M216: Exercise sheet 8

Warmup questions

1. Let $\alpha_1, \ldots, \alpha_k$ span $E \leq V^*$. Show that

$$\operatorname{sol} E = \bigcap_{i=1}^{k} \ker \alpha_i.$$

2. Define $\alpha, \beta \in (\mathbb{R}^3)^*$ be given by

$$\alpha(x) = 2x_1 + x_2 - x_3$$

$$\beta(x) = x_1 - x_2 + x_3,$$

for $x \in \mathbb{R}^3$.

Let $E = \operatorname{span}\{\alpha, \beta\}$ and compute sol E.

Homework

3. Let $A, B \in M_4(\mathbb{C})$ be given by

Compute the Jordan normal forms of A and B. Are A and B similar?

4. Let $U \leq V$ and $v \in V$ with $v \notin U$. Show that there is $\alpha \in V^*$ such that α is zero on U but $\alpha(v) \neq 0$. Hint: Apply theorem 5.3 to V/U.

Extra questions

- 5. Let V be a vector space over a field \mathbb{F} and let $\alpha, \beta \in V^*$ be non-zero linear functionals. Prove that ker $\alpha = \ker \beta$ if and only there is non-zero $\lambda \in \mathbb{F}$ such that $\alpha = \lambda \beta$. **Hint**: If $v_0 \notin \ker \alpha$, show that $V = \operatorname{span}\{v_0\} + \ker \alpha$.
- 6. Let V be a vector space over \mathbb{F} . For $v \in V$, define $ev(v) : V^* \to \mathbb{F}$ by

$$\operatorname{ev}(v)(\alpha) = \alpha(v).$$

- (a) Show that ev(v) is linear so that $ev(v) \in V^{**}$.
- (b) We therefore have a map ev : $V \to V^{**}$. Show that ev is linear.
- (c) Show that ev is injective.
- (d) Deduce that if V is finite-dimensional then $ev: V \to V^{**}$ is an isomorphism.

Please hand in at 4W level 1 by NOON on Friday December 1st

M216: Exercise sheet 8—Solutions

1. Let $v \in \operatorname{sol} E$ so that $\alpha(v) = 0$, for all $\alpha \in E$. Then, in particular, each $\alpha_i(v) = 0$ so that $v \in \ker \alpha_i$, for $1 \le i \le k$. That is, $v \in \bigcap_{i=1}^k \ker \alpha_i$ and $\operatorname{sol} E \le \bigcap_{i=1}^k \ker \alpha_i$. Conversely, let $v \in \bigcap_{i=1}^k \ker \alpha_i$ so that $\alpha_i(v) = 0$, for $1 \le i \le k$. Let $\alpha \in E$. Then $\alpha = \sum_{i=1}^k \lambda_i \alpha_i$, for some $\lambda_1, \ldots, \lambda_k \in \mathbb{F}$, since the α_i span E, and

$$\alpha(v) = \sum_{i=1}^{k} \lambda_i \alpha_i(v) = 0$$

so that $v \in \operatorname{sol} E$. Thus $\bigcap_{i=1}^{k} \ker \alpha_i \leq \operatorname{sol} E$ and we are done.

2. According to question 1, sol E consists of those $x \in \mathbb{R}^3$ such that $\alpha(x) = \beta(x) = 0$, that is, such that

$$2x_1 + x_2 - x_3 = 0$$

$$x_1 - x_2 + x_3 = 0.$$

Adding these gives $3x_1 = 0$ and then the first gives $x_2 = x_3$ so that sol $E = \text{span}\{(0, 1, 1)\}$.

- 3. Both being upper triangular, we see that Δ_A = Δ_B = x⁴ so that the only eigenvalue of A or B is 0. Moreover, we compute to see that A² = B² = 0 so that m_A = x². Thus both A and B have at least one 2 × 2 Jordan block J₂. Thus the possibilities for the Jordan normal form of either are J₂ ⊕ J₂ or J₂ ⊕ J₁ ⊕ J₁. To distinguish these, recall that the number of Jordan blocks with eigenvalue 0 is the dimension of the kernel. Now A has clearly has row rank 1 and so 3-dimensional kernel. Thus A has Jordan normal form J₂ ⊕ J₁ ⊕ J₁. Meanwhile B has row rank 2, thus nullity 2 so that it has JNF J₂ ⊕ J₂.
 - Since they have different JNF, A and B are not similar.
- 4. Let $q: V \to V/U$ be the quotient map so that q is a linear surjection with kernel U (this is all we need to know about the quotient construction). Since $v \notin U$, $q(v) \neq 0$ so that, by the Sufficiency Principle (Theorem 5.3), there is $\beta \in (V/U)^*$ such that $\beta(q(v)) \neq 0$. Let $\alpha = \beta \circ q : V \to \mathbb{F}$. This is linear, being a composition of linear maps, so $\alpha \in V^*$. Moreover, $\alpha(v) = \beta(q(v)) \neq 0$ while, if $u \in U$, q(u) = 0 so that $\alpha(u) = \beta(0) = 0$.
- 5. The reverse implication is clear: if $\lambda \neq 0$ and $\alpha = \lambda\beta$ then $\alpha(v) = 0$ if and only if $\lambda\alpha(v) = \beta(v) = 0$.

Now suppose that $\ker \alpha = \ker \beta$ with $\alpha \neq 0$. Thus there is $v_0 \in V$ such that $\alpha(v_0) \neq 0$. Following the hint, let $v \in V$ and observe that $v - (\alpha(v)/\alpha(v_0))v_0 \in \ker \alpha$ so that $V = \operatorname{span}\{v_0\} + \ker \alpha$.

Now, since $v_0 \notin \ker \alpha = \ker \beta$, $\beta(v_0) \neq 0$ also. Set $\lambda = \alpha(v_0)/\beta(v_0)$ so that

$$\alpha(v_0) = \lambda \beta(v_0).$$

Further $\alpha(v) = \lambda \beta(v)$, for all $v \in \ker \alpha$, since both sides are zero. It follows that $\alpha = \lambda \beta$ on $\operatorname{span}\{v_0\} + \ker \alpha = V$.

6. This is a case of thinking carefully what each statement means after which it will be very easy to prove.

(a) To see that $ev(v): V^* \to \mathbb{F}$ is linear, we must show that

$$\operatorname{ev}(v)(\alpha + \lambda\beta) = \operatorname{ev}(v)(\alpha) + \lambda \operatorname{ev}(v)(\beta),$$

for all $\alpha, \beta \in V^*$ and $\lambda \in \mathbb{F}$. Using the definition of ev(v), this reads

$$(\alpha + \lambda\beta)(v) = \alpha(v) + \lambda\beta(v)$$

which is exactly the definition of the (pointwise) addition and scalar multiplication in V^* .

(b) Linearity of ev: $V \to V^{**}$ means that for $v, w \in V$ and $\lambda \in \mathbb{F}$, we have

$$\operatorname{ev}(v + \lambda w) = \operatorname{ev}(v) + \lambda \operatorname{ev}(w).$$

This is supposed to be equality of elements of V^{**} , that is to say, equality of two functions on V^* . This holds when the two functions give the same answers on any $\alpha \in V^*$ so we need

$$\operatorname{ev}(v + \lambda w)(\alpha) = \operatorname{ev}(v)(\alpha) + \lambda \operatorname{ev}(w)(\alpha).$$

However, using the definition of ev, this reads

$$\alpha(v + \lambda w) = \alpha(v) + \lambda \alpha(w)$$

which is true since α is linear!

- (c) ev is injective if and only if ker $ev = \{0\}$. Let $v \in ker ev$. Thus $ev(v) = 0 \in V^{**}$, the zero functional on V^* . Otherwise said, $ev(v)(\alpha) = 0$, for all $\alpha \in V^*$, or equivalently, $\alpha(v) = 0$, for all $\alpha \in V^*$. But the Sufficiency Principle now forces v = 0 so that ev injects.
- (d) If v is finite-dimensional, $\dim V = \dim V^* = \dim V^{**}$ so that ev is an isomorphism by rank-nullity since we have just seen that it injects.