
M216: Exercise sheet 8

Warmup questions

1. Let α1, . . . , αk span E ≤ V ∗. Show that

solE =

k⋂
i=1

kerαi.

2. Define α, β ∈ (R3)∗ be given by

α(x) = 2x1 + x2 − x3

β(x) = x1 − x2 + x3,

for x ∈ R3.
Let E = span{α, β} and compute solE.

Homework

3. Let A,B ∈ M4(C) be given by

A =


0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 B =


0 1 1 1
0 0 0 −1
0 0 0 1
0 0 0 0


Compute the Jordan normal forms of A and B.
Are A and B similar?

4. Let U ≤ V and v ∈ V with v /∈ U . Show that there is α ∈ V ∗ such that α is zero on
U but α(v) 6= 0.
Hint: Apply theorem 5.3 to V/U .

Extra questions

5. Let V be a vector space over a field F and let α, β ∈ V ∗ be non-zero linear functionals.
Prove that kerα = kerβ if and only there is non-zero λ ∈ F such that α = λβ.
Hint: If v0 /∈ kerα, show that V = span{v0}+ kerα.

6. Let V be a vector space over F. For v ∈ V , define ev(v) : V ∗ → F by

ev(v)(α) = α(v).

(a) Show that ev(v) is linear so that ev(v) ∈ V ∗∗.
(b) We therefore have a map ev : V → V ∗∗. Show that ev is linear.
(c) Show that ev is injective.
(d) Deduce that if V is finite-dimensional then ev : V → V ∗∗ is an isomorphism.
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M216: Exercise sheet 8—Solutions

1. Let v ∈ solE so that α(v) = 0, for all α ∈ E. Then, in particular, each αi(v) = 0 so that
v ∈ kerαi, for 1 ≤ i ≤ k. That is, v ∈

⋂k
i=1 kerαi and solE ≤

⋂k
i=1 kerαi.

Conversely, let v ∈
⋂k

i=1 kerαi so that αi(v) = 0, for 1 ≤ i ≤ k. Let α ∈ E. Then
α =

∑k
i=1 λiαi, for some λ1, . . . , λk ∈ F, since the αi span E, and

α(v) =

k∑
i=1

λiαi(v) = 0

so that v ∈ solE. Thus
⋂k

i=1 kerαi ≤ solE and we are done.

2. According to question 1, solE consists of those x ∈ R3 such that α(x) = β(x) = 0, that is,
such that

2x1 + x2 − x3 = 0

x1 − x2 + x3 = 0.

Adding these gives 3x1 = 0 and then the first gives x2 = x3 so that solE = span{(0, 1, 1)}.

3. Both being upper triangular, we see that ∆A = ∆B = x4 so that the only eigenvalue of A or
B is 0. Moreover, we compute to see that A2 = B2 = 0 so that mA = x2. Thus both A and
B have at least one 2× 2 Jordan block J2. Thus the possibilities for the Jordan normal form
of either are J2 ⊕ J2 or J2 ⊕ J1 ⊕ J1. To distinguish these, recall that the number of Jordan
blocks with eigenvalue 0 is the dimension of the kernel. Now A has clearly has row rank 1 and
so 3-dimensional kernel. Thus A has Jordan normal form J2 ⊕ J1 ⊕ J1.
Meanwhile B has row rank 2, thus nullity 2 so that it has JNF J2 ⊕ J2.
Since they have different JNF, A and B are not similar.

4. Let q : V → V/U be the quotient map so that q is a linear surjection with kernel U (this is
all we need to know about the quotient construction). Since v /∈ U , q(v) 6= 0 so that, by the
Sufficiency Principle (Theorem 5.3), there is β ∈ (V/U)∗ such that β(q(v)) 6= 0.
Let α = β ◦ q : V → F. This is linear, being a composition of linear maps, so α ∈ V ∗.
Moreover, α(v) = β(q(v)) 6= 0 while, if u ∈ U , q(u) = 0 so that α(u) = β(0) = 0.

5. The reverse implication is clear: if λ 6= 0 and α = λβ then α(v) = 0 if and only if λα(v) =
β(v) = 0.
Now suppose that kerα = kerβ with α 6= 0. Thus there is v0 ∈ V such that α(v0) 6= 0.
Following the hint, let v ∈ V and observe that v − (α(v)/α(v0))v0 ∈ kerα so that V =
span{v0}+ kerα.
Now, since v0 /∈ kerα = kerβ, β(v0) 6= 0 also. Set λ = α(v0)/β(v0) so that

α(v0) = λβ(v0).

Further α(v) = λβ(v), for all v ∈ kerα, since both sides are zero. It follows that α = λβ on
span{v0}+ kerα = V .

6. This is a case of thinking carefully what each statement means after which it will be very easy
to prove.
(a) To see that ev(v) : V ∗ → F is linear, we must show that

ev(v)(α+ λβ) = ev(v)(α) + λ ev(v)(β),

for all α, β ∈ V ∗ and λ ∈ F. Using the definition of ev(v), this reads

(α+ λβ)(v) = α(v) + λβ(v)

which is exactly the definition of the (pointwise) addition and scalar multiplication in V ∗.



(b) Linearity of ev : V → V ∗∗ means that for v, w ∈ V and λ ∈ F, we have

ev(v + λw) = ev(v) + λ ev(w).

This is supposed to be equality of elements of V ∗∗, that is to say, equality of two functions
on V ∗. This holds when the two functions give the same answers on any α ∈ V ∗ so we
need

ev(v + λw)(α) = ev(v)(α) + λ ev(w)(α).

However, using the definition of ev, this reads

α(v + λw) = α(v) + λα(w)

which is true since α is linear!
(c) ev is injective if and only if ker ev = {0}. Let v ∈ ker ev. Thus ev(v) = 0 ∈ V ∗∗, the zero

functional on V ∗. Otherwise said, ev(v)(α) = 0, for all α ∈ V ∗, or equivalently, α(v) = 0,
for all α ∈ V ∗. But the Sufficiency Principle now forces v = 0 so that ev injects.

(d) If v is finite-dimensional, dimV = dimV ∗ = dimV ∗∗ so that ev is an isomorphism by
rank-nullity since we have just seen that it injects.


