
M216: Exercise sheet 9

Warmup questions

1. Let U ≤ V . Show that annU ≤ V ∗.

2. Let V be finite-dimensional and U ≤ V . Show that

dimannU + dimU = dimV.

Homework

3. Prove at least one of the following assertions:
(a) Let E,F ≤ V ∗. Then

sol(E + F ) = (solE) ∩ (solF )

(solE) + (solF ) ≤ sol(E ∩ F )

with equality if V is finite-dimensional.
(b) Let U,W ≤ V . Then

ann(U +W ) = (annU) ∩ (annW )

(annU) + (annW ) ≤ ann(U ∩W )

with equality if V is finite-dimensional.

4. Let φ ∈ L(V,W ) be a linear map of vector spaces. Show that

kerφT = ann(imφ)

imφT ≤ ann(kerφ)

with equality if V,W are finite-dimensional.

Extra questions

5. Let U ≤ V and let ι : U → V be the inclusion map (so that ι(u) = u, for all u ∈ U)
and q : V → V/U the quotient map.
(a) Show that ιT : V ∗ → U∗ is the restriction map: thus ιT (α) = α|U with kernel

annU .
If V is finite-dimensional, show that ιT is surjective and deduce that V ∗/ annU ∼=
U∗.

(b) Show that qT : (V/U)∗ → V ∗ is injective with im qT ≤ annU . If V is finite-
dimensional, show that qT is an isomorphism (V/U)∗ → annU .

6. Recall the linear injection ev : V → V ∗∗. For U ≤ V , show that ev(U) ≤ ann(annU)
with equality if V is finite-dimensional.
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M216: Exercise sheet 9—Solutions

1. Firstly, 0 ∈ annU so annU 6= ∅. So we just check that annU is closed under addition and
scalar multiplication. Let α1, α2 ∈ annU and u ∈ U . Then, α1(u) = α2(u) = 0 so that
(α1 + α2)(u) = 0 + 0 = 0 whence α1 + α2 ∈ annU also. Similarly, for α ∈ annU and λ ∈ F,
(λα)(u) = λα(u) = λ0 = 0 so that λα ∈ annU .
Alternatively, note that restriction to U , α 7→ α|U is a linear map V ∗ → U∗ with kernel annU .

2. Let v1, . . . , vk be a basis of U and extend to a basis v1, . . . , vn of V . Let v∗1 , . . . , v∗n be the dual
basis. Now observe that α ∈ V ∗ is in annU if and only if α(vj) = 0, for 1 ≤ j ≤ k. Thus,
writing α =

∑n
i=1 α(vi)v

∗
i , we see that α ∈ annU if and only if α ∈ span{v∗i | k + 1 ≤ i ≤ n}.

Thus annU = span{v∗i | k + 1 ≤ i ≤ n} so that

dimannU = n− k = dimV − dimU.

3. (a) E,F ≤ E + F so sol(E + F ) ≤ solE, solF whence sol(E + F ) ≤ (solE) ∩ (solF ).
Conversely, if v ∈ (solE) ∩ (solF ) then α(v) = β(v) = 0, for all α ∈ E and β ∈ F . Thus,
for α + β ∈ E + F , (α + β)(v) = 0 + 0 = 0 so that v ∈ sol(E + F ). We conclude that
(solE) ∩ (solF ) ≤ sol(E + F ) and so (solE) ∩ (solF ) = sol(E + F ).
For the second statement, E∩F ≤ E,F so that solE, solF ≤ sol(E∩F ) whence (solE)+
(solF ) ≤ sol(E ∩ F ) by Proposition 2.1(2) of the notes. For equality when V is finite-
dimensional, we show that both subspaces have the same dimension using the first part,
the formula for solE and the dimension formula1. The dimension formula gives

dim((solE) + (solF )) = dim solE + dim solF − dim((solE) ∩ (solF ))

= dim solE + dim solF − dim sol(E + F ),

using the first part,

= dimV − dimE + dimV − dimF − (dimV − dim(E + F ))

= dimV − dim(E ∩ F ),

by the dimension formula again,

= dim sol(E ∩ F ).

(b) First we note that if X ≤ Y ≤ V then annY ≤ annX: if α ∈ annY , then α|Y = 0 and
so, in particular, α|X = 0, that is α ∈ annX.
We now put this to work: U,W ≤ U + W so ann(U + W ) ≤ annU, annW whence
ann(U +W ) ≤ (annU) ∩ (annW ). For the converse, if α ∈ (annU) ∩ (annW ) we have
α|U = 0 and α|W = 0. So if v = u+w ∈ U +W then α(v) = α(u) + α(w) = 0 + 0 = 0 so
that v ∈ ann(U +W ). Thus ann(U +W ) = (annU) ∩ (annW ).
For the second statement, U ∩ W ≤ U,W so that annU, annW ≤ ann(U ∩ W ) and
then (annU) + (annW ) ≤ ann(U ∩ W ) by Proposition 2.1(2). For equality when V is
finite-dimensional, we argue as in part (a). The dimension formula says

dim((annU) + (annW )) = dimannU + dimannW − dim((annU) ∩ (annW ))

= dimannU + dimannW − dimann(U +W ),

using the first part,

= dimV − dimU + dimV − dimW − (dimV − dim(U +W ))

= dimV − dim(U ∩W ),

1If X,Y ≤ W then dim(X + Y ) + dim(X ∩ Y ) = dimX + dimY .



by the dimension formula again,

= dimann(U ∩W ).

Notice that the arguments for part (b) are essentially identical to those for part (a):
the key points are that ann and sol reverse inclusions and take subspaces to ones of
complementary dimension.

4. Let α ∈ W ∗. Then α ∈ kerφT if and only if α ◦ φ = 0 if and only if α(imφ) = {0}, that is
α ∈ ann(imφ). Thus kerφT = ann(imφ).
For the second statement, suppose that β ∈ imφT so that β = φT (α) = α◦φ, for some α ∈ W ∗.
Then if v ∈ kerφ, β(v) = α(φ(v)) = 0 so that β ∈ ann(kerφ). Thus imφT ≤ ann(kerφ).
For equality when V is finite-dimensional, recall that we already know from lectures that
rankφ = rankφT from which we see from rank-nullity that

dim imφT = rankφ = dimV − dimkerφ = dimann(kerφ),

where the last equality comes from Question 2.

5. (a) For α ∈ V ∗ and u ∈ U , ιT (α)(u) = α(ι(u)) = α(u) = α|U (u). Thus ιT (α) = α|U and ιT

is the restriction map. Now ker ιT = {α ∈ V ∗ | α|U = 0} = annU .
Proposition 2.11 tells us2 that any β ∈ U∗ is the restriction of some α ∈ V ∗ so that ιT

surjects: im ιT = U∗. Thus, the First Isomorphism Theorem, applied to ιT , tells us that

V ∗/ annU = V ∗/ ker ιT ∼= im ιT = U∗.

This gives us another approach to Question 2.
(b) All we need to know about q is that it is a linear surjection with kernel U . Then,

by Question 4, ker qT = ann(im q) = annV/U = {0} (any α ∈ (V/U)∗ that vanishes
on V/U is zero by definition!) so that qT injects. Moreover, Question 4 tells us that
im qT ≤ ann(ker q) = annU with equality when V is finite-dimensional. Thus, in that
case, qT is a linear bijection (V/U)∗ → annU and so an isomorphism.

6. This is just a matter of not panicking! Let f ∈ ev(U) so that f = ev(u), for some u ∈ U . Let
α ∈ annU . We need f(α) = 0. But

f(α) = ev(u)(α) = α(u) = 0,

since α ∈ annU .
When V is finite-dimensional, we know that ev is an isomorphism so that dim ev(U) = dimU .
Meanwhile

dim(ann(annU)) = dimV ∗ − dimannU = dimV − (dimV − dimU) = dimU

so that ev(U) and ann(annU) have the same dimension and so coincide.

2This is where we use that V is finite-dimensional.


