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Image Compression
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There are hundreds of ways to compress images. Some basic ways use
singular value decomposition

Suppose we have an 9 megapixel gray-scale image, which is 3000 × 3000
pixels (a 3000 × 3000 matrix). For each pixel, we have some level of black
and white, given by some integer between 0 and 255. Each of these integers
(and hence each pixel) requires approximately 1 byte to store, resulting in an
approximately 8.6 Mb image.

A color image usually has three components, a red, a green, and a blue
(RGB). EACH of these is represented by a matrix, so storing color images
takes three times the space (25.8 Mb).

We will look at compressing this image through computing the singular value
decomposition (SVD).



Singular Value Decomposition (SVD)
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Any nonzero real m × n matrix A with rank r > 0 can be factored as
A = PΣQT with P an m × r matrix with orthonormal columns,
Σ = diag (σ1, . . . , σr) and QT an r × n matrix with orthonormal rows. This
factorization is called the singular value decomposition (SVD) .

This is directly related to the spectral theorem which states that if B is a
symmetric matrix (BT = B) then we can write B = UΛUT where Λ is a
diagonal matrix of eigenvalues and U is an orthonormal matrix of
eigenvectors.

To see the relationship, notice:

AT A = QΣT PT PΣQT = QΣ2QT

AAT = PΣQT QΣT PT = PΣ2PT

These are both spectral decompositions, hence the σi are the positive
square roots of the eigenvalues of AT A. In the SVD, the matrices are
rearranged so that σ1 ≥ σ2 ≥ · · · ≥ σn.



Reducing the SVD
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Using the SVD we can write an n × n invertible matrix A as:

A = PΣQT = (p1, p2, . . . ,pn)
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Since σ1 ≥ σ2 ≥ · · · ≥ σn the terms piσiqi
T with small i contribute most to

the sum, and hence contain the most information about the image. Keeping
only some of these terms may result in a lower image quality, but lower
storage size. This process is sometimes called Principal Component
Analysis (PCA).



Issues in using PCA
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● A requires n2 elements. P and Q require n2 elements each and Σ
requires n elements. Storing the full SVD then requires 2n2 + n

elements.
● Keeping 1 term in the SVD, p1σ11q1

T , requires only 2n + 1 elements.
● If we keep k ≈

n

2
terms, then storing the reduced SVD and the original

matrix are approximately the same.
● The P and Q are normalized (each pi,qi

T has norm 1) so the error in
the reduced SVD is given by only the σ values:

Error = 1 −

∑

k

i=1
σi

∑

n

i=1
σi

● Color images are often in RGB (red, green, blue) where each color is
specified by 0 to 255. This gives us three matrices. The reduced SVD
can be computed on all three separately or together.



Examples: 1 Term
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 1 terms



Examples: 3 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 3 terms



Examples: 5 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 5 terms



Examples: 10 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 10 terms



Examples: 20 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 20 terms



Examples: 30 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 30 terms



Examples: 40 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 40 terms



Examples: 50 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 50 terms



Examples: 75 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 75 terms



Examples: 100 Terms
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The following is a 500 × 500 image. The reduced SVD was applied equally to
each color:

Original Using 100 terms



Results & Other Applications
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● k = 100 gives a fairly accurate reproduction, with 7.53% error.
● The reduced SVD stores k (2n + 1) = 100 · (1001) numbers, ≈ 40% of the

original image size.
● Many uses besides image compression, such as parameterizing

possible permeability profiles for underground reservoirs.

● Moral of the story: take more linear algebra and numerical analysis.
There are hundreds of fun applications!
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