.

Much of what follows I learned from Pinkall’s lectures in Warwick and Leeds during
the spring of 1990. It is a pleasure to acknowledge that debt here.
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2 The harmonic map equations

We shall identify harmonic maps of a 2-torus into a compact Lie group G with har-
monic maps of R2 into G which are doubly periodic with respect to some lattice.

So let φ : R2 → G be a map and let θ be the (left) Maurer-Cartan form of G. Thus
θ is a 1-form with values in g, the Lie algebra of G. As is well known, φ is harmonic
if and only if

d∗ φ∗θ = 0 (1)

while we always have the Maurer-Cartan equations pulled back by φ:

d φ∗θ +
1

2
[φ∗θ ∧ φ∗θ] = 0. (2)

Conversely, given a g-valued 1-form α satisfying (1) and (2), we may integrate to
obtain a harmonic map φ : R2 → G such that

α = φ∗θ.

Thus it suffices to consider such g-valued 1-forms α. Now introduce a complex co-
ordinate z = s+ it on R2 and write

α = δ dz + δ dz

where δ : R2 → gC. The fundamental observation of Uhlenbeck [9] (c.f. also [12,13])
is that if we define a loop of g-valued 1-forms by

Dλ =
1− λ

2
δ dz +

1− λ−1

2
δ dz, λ ∈ S1 ⊂ C (3)

then α = D−1 is φ∗θ for φ harmonic if and only if Dλ satisfies the Maurer-Cartan
equations (2) for all λ ∈ S1. Conversely, any loopDλ of the form (3) which satisfies the
Maurer-Cartan equations for each λ gives rise to a harmonic map φ with D−1 = φ∗θ.

Warning: My λ is the reciprocal of Uhlenbeck’s.

We interpret this result by introducing the following loop algebra. Let Ωg be the
algebra of based loops in g, that is,

Ωg = {γ : S1 → g : γ(1) = 0}.

This is a Lie algebra under pointwise Lie bracket. We equip g with an invariant inner
product and, using this, give Ωg the H1 inner product:

(ξ1, ξ2)H1 =
∫
S1

(ξ′1, ξ
′
2).
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With respect to this inner product, an orthogonal (not orthonormal) basis of ΩgC is
given by

{λ 7→ (1− λn)ηi}1≤i≤dim g

n∈Z\{0}

where the {ηi} are an orthonormal basis of g. Then any ξ ∈ Ωg may be written as

ξλ =
∑
n6=0

(1− λn)ξn

with ξn ∈ gC and ξn = ξ−n.

Using these definitions, we introduce a filtration of Ωg by finite-dimensional sub-
spaces: for d ∈ N, set

Ωd = {ξ ∈ Ωg : ξn = 0 for |n| > d}

so that
Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωg.

Also put

Ω+ = {ξ ∈ ΩgC : ξn = 0 for n < 0}
Ω− = {ξ ∈ ΩgC : ξn = 0 for n > 0}.

We note that Ω± are mutually conjugate subalgebras and that

ΩgC = Ω+ ⊕ Ω−.

Our above development may now be succinctly summarised in the following

Proposition 1 Let A = Aλ be an ΩgC-valued (1, 0)-form on R2 such that

(i) A+ A satis�es the Maurer-Cartan equations;

(ii) A has values in Ω+ ∩ ΩC
1 .

Then A−1 = φ∗θ(1,0) for a harmonic map φ : R2 → G and all harmonic maps R2 → G
arise this way.

Thus our problem is reduced to solving the Maurer-Cartan equations for Ωg-valued
1-forms subject to be algebraic constraint given by (ii). In the next section, we shall
see how to do this by integrating a pair of compatible ordinary differential equations.
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3 The ordinary differential equations

On Ωd, consider the vector fields X1, X2 given by

1

2
(X1 − iX2)(ξ) = [ξ, 2i(1− λ)ξd].

We observe that the Xi are tangent to Ωd since [ξd, ξd] vanishes. Our main result is

Theorem 2 (i) [X1, X2] = 0.

(ii) If ξ : R2 → Ωd is an integral submanifold of the distribution de�ned by the Xi

with
∂ξ

∂s
= X1(ξ),

∂ξ

∂t
= X2(ξ),

then, putting z = s + it and A = 2i(1 − λ)ξd dz, we have that A + A satis�es the
Maurer-Cartan equations (and so produces a harmonic map by proposition 1).

Otherwise put: if ξ : R2 → Ωd satisfies

∂ξ

∂z
= [ξ, 2i(1− λ)ξd] (4)

then 4iξd dz = φ∗θ(1,0) for a harmonic map φ : R2 → G.

Before discussing the proof of this result, let us consider what kind of harmonic maps
we get from this construction. We observe that equation (4) is of Lax type and
so has many conserved quantities. In particular, if P is a homogeneous invariant
polynomial on gC, then P (ξd) is constant for any solution ξ of (4). On the other
hand, if φ : R2 → G is harmonic, it is well known that P (φ∗θ(1,0)) is a holomorphic
section of ⊗lT ∗R2, l = degP , so that if φ factors through a torus then P (φ∗θ(1,0))
is constant by Liouville’s theorem. Again, if φ extends to a harmonic map S2 → G
then, since S2 has no non-vanishing holomorphic differentials, each P (φ∗θ(1,0)) must
vanish identically so that φ∗θ(1,0) is nilpotent (c.f. [6]).

In the work of Hitchin and Pinkall et al. described above, it was shown that similar
constructions account for all harmonic (respectively minimal) maps of a 2-torus into
S3 (respectively S4) for which φ∗θ(1,0) is regular in the sense that at each point its
centraliser in g is a Cartan subalgebra. It is therefore reasonable to make the following

Conjecture Let φ : T 2 → G for which φ∗θ(1,0) is regular at one (and hence every)
point. Then φ arises by solving (4) for some d.

I shall return to this question elsewhere.
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4 r-matrices and all that

The Reader may easily verify that our main theorem is true but this does not explain
where it comes from. For this, we briefly sketch a development which is mostly well
known in the theory of integrable Hamiltonian systems (c.f. [8]).

Let g be a (possibly infinite-dimensional) Lie algebra. A linear map R : g → g is
called an r-matrix if the bracket defined by

[X,Y ]R
def
= [RX, Y ] + [X,RY ]

satisfies the Jacobi identity. This is certainly the case if R satisfies the (modified)
classical Yang-Baxter equations

R[X, Y ]R − [RX,RY ] = α[X,Y ]

for some fixed α ∈ C.

An r-matrix endows g with a second Lie algebra structure and thus g∗ with a second
Poisson structure. Indeed, for f , g ∈ C∞(g∗), setting

{f, g}R(x) =< x, [df, dg]R >

defines a Poisson bracket on g∗ and thus a Lie algebra homomorphism C∞(g∗) →
C∞(Tg∗) given by

f 7→ Xf

where Xfg = {f, g}R.

Among the well known properties [8] of such brackets are

(i) If f , g are invariant functions on g∗ then they Poisson commute so that [Xf , Xg]
vanishes.

(ii) If f is invariant then, for x ∈ g∗,

Xf (x) = −ad∗(Rdf)(x).

This last equation is essentially a Lax equation. Indeed, if we can identify g and g∗

via an invariant inner product then the equation becomes

Xf (x) = [x,R∇f(x)],

for x ∈ g, which is truly a Lax equation. Further, we note that, for any invariant
function f , [x,∇f(x)] vanishes identically so that we may write our equation as

Xf (x) = [x, (R + µ)∇f(x)]
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for any µ ∈ C.

Suppose now we have invariant functions f1, f2 on g∗ and corresponding vector fields
X1, X2 which commute by (ii) above. Let ξ : R2 → g be an integral submanifold of
the corresponding distribution with

∂ξ

∂s
= X1(ξ),

∂ξ

∂t
= X2(ξ),

and define a g-valued 1-form A by

A = (R + µ1)df1(ξ) ds+ (R + µ2)df2(ξ) dt.

We now have

Lemma 3 With ξ, A as above, if R satis�es the modi�ed classical Yang-Baxter equa-
tions (4) then A satis�es the Maurer-Cartan equations.

To apply this to the case at hand, we first define an r-matrix on Ωg by

R =

{
i on Ω+

−i on Ω−.

This is easily checked to satisfy (4). As invariant inner product on Ωg we take the
L2 inner product

(ξ1, ξ2)L2 =
∫
S1

(ξ1, ξ2),

while, on Ωd, we take f1, f2 to be given by

(f1 + if2)(ξ) =
∫
S1
λ1−d(ξ, ξ).

Then the Hamiltonian equations of motion on Ωd are

∂ξ

∂z
= [ξ, (R + µ)λ1−dξ]

and, taking µ = i, this becomes

∂ξ

∂z
= [ξ, 2i(1− λ)ξd]

which is precisely (4). Thus the theorem is a consequence of lemma 3.
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5 The spectral curve

Let us conclude by indicating the link between the differential equation (4) and Al-
gebraic Geometry. We begin by reducing our situation to the case where g = u(n)
by choosing a faithful representation if necessary.

Consider ξλ ∈ Ωd. We define an affine curve in (λ, η)-space by the equation

det(ξλ − ηId) = 0.

Compactifying gives us a curve C0 which, since (4) is a Lax equation, will remain
invariant under the flow of (4). Since ξ1 = 0, C0 is necessarily singular so we pass
to its normalisation C which is our spectral curve. Suppose now we choose an initial
condition ξ(0) which has simple eigenvalues for generic λ. Then the η-eigenspace of
ξλ at (λ, η) defines a line bundle on C which changes as ξ evolves under (4). Thus
(4) corresponds to a dynamical system on the Jacobian of C.

In fact this flow is linear , a result suggested by the work of Reyman and Semenov-
Tian-Shansky [7]. However, their proof does not work in our setting since they assume
that C0 is smooth. On the other hand, it turns out that the linearity of the flow may
be established by using the rather general algebro-geometric methods of Griffiths [3].
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