M216: Exercise sheet 9

Warmup questions

- 1. Let $U \leq V$. Show that ann $U \leq V^*$.
- 2. Let V be finite-dimensional and $U \leq V$. Show that

$$\dim \operatorname{ann} U + \dim U = \dim V.$$

Homework

3. Prove at least one of the following assertions: (a) Let $E, F \leq V^*$. Then

$$\operatorname{sol}(E+F) = (\operatorname{sol} E) \cap (\operatorname{sol} F)$$
$$(\operatorname{sol} E) + (\operatorname{sol} F) \le \operatorname{sol}(E \cap F)$$

with equality if V is finite-dimensional.

(b) Let $U, W \leq V$. Then

$$\operatorname{ann}(U+W) = (\operatorname{ann} U) \cap (\operatorname{ann} W)$$
$$(\operatorname{ann} U) + (\operatorname{ann} W) \le \operatorname{ann}(U \cap W)$$

with equality if V is finite-dimensional.

4. Let $\phi \in L(V, W)$ be a linear map of vector spaces. Show that

$$\ker \phi^T = \operatorname{ann}(\operatorname{im} \phi)$$
$$\operatorname{im} \phi^T \le \operatorname{ann}(\ker \phi)$$

with equality if V, W are finite-dimensional.

Extra questions

- 5. Let $U \leq V$ and let $\iota : U \to V$ be the inclusion map (so that $\iota(u) = u$, for all $u \in U$) and $q : V \to V/U$ the quotient map.
 - (a) Show that $\iota^T : V^* \to U^*$ is the restriction map: thus $\iota^T(\alpha) = \alpha_{|U}$ with kernel ann U. If V is finite-dimensional, show that ι^T is surjective and deduce that $V^*/\operatorname{ann} U \cong$

If V is finite-dimensional, show that ι^2 is surjective and deduce that $V' / \operatorname{ann} U = U^*$.

- (b) Show that $q^T : (V/U)^* \to V^*$ is injective with $\operatorname{im} q^T \leq \operatorname{ann} U$. If V is finite-dimensional, show that q^T is an isomorphism $(V/U)^* \to \operatorname{ann} U$.
- 6. Recall the linear injection ev : $V \to V^{**}$. For $U \leq V$, show that $ev(U) \leq ann(ann U)$ with equality if V is finite-dimensional.

Please hand in at 4W level 1 by NOON on Friday December 8th

M216: Exercise sheet 9—Solutions

1. Firstly, $0 \in \operatorname{ann} U$ so $\operatorname{ann} U \neq \emptyset$. So we just check that $\operatorname{ann} U$ is closed under addition and scalar multiplication. Let $\alpha_1, \alpha_2 \in \operatorname{ann} U$ and $u \in U$. Then, $\alpha_1(u) = \alpha_2(u) = 0$ so that $(\alpha_1 + \alpha_2)(u) = 0 + 0 = 0$ whence $\alpha_1 + \alpha_2 \in \operatorname{ann} U$ also. Similarly, for $\alpha \in \operatorname{ann} U$ and $\lambda \in \mathbb{F}$, $(\lambda \alpha)(u) = \lambda \alpha(u) = \lambda 0 = 0$ so that $\lambda \alpha \in \operatorname{ann} U$.

Alternatively, note that restriction to $U, \alpha \mapsto \alpha_{|U}$ is a linear map $V^* \to U^*$ with kernel and U.

2. Let v_1, \ldots, v_k be a basis of U and extend to a basis v_1, \ldots, v_n of V. Let v_1^*, \ldots, v_n^* be the dual basis. Now observe that $\alpha \in V^*$ is in ann U if and only if $\alpha(v_j) = 0$, for $1 \le j \le k$. Thus, writing $\alpha = \sum_{i=1}^n \alpha(v_i)v_i^*$, we see that $\alpha \in \operatorname{ann} U$ if and only if $\alpha \in \operatorname{span}\{v_i^* \mid k+1 \le i \le n\}$. Thus ann $U = \operatorname{span}\{v_i^* \mid k+1 \le i \le n\}$ so that

 $\dim \operatorname{ann} U = n - k = \dim V - \dim U.$

3. (a) $E, F \leq E + F$ so $\operatorname{sol}(E + F) \leq \operatorname{sol} E$, sol F whence $\operatorname{sol}(E + F) \leq (\operatorname{sol} E) \cap (\operatorname{sol} F)$. Conversely, if $v \in (\operatorname{sol} E) \cap (\operatorname{sol} F)$ then $\alpha(v) = \beta(v) = 0$, for all $\alpha \in E$ and $\beta \in F$. Thus, for $\alpha + \beta \in E + F$, $(\alpha + \beta)(v) = 0 + 0 = 0$ so that $v \in \operatorname{sol}(E + F)$. We conclude that $(\operatorname{sol} E) \cap (\operatorname{sol} F) \leq \operatorname{sol}(E + F)$ and so $(\operatorname{sol} E) \cap (\operatorname{sol} F) = \operatorname{sol}(E + F)$. For the second statement, $E \cap F \leq E, F$ so that $\operatorname{sol} E, \operatorname{sol} F \leq \operatorname{sol}(E \cap F)$ whence $(\operatorname{sol} E) + (\operatorname{sol} F) \leq \operatorname{sol}(E \cap F)$ by Proposition 2.1(2) of the notes. For equality when V is finite-

 $(\operatorname{sol} F) \leq \operatorname{sol}(E \cap F)$ by Proposition 2.1(2) of the notes. For equality when V is finitedimensional, we show that both subspaces have the same dimension using the first part, the formula for $\operatorname{sol} E$ and the dimension formula¹. The dimension formula gives

$$\dim((\operatorname{sol} E) + (\operatorname{sol} F)) = \dim \operatorname{sol} E + \dim \operatorname{sol} F - \dim((\operatorname{sol} E) \cap (\operatorname{sol} F))$$
$$= \dim \operatorname{sol} E + \dim \operatorname{sol} F - \dim \operatorname{sol}(E + F),$$

using the first part,

$$= \dim V - \dim E + \dim V - \dim F - (\dim V - \dim(E + F))$$
$$= \dim V - \dim(E \cap F),$$

by the dimension formula again,

 $= \dim \operatorname{sol}(E \cap F).$

(b) First we note that if $X \leq Y \leq V$ then $\operatorname{ann} Y \leq \operatorname{ann} X$: if $\alpha \in \operatorname{ann} Y$, then $\alpha_{|Y} = 0$ and so, in particular, $\alpha_{|X} = 0$, that is $\alpha \in \operatorname{ann} X$.

We now put this to work: $U, W \leq U + W$ so $\operatorname{ann}(U + W) \leq \operatorname{ann} U$, $\operatorname{ann} W$ whence $\operatorname{ann}(U + W) \leq (\operatorname{ann} U) \cap (\operatorname{ann} W)$. For the converse, if $\alpha \in (\operatorname{ann} U) \cap (\operatorname{ann} W)$ we have $\alpha_{|U} = 0$ and $\alpha_{|W} = 0$. So if $v = u + w \in U + W$ then $\alpha(v) = \alpha(u) + \alpha(w) = 0 + 0 = 0$ so that $v \in \operatorname{ann}(U + W)$. Thus $\operatorname{ann}(U + W) = (\operatorname{ann} U) \cap (\operatorname{ann} W)$.

For the second statement, $U \cap W \leq U, W$ so that $\operatorname{ann} U, \operatorname{ann} W \leq \operatorname{ann}(U \cap W)$ and then $(\operatorname{ann} U) + (\operatorname{ann} W) \leq \operatorname{ann}(U \cap W)$ by Proposition 2.1(2). For equality when V is finite-dimensional, we argue as in part (a). The dimension formula says

$$\dim((\operatorname{ann} U) + (\operatorname{ann} W)) = \dim \operatorname{ann} U + \dim \operatorname{ann} W - \dim((\operatorname{ann} U) \cap (\operatorname{ann} W))$$
$$= \dim \operatorname{ann} U + \dim \operatorname{ann} W - \dim \operatorname{ann} (U + W),$$

using the first part,

 $= \dim V - \dim U + \dim V - \dim W - (\dim V - \dim(U + W))$ $= \dim V - \dim(U \cap W),$

¹If $X, Y \leq W$ then $\dim(X + Y) + \dim(X \cap Y) = \dim X + \dim Y$.

by the dimension formula again,

 $= \dim \operatorname{ann}(U \cap W).$

Notice that the arguments for part (b) are essentially identical to those for part (a): the key points are that ann and sol reverse inclusions and take subspaces to ones of complementary dimension.

4. Let $\alpha \in W^*$. Then $\alpha \in \ker \phi^T$ if and only if $\alpha \circ \phi = 0$ if and only if $\alpha(\operatorname{im} \phi) = \{0\}$, that is $\alpha \in \operatorname{ann}(\operatorname{im} \phi)$. Thus $\ker \phi^T = \operatorname{ann}(\operatorname{im} \phi)$.

For the second statement, suppose that $\beta \in \operatorname{im} \phi^T$ so that $\beta = \phi^T(\alpha) = \alpha \circ \phi$, for some $\alpha \in W^*$. Then if $v \in \ker \phi$, $\beta(v) = \alpha(\phi(v)) = 0$ so that $\beta \in \operatorname{ann}(\ker \phi)$. Thus $\operatorname{im} \phi^T \leq \operatorname{ann}(\ker \phi)$.

For equality when V is finite-dimensional, recall that we already know from lectures that rank $\phi = \operatorname{rank} \phi^T$ from which we see from rank-nullity that

$$\dim \operatorname{im} \phi^T = \operatorname{rank} \phi = \dim V - \dim \ker \phi = \dim \operatorname{ann}(\ker \phi),$$

where the last equality comes from Question 2.

- 5. (a) For $\alpha \in V^*$ and $u \in U$, $\iota^T(\alpha)(u) = \alpha(\iota(u)) = \alpha(u) = \alpha_{|U}(u)$. Thus $\iota^T(\alpha) = \alpha_{|U}$ and ι^T is the restriction map. Now ker $\iota^T = \{\alpha \in V^* \mid \alpha_{|U} = 0\} = \operatorname{ann} U$. Proposition 2.11 tolls $u\alpha^2$ that any $\beta \in U^*$ is the restriction of some $\alpha \in V^*$ so that ι^T .
 - Proposition 2.11 tells us² that any $\beta \in U^*$ is the restriction of some $\alpha \in V^*$ so that ι^T surjects: im $\iota^T = U^*$. Thus, the First Isomorphism Theorem, applied to ι^T , tells us that

$$V^*/\operatorname{ann} U = V^*/\ker\iota^T \cong \operatorname{im}\iota^T = U^*.$$

This gives us another approach to Question 2.

- (b) All we need to know about q is that it is a linear surjection with kernel U. Then, by Question 4, ker $q^T = \operatorname{ann}(\operatorname{im} q) = \operatorname{ann} V/U = \{0\}$ (any $\alpha \in (V/U)^*$ that vanishes on V/U is zero by definition!) so that q^T injects. Moreover, Question 4 tells us that $\operatorname{im} q^T \leq \operatorname{ann}(\ker q) = \operatorname{ann} U$ with equality when V is finite-dimensional. Thus, in that case, q^T is a linear bijection $(V/U)^* \to \operatorname{ann} U$ and so an isomorphism.
- 6. This is just a matter of not panicking! Let $f \in ev(U)$ so that f = ev(u), for some $u \in U$. Let $\alpha \in \operatorname{ann} U$. We need $f(\alpha) = 0$. But

$$f(\alpha) = \operatorname{ev}(u)(\alpha) = \alpha(u) = 0,$$

since $\alpha \in \operatorname{ann} U$.

When V is finite-dimensional, we know that ev is an isomorphism so that $\dim ev(U) = \dim U$. Meanwhile

 $\dim(\operatorname{ann}(\operatorname{ann} U)) = \dim V^* - \dim \operatorname{ann} U = \dim V - (\dim V - \dim U) = \dim U$

so that ev(U) and ann(ann U) have the same dimension and so coincide.

²This is where we use that V is finite-dimensional.