M216: Exercise sheet 9

Warmup questions
1. Let U < V. Show that annU < V*,
2. Let V be finite-dimensional and U < V. Show that

dimannU +dimU = dim V.

Homework
3. Prove at least one of the following assertions:

(a) Let E, F < V*. Then

sol(F + F) = (sol E) N (sol F)
(sol E) + (sol F) < sol(ENF)

with equality if V' is finite-dimensional.
(b) Let U,W < V. Then

ann(U + W) = (annU) N (ann W)
(annU) + (ann W) < ann(U N W)

with equality if V' is finite-dimensional.

4. Let ¢ € L(V,W) be a linear map of vector spaces. Show that

ker ¢7 = ann(im ¢)
im ¢ < ann(ker ¢)

with equality if V, W are finite-dimensional.

Extra questions

5. Let U <V and let ¢ : U — V be the inclusion map (so that ¢(u) = u, for all u € U)

and ¢ : V' — V/U the quotient map.

(a) Show that .7 : V* — U* is the restriction map: thus " (a) = o)y with kernel

annU.

If V is finite-dimensional, show that 7 is surjective and deduce that V*/ann U =

U*.

(b) Show that ¢” : (V/U)* — V* is injective with im¢? < annU. If V is finite-

dimensional, show that ¢? is an isomorphism (V/U)* — annU.

6. Recall the linear injection ev : V- — V**. For U <V, show that ev(U) < ann(annU)

with equality if V' is finite-dimensional.
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M216: Exercise sheet 9—Solutions

1.

3.

Firstly, 0 € annU so annU # (). So we just check that annU is closed under addition and
scalar multiplication. Let aj,a2 € annU and u € U. Then, aq(u) = az(u) = 0 so that
(a1 + a2)(u) =0+ 0 =0 whence a1 + as € annU also. Similarly, for « € annU and \ € T,
(Aa)(u) = Aa(u) = A0 = 0 so that Ao € annU.

Alternatively, note that restriction to U, a = oy is a linear map V* — U™ with kernel ann U

Let v1, ..., vk be a basis of U and extend to a basis vy,...,v, of V. Let vf, ..., v} be the dual
basis. Now observe that o € V* is in annU if and only if a(v;) = 0, for 1 < j < k. Thus,
writing a = >, a(v;)vf, we see that @ € ann U if and only if a € span{v} | k+1 <i < n}.
Thus ann U = span{v} | k + 1 <1i < n} so that

dimannU =n—k=dimV — dimU.

(a) E,F < E+ F so sol(E + F) < solE,sol F whence sol(E + F) < (sol E) N (sol F).

Conversely, if v € (sol E) N (sol F') then a(v) = B(v) =0, for all &« € E and g € F. Thus,
fora+pf € E+F, (a+ B)(v) =0+ 0 =0 so that v € sol(E + F). We conclude that
(sol E) N (sol F') < sol(E + F') and so (sol E') N (sol F') = sol(E + F).
For the second statement, ENF < E, F' so that sol E,sol F' < sol(ENF') whence (sol E)+
(sol F) < sol(E N F) by Proposition 2.1(2) of the notes. For equality when V is finite-
dimensional, we show that both subspaces have the same dimension using the first part,
the formula for sol E and the dimension formula!. The dimension formula gives

dim((sol E) + (sol F')) = dimsol E 4+ dimsol F' — dim((sol E) N (sol F))
= dimsol E + dimsol F' — dimsol(E + F),

using the first part,

=dimV —dimE+dimV —dim F — (dimV — dim(E + F))
=dimV —dim(EN F),

by the dimension formula again,
= dimsol(E N F).

(b) First we note that if X <Y <V then annY < ann X: if o € annY’, then a)y = 0 and
so, in particular, | x = 0, that is a € ann X.
We now put this to work: UW < U + W so ann(U + W) < annU,ann W whence
ann(U + W) < (annU) N (ann W). For the converse, if o € (annU) N (ann W) we have
apy =0and ajyy =0. Soif v=u+w € U+ W then a(v) = a(u) + a(w) = 0+0 =0 so
that v € ann(U + W). Thus ann(U + W) = (aunU) N (ann W).
For the second statement, U N W < U,W so that annU,ann W < ann(U N W) and
then (annU) + (ann W) < ann(U N W) by Proposition 2.1(2). For equality when V is
finite-dimensional, we argue as in part (a). The dimension formula says

dim((annU) + (ann W)) = dimann U + dimann W — dim((ann U) N (ann W))
=dimann U + dimann W — dimann(U + W),

using the first part,

=dimV — dim U 4 dim V — dim W — (dim V — dim(U + W)
= dim V — dim(U N W),

f X, Y < W then dim(X +Y) +dim(X NY) = dim X + dim Y.



by the dimension formula again,
= dimann(U N W).

Notice that the arguments for part (b) are essentially identical to those for part (a):
the key points are that ann and sol reverse inclusions and take subspaces to ones of
complementary dimension.

Let a € W*. Then « € ker ¢7 if and only if a o ¢ = 0 if and only if a(im ¢) = {0}, that is
a € ann(im ¢). Thus ker o7 = ann(im ¢).

For the second statement, suppose that 3 € im ¢? so that 3 = ¢T (a) = aod, for some o € W*.
Then if v € ker ¢, B(v) = a(¢(v)) = 0 so that 8 € ann(ker ¢). Thus im ¢* < ann(ker ¢).

For equality when V is finite-dimensional, recall that we already know from lectures that
rank ¢ = rank ¢7 from which we see from rank-nullity that

dimim ¢7 = rank ¢ = dim V — dim ker ¢ = dim ann(ker ¢),

where the last equality comes from Question 2.
(a) For a € V* and u € U, " (a)(u) = a(e(u)) = a(u) = oy (u). Thus o'(a) = ajy and 7
is the restriction map. Now ker” = {a € V* | oyy =0} = ann U.

Proposition 2.11 tells us? that any 3 € U* is the restriction of some a € V* so that (T
surjects: im¢T = U*. Thus, the First Isomorphism Theorem, applied to ¢7, tells us that

V*/annU = V*/ker! = im.” = U*.

This gives us another approach to Question 2.

(b) All we need to know about ¢ is that it is a linear surjection with kernel U. Then,
by Question 4, kerq? = ann(imq) = annV/U = {0} (any o € (V/U)* that vanishes
on V/U is zero by definition!) so that ¢” injects. Moreover, Question 4 tells us that
im¢” < ann(kerq) = annU with equality when V is finite-dimensional. Thus, in that
case, ¢! is a linear bijection (V/U)* — annU and so an isomorphism.

This is just a matter of not panicking! Let f € ev(U) so that f = ev(u), for some u € U. Let
a € annU. We need f(a) =0. But

since o € ann U.
When V is finite-dimensional, we know that ev is an isomorphism so that dimev(U) = dim U.
Meanwhile

dim(ann(annU)) = dim V* —dimanm U =dimV — (dimV —dimU) = dimU

so that ev(U) and ann(ann U) have the same dimension and so coincide.

2This is where we use that V is finite-dimensional.



