M216: Exercise sheet 6

Warmup questions

- 1. Let $f: X \to X$ be a map of sets. Show that if f is injective then f^k is injective for each $k \in \mathbb{N}$.
- 2. Let $U_1 \leq U_2 \leq \cdots \leq V$ be an increasing sequence of subspaces of V, so that $U_m \leq U_n$ whenever $m \leq n$. Show that $\bigcup_{n \in \mathbb{N}} U_n \leq V$.

Homework

3. Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where A is given by

$$\begin{pmatrix} 0 & 1 & -1 \\ -10 & -2 & 5 \\ -6 & 2 & 1 \end{pmatrix}.$$

- (a) Compute the characteristic and minimum polynomials of ϕ .
- (b) Find bases for the eigenspaces and generalised eigenspaces of ϕ .
- 4. Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where A is given by

$$\begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

- (a) Compute the characteristic and minimum polynomials of ϕ .
- (b) Find bases for the eigenspaces and generalised eigenspaces of ϕ .

Extra questions

- 5. Let $\phi \in L(V)$ be an invertible linear operator on a finite-dimensional vector space and λ an eigenvalue of ϕ . Show that $G_{\phi}(\lambda) = G_{\phi^{-1}}(\lambda^{-1})$.
- 6. Let $\lambda \in \mathbb{F}$ and define $J(\lambda, n) \in M_n(\mathbb{F})$ by

Set $J_n := J(0, n)$. Prove:

- (a) $\ker J_n^k = \operatorname{span}\{e_1, \dots, e_k\}.$
- (b) $\operatorname{im} J_n^k = \operatorname{span}\{e_1, \dots, e_{n-k}\}.$
- (c) $m_{J(\lambda,n)} = \pm \Delta_{J(\lambda,n)} = (x \lambda)^n$.
- (d) λ is the only eigenvalue of $J(\lambda, n)$ and $E_{J(\lambda, n)}(\lambda) = \operatorname{span}\{e_1\}, G_{J(\lambda, n)}(\lambda) = \mathbb{F}^n$.

Please hand in at 4W level 1 by NOON on Friday 17th November

M216: Exercise sheet 6—Solutions

- 1. Let $x, y \in X$ be such that $f^k(x) = f^k(y)$. Thus $f(f^{k-1}(x)) = f(f^{k-1}(y))$ whence, since f is injective, $f^{k-1}(x) = f^{k-1}(y)$. Repeat the argument to eventually conclude that x = y so that f^k is injective. For a more formal argument, induct on k.
- 2. Let $U = \bigcup_{n \in \mathbb{N}} U_n$ and let $v, w \in U$. Then there are $n, m \in \mathbb{N}$ with $v \in U_n$ and $w \in U_m$. Without loss of generality, assume that $m \leq n$ so that $U_m \leq U_n$ whence $v, w \in U_n$. Since U_n is a subspace, $v + \lambda w \in U_n \subseteq U$, for any $\lambda \in \mathbb{F}$, so that U is indeed a subspace.
- 3. (a) We compute the characteristic polynomial: $\Delta_{\phi} = \Delta_A = -x^3 x^2 + 8x + 12 = (3-x)(x+2)^2$. Consequently, m_{ϕ} is either $(x-3)(x+2)^2$ or (x-3)(x+2). We try the latter:

$$A - 3I_3 = \begin{pmatrix} -3 & 1 & -1 \\ -10 & -5 & 5 \\ -6 & 2 & -2 \end{pmatrix} \qquad \qquad A + 2I_3 = \begin{pmatrix} 2 & 1 & -1 \\ -10 & 0 & 5 \\ -6 & 2 & 3 \end{pmatrix}$$

so that

$$(A - 3I_3)(A + 2I_3) = \begin{pmatrix} -10 & -5 & 5\\ 0 & 0 & 0\\ -20 & -10 & 10 \end{pmatrix} \neq 0$$

Thus $m_{\phi} = m_A = (x - 3)(x + 2)^2$.

(b) We deduce that $G_{\phi}(3) = E_{\phi}(3) = \ker(A-3I_3)$ while $E_{\phi}(-2) = \ker(A+2I_3)$ and $G_{\phi}(-2) = \ker(A+2I_3)^2$. We compute these: an eigenvector x with eigenvalue 3 solves

$$-3x_1 + x_3 - x_3 = 0$$

$$-2x_1 - x_2 + x_3 = 0$$

which rapidly yields $x_1 = 0$ and $x_2 = x_3$. Thus the 3-eigenspace is spanned by (0, 1, 1). An eigenvector x with eigenvalue 2 solves

$$2x_1 + x_2 - x_3 = 0$$
$$-2x_1 + 0x_2 + x_3 = 0$$

giving $x_2 = 0$ and $2x_1 = x_3$ so the eigenspace is spanned by (1, 0, 2). Finally,

$$(A+2I_3)^2 = \begin{pmatrix} 0 & 0 & 0\\ -50 & 0 & 25\\ -50 & 0 & 25 \end{pmatrix}$$

with kernel spanned by (1, 0, 2) and (0, 1, 0). To summarise:

$$E_{\phi}(3) = G_{\phi}(3) = \operatorname{span}\{(0, 1, 1)\}$$
$$E_{\phi}(-2) = \operatorname{span}\{(1, 0, 2)\}$$
$$G_{\phi}(-2) = \operatorname{span}\{(1, 0, 2), (0, 1, 0)\}.$$

4. (a) Since A is lower triangular, we immediately see that $\Delta_{\phi} = \Delta_A = x^2(x-5)$. So the only possibilities for $m_{\phi} = x(x-5)$ and $x^2(x-5)$. However

$$A - 5I_3 = \begin{pmatrix} -5 & 0 & 0\\ 4 & -5 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

so that

$$A(A-5I_3) = \begin{pmatrix} 0 & 0 & 0 \\ -20 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0.$$

We conclude that $m_{\phi} = x^2(x-5)$. Alternatively, A is block diagonal:

$$A = \begin{pmatrix} 0 & 0\\ 4 & 0 \end{pmatrix} \oplus (5)$$

and the summands clearly have minimum polynomials x^2 and x-5 respectively. It follows from a previous sheet that $m_{\phi} = x^2(x-5)$.

(b) We have $E_{\phi}(5) = G_{\phi}(5) = \operatorname{span}\{(0,0,1)\}, E_{\phi}(0) = \ker A = \operatorname{span}\{(0,1,0)\}$ and finally $G_{\phi}(0) = \ker A^2 = \operatorname{span}\{(1,0,0), (0,1,0)\}$ since

$$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 25 \end{pmatrix}.$$

5. Note that $(\phi - \lambda \operatorname{id}_V)^n(v) = 0$ if and only if $\lambda^{-n}\phi^{-n}(\phi - \lambda^n \operatorname{id}_V)^n(v) = 0$, that is $(\lambda^{-1} \operatorname{id}_V - \phi)^n(v) = 0$. 0. Thus $G_{\phi}(\lambda) = G_{\phi^{-1}}(\lambda^{-1})$.

Here, of course, we need $\lambda \neq 0$ but, since ϕ is invertible, zero is not an eigenvalue.

- 6. Note that $\phi_{J_n}(x) = (x_2, \dots, x_n, 0)$ so that $\phi_{J_n}^k(x) = (x_{k+1}, \dots, x_n, 0, \dots, 0), k < n$ and $\phi_{J_n}^n = 0.$
 - (a) It is clear from the above that ker $J_n^k = \{x \in \mathbb{F}^n \mid x_{k+1} = \dots = x_n = 0\} = \operatorname{span}\{e_1, \dots, e_k\}.$
 - (b) Similarly, im $J_n^k = \{y \in \mathbb{F}^n \mid y_{n-k+1} = \dots = y_n = 0\} = \operatorname{span}\{e_1, \dots, e_{n-k}\}.$
 - (c) $J(\lambda, n)$ is upper triangular so that $\Delta_{J(\lambda,n)} = (\lambda x)^n$. Therefore $m_{J(\lambda,n)} = (x \lambda)^s$, for some $s \leq n$. However $(J(\lambda, n) \lambda I_n)^k = J_n^k \neq 0$, for k < n, so that $m_{J(\lambda,n)} = (x \lambda)^n$.
 - (d) Finally, it is clear that λ is the only eigenvalue and the eigenspace is $\ker(J(\lambda, n) \lambda I_n) = \ker J_n = \operatorname{span}\{e_1\}$ by part (a). Similarly, $G_{J(\lambda,n)}(\lambda) = \ker J_n^n = \mathbb{F}^n$.