
M216: Exercise sheet 10

Warmup questions

1. Show that the following are bilinear maps:
(a) Matrix multiplication Mm×n(F)×Mn×p(F) → Mm×p(F).
(b) Evaluation (φ, v) 7→ φ(v) : L(V,W )× V → W .
(c) For α ∈ V ∗ and w ∈ W , define φα,w : V → W by

φα,w(v) = α(v)w.

(i) Show that each φα,w is linear.
(ii) Show that the map t : V ∗×W → L(V,W ) given by t(α,w) = φα,w is bilinear.

2. Let B : V × V → F be a symmetric bilinear form with diagonalising basis v1, . . . , vn.
Suppose that, for some vi, 1 ≤ i ≤ n, we have B(vi, vi) = 0. Prove that vi ∈ radB.

3. Let B : V × V → F be a real symmetric bilinear form with diagonalising basis
v1, . . . , vn. Show that B is positive definite if and only if B(vi, vi) > 0, for all 1 ≤ i ≤
n.

4. Let A,B ∈ Mn×n(F) be congruent: B = P TAP , for some P ∈ GL(n,F).
Are the following statements true or false?
(a) detA = detB.
(b) A is symmetric if and only if B is symmetric.

Rank and signature

5. Let B = BA : R4 × R4 → R where

A =


0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0

 .

Diagonalise B and hence, or otherwise, compute its signature.

6. Diagonalise the symmetric bilinear form B : R3 × R3 → R given by B(x, y) = x1y1 +
x1y2 + x2y1 + 2x2y2 + x2y3 + x3y2 + x3y3.
Hence, or otherwise, compute the rank and signature of B.

7. Compute the rank and signature of the quadratic form Q(x) = x1x2 − 4x3x4 on R4.
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M216: Exercise sheet 10—Solutions

1. (a) The bilinearity amounts to:

A(C + λD) = AC + λAD

(A+ λB)C = AC + λBC,

for all A,B ∈ Mm×n(F), C,D ∈ Mn×p(F) and λ ∈ F. Both of these are easy to prove.
For example,

(A(C + λD))ij =

n∑
k=1

Aik(C + λD)kj =

n∑
k=1

Aik(Ckj + λDkj)

=
n∑

k=1

(AikCkj + λAikDkj) = (AC)ij + λ(AD)ij = (AC + λAD)ij .

(b) Here, bilinearity reads

(φ1 + λφ2)(v) = φ1(v) + λφ2(v)

φ(u+ λv) = φ(u) + λφ(v),

for all φ, φ1, φ2 ∈ L(V,W ), u, v ∈ V and λ ∈ F. But the first of these is simply the
definition of the pointwise addition and scalar multiplication in L(V,W ) while the second
is simply the assertion that φ is linear!

(c) (i) This comes straight from the linearity of α: for u, v ∈ V and λ ∈ F,

φα,w(u+ λv) = α(u+ λv)w = α(u)w + λα(v)w = φα,w(u) + λφα,w(v).

(ii) Bilinearity of t amounts to:

φα+λβ,w = φα,w + λφβ,w

φα,w1+λw2
= φα,w1

+ λφα,w2
,

for all α, β ∈ V ∗, w,w1, w2 ∈ W and λ ∈ F. Each is proved by showing that both
sides take the same values on each v ∈ V . For example:

φα+λβ,w(v) = (α+ λβ)(v)w = α(v)w + λβ(v)w

= φα,w(v) + λφβ,w(v) = (φα,w + λφβ,w)(v)

2. In this case, we have B(vi, vj) = 0, for all 1 ≤ j ≤ n. So, if v ∈ V , write v =
∑

j λjvj and
then

B(vi, v) =
∑
j

λjB(vi, vj) = 0.

Otherwise said, vi ∈ radB.

3. If B is positive definite, then B(v, v) > 0 for any non-zero v ∈ V and so, in particular, each
B(vi, vi) > 0.
Conversely, suppose that each B(vi, vi) > 0 and let v ∈ V . Write v = λ1v1 + · · · + λnvn and
compute:

B(v, v) = B(
∑
i

λivi,
∑
j

λjvj) =
∑
i,j

λiλjB(vi, vj) =
∑
i

λ2
iB(vi, vi).

This last is non-negative and vanishes if and only if each λ2
iB(vi, vi) = 0, or, equivalently,

λi = 0. Thus B is positive definite.



4. (a) This is false: let P = λIn, for λ ∈ F. Then B = λ2A so that detB = λ2n detA.
(b) This is true: if AT = A then

BT = (PTAP )T = PTATP = PTAP = B.

Conversely, if BT = B we get PTATP = PTAP and multiplying by P−1 on the right
and (PT )−1 on the left gives AT = A.

5. We need to start with v1 with B(v1, v1) 6= 0. Those diagonal zeros say that none of the
standard basis will do so let us try v1 = (1, 1, 0, 0) for which B(v1, v1) = 4.
Now seek v2 among the y with

0 = B(v1, y) =
(
1 1 0 0

)
Ay =

(
2 2 1 1

)
y = 2y1 + 2y2 + y3 + y4.

We take v2 = (0, 0, 1,−1) with

B(v2, y) =
(
0 0 1 −1

)
Ay =

(
1 −1 −2 2

)
y = y1 − y2 − 2y3 + 2y4.

Then B(v2, v2) = −4 and we seek v3 among the y with B(v1, y) = B(v2, y) = 0, that is:

2y1 + 2y2 + y3 + y4 = 0

y1 − y2 − 2y3 + 2y4 = 0.

One solution is v3 = (−3, 5,−4, 0) with

B(v3, y) =
(
−3 5 −4 0

)
Ay = 3

(
2 −2 −1 −1

)
y = 3(2y1 − 2y2 − y3 − y4).

Thus B(v3, v3) = −36 and we need to find v4 = y with B(v1, y) = B(v2, y) = B(v3, y) = 0:

2y1 + 2y2 + y3 + y4 = 0

y1 − y2 − 2y3 + 2y4 = 0

2y1 − 2y2 − y3 − y4 = 0.

A solution is v4 = (0, 4,−5,−3) with B(v4, v4) = 36.
We now have a diagonalising basis with B(vi, vi) = 4,−4,−36, 36 so B has signature (2, 2)
and so has rank 4.
After all this linear equation solving it is probably good to check our answer: let P have the
vj as columns and check that PTAP is diagonal:

1 1 0 0
0 0 1 −1
−3 5 −4 0
0 4 −5 −3



0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0



1 0 −3 0
1 0 5 4
0 1 −4 −5
0 −1 0 −3

 =


4 0 0 0
0 −4 0 0
0 0 −36 0
0 0 0 36


6. B = BA where

A =

1 1 0
1 2 1
0 1 1

 .

Let us exploit the zero in the (1, 3) slot: note that

B(e1, e1) = B(e3, e3) = 1, B(e1, e3) = 0

so that we just need to find y with

0 = B(e1, y) = y1 + y2

0 = B(e3, y) = y2 + y3.



Clearly y = (1,−1, 1) does the job with B(y, y) = 0. Thus e1, e3, y are a diagonalising basis
with matrix 1 0 0

0 1 0
0 0 0.


Either way, we see that the signature is (2, 0) and so the rank is 2.

7. The fastest way to do this is to recall that xy = 1
4

(
(x+ y)2 − (x− y)2

)
so that

x1x2 − 4x3x4 = 1
4 (x1 + x2)

2 − 1
4 (x1 − x2)

2 − (x3 + x4)
2 + (x3 − x4)

2.

Moreover, the four linear functionals x1±x2, x3±x4 are linearly independent: one way to see
this is that x1 ± x2 = 0 = x3 ± x4 forces each xi = 0 so that Corollary 5.7 applies.
Now two squares appear positively and two negatively giving signature (2, 2) and so rank 4.


