

#### An Application of Linear Algebra to Image Compression

Paul Dostert

July 2, 2009



## Image Compression

There are hundreds of ways to compress images. Some basic ways use singular value decomposition

Suppose we have an 9 megapixel gray-scale image, which is  $3000 \times 3000$  pixels (a  $3000 \times 3000$  matrix). For each pixel, we have some level of black and white, given by some integer between 0 and 255. Each of these integers (and hence each pixel) requires approximately 1 byte to store, resulting in an approximately 8.6 Mb image.

A color image usually has three components, a red, a green, and a blue (RGB). EACH of these is represented by a matrix, so storing color images takes three times the space (25.8 Mb).

We will look at compressing this image through computing the singular value decomposition (SVD).



# Singular Value Decomposition (SVD)

Any nonzero real  $m \times n$  matrix A with rank r > 0 can be factored as  $A = P\Sigma Q^T$  with P an  $m \times r$  matrix with orthonormal columns,  $\Sigma = diag(\sigma_1, \ldots, \sigma_r)$  and  $Q^T$  an  $r \times n$  matrix with orthonormal rows. This factorization is called the *singular value decomposition (SVD)*.

This is directly related to the spectral theorem which states that if *B* is a symmetric matrix ( $B^T = B$ ) then we can write  $B = U\Lambda U^T$  where  $\Lambda$  is a diagonal matrix of eigenvalues and *U* is an orthonormal matrix of eigenvectors.

To see the relationship, notice:

$$A^{T}A = Q\Sigma^{T}P^{T}P\Sigma Q^{T} = Q\Sigma^{2}Q^{T}$$
$$AA^{T} = P\Sigma Q^{T}Q\Sigma^{T}P^{T} = P\Sigma^{2}P^{T}$$

These are both spectral decompositions, hence the  $\sigma_i$  are the positive square roots of the eigenvalues of  $A^T A$ . In the SVD, the matrices are rearranged so that  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ .

# **A**

#### **Reducing the SVD**

Using the SVD we can write an  $n \times n$  invertible matrix A as:

$$A = P\Sigma Q^{T} = (\mathbf{p_{1}}, \mathbf{p_{2}}, \dots, \mathbf{p_{n}}) \begin{pmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \sigma_{n} \end{pmatrix} \begin{pmatrix} \mathbf{q_{1}}^{T} \\ \mathbf{q_{2}}^{T} \\ \vdots \\ \mathbf{q_{n}}^{T} \end{pmatrix}$$
$$= \mathbf{p_{1}}\sigma_{1}\mathbf{q_{1}}^{T} + \mathbf{p_{2}}\sigma_{2}\mathbf{q_{2}}^{T} + \dots + \mathbf{p_{n}}\sigma_{n}\mathbf{q_{n}}^{T}$$

Since  $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$  the terms  $\mathbf{p_i} \sigma_i \mathbf{q_i}^T$  with small *i* contribute most to the sum, and hence contain the most information about the image. Keeping only some of these terms may result in a lower image quality, but lower storage size. This process is sometimes called Principal Component Analysis (PCA).



# Issues in using PCA

- A requires  $n^2$  elements. P and Q require  $n^2$  elements each and  $\Sigma$  requires n elements. Storing the full SVD then requires  $2n^2 + n$  elements.
- Keeping 1 term in the SVD,  $\mathbf{p_1}\sigma_{11}\mathbf{q_1}^T$ , requires only 2n+1 elements.
- If we keep  $k \approx \frac{n}{2}$  terms, then storing the reduced SVD and the original matrix are approximately the same.
- The *P* and *Q* are normalized (each  $\mathbf{p_i}, \mathbf{q_i}^T$  has norm 1) so the error in the reduced SVD is given by only the  $\sigma$  values:

$$\text{Error} = 1 - \frac{\sum_{i=1}^{k} \sigma_i}{\sum_{i=1}^{n} \sigma_i}$$

 Color images are often in RGB (red, green, blue) where each color is specified by 0 to 255. This gives us three matrices. The reduced SVD can be computed on all three separately or together.



#### Examples: 1 Term

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 1 terms





#### **Examples: 3 Terms**

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 3 terms





#### **Examples: 5 Terms**

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 5 terms





#### **Examples: 10 Terms**

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 10 terms





#### Examples: 20 Terms

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 20 terms





#### Examples: 30 Terms

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 30 terms





#### Examples: 40 Terms

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

# Original



# Using 40 terms





#### Examples: 50 Terms

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 50 terms





#### Examples: 75 Terms

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 75 terms





#### Examples: 100 Terms

The following is a  $500\times500$  image. The reduced SVD was applied equally to each color:

## Original



# Using 100 terms





# **Results & Other Applications**

- k = 100 gives a fairly accurate reproduction, with 7.53% error.
- The reduced SVD stores  $k(2n+1) = 100 \cdot (1001)$  numbers,  $\approx 40\%$  of the original image size.
- Many uses besides image compression, such as parameterizing possible permeability profiles for underground reservoirs.



Moral of the story: take more linear algebra and numerical analysis. There are hundreds of fun applications!