
M216: Exercise sheet 4

Warmup questions

1. Let p, q ∈ R[x] be given by p = x2 − 2x− 3, q = x3 − 2x2 + 2x− 5.
Let A ∈ M2(R) and B ∈ M3(R) be given by

A =

(
1 2
2 1

)
B =

 1 2 1
−2 0 1
2 1 1

 .

Compute p(A), p(B), q(A), q(B).

2. Compute the characteristic polynomials of A and B, from question 1.
What do you notice?

3. Let F = Z2, the field of two elements and let p = x2 + x ∈ F[x].
Show that p(t) = 0, for all t ∈ F.

Homework questions

4. Compute the minimum polynomial of A ∈ M5(R) given by
0 0 0 0 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

5. Let φ ∈ L(V ) be an operator on a finite-dimensional vector space over F and let
p = mφ ∈ F[x].
Let λ be a root of p.
(a) Show there is q ∈ F[x] with deg q < deg p such that

p = (x− λ)q.

(b) Prove that q(φ) is non-zero.
(c) Deduce that λ is an eigenvalue of φ.

This shows that the roots of p are exactly the eigenvalues of φ without recourse
to the Cayley–Hamilton theorem.

(d) Deduce that φ is invertible if and only if p has non-zero constant term.

Extra questions

6. Let φ ∈ L(V ) have minimal polynomial p = 4 + 5x+ 6x2 − 7x3 − 8x4 + x5, so that φ
is invertible by question 5(d).
Compute the minimal polynomial of φ−1.
Hint: Think about multiplying a0 idV + · · ·+ φn by φ−n.
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M216: Exercise sheet 4—Solutions

1. We just compute:

A2 =

(
5 4
4 5

)
, A3 =

(
13 14
14 13

)
so that

p(A) = A2 − 2A− 3I2 =

(
5 4
4 5

)
− 2

(
1 2
2 1

)
− 3

(
1 0
0 1

)
=

(
0 0
0 0

)
q(A) = A3 − 2A2 + 2A− 5I3 =

(
13 14
14 13

)
− 2

(
5 4
4 5

)
+ 2

(
1 2
2 1

)
− 5

(
1 0
0 1

)
=

(
0 10

10 0

)
.

Similarly,

p(B) =

−6 −1 2
4 −6 −3

−2 3 −1

 ,

q(B) =

0 0 0
0 0 0
0 0 0

 .

2. Again, we just compute:

∆A =

∣∣∣∣1− x 2
2 1− x

∣∣∣∣ = (1− x)2 − 4 = x2 − 2x− 3.

Similarly,

∆B =

∣∣∣∣∣∣
1− x 2 1
−2 −x 1
2 1 1− x

∣∣∣∣∣∣ = (1− x)
(
x(x− 1)− 1

)
− 2

(
2(x− 1)− 2

)
+ (−2 + 2x)

= (−x3 + 2x2 − 1)− 4x+ 8 + 2x− 2 = −x3 + 2x2 − 2x+ 5.

We notice that, with p, q as in question 1, p = ∆A and q = −∆B and so, again from question 1,

∆A(A) = ∆B(B) = 0.

As we shall soon see, this is the Cayley–Hamilton theorem in action.

3. We recall that Z2 = {0,1} with addition and multiplication given by

0 = 0+ 0 = 1+ 1 1 = 0+ 1 = 1+ 0

0 = 00 = 01 = 10 1 = 11.

We immediately conclude that 12 + 1 = 0 = 02 + 0 so that p(t) = 1, for both t ∈ F.

4. Let us compute the first few powers of A:

A2 =


0 0 0 −3 0
0 0 0 6 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0

 A3 =


0 0 −3 0 0
0 0 6 −3 0
0 0 0 6 −3
1 0 0 0 6
0 1 0 0 0

 A4 =


0 −3 0 0 0
0 6 −3 0 0
0 0 6 −3 0
0 0 0 6 −3
1 0 0 0 6



A5 =


−3 0 0 0 −18
6 −3 0 0 36
0 6 −3 0 0
0 0 6 −3 0
0 0 0 6 −3





Stare at the top row to see that there can be no monic polynomial p = a0+ · · ·+xk with k ≤ 4
with p(A) = 0: the −3 on the top row of the leading term would give a00+ · · ·+ak−10−3 = 0.
On the other hand, we readily see that A5 − 6A+ 3I5 = 0 so that mA = x5 − 6x+ 3.

5. (a) The remainder theorem says we can write p = (x− λ)q + r with deg r < deg(x− λ) = 1
so that r is degree zero and so constant. Evaluating at λ gives 0 = p(λ) = 0q+ r = r and
we are done.

(b) q(φ) cannot be zero unless q = 0 since deg q < deg p and p is the minimal polynomial of
φ. But q cannot be zero since p is non-zero.

(c) Since q(φ) is non-zero, there is v ∈ V such that q(φ)v 6= 0. Now

0 = p(φ)(v) = (φ− λ idV )(q(φ)(v))

so that q(φ)v is an eigenvector with eigenvalue λ.
(d) φ is invertible if and only if φ is injective if and only if zero is not an eigenvalue if and

only if (thanks to the previous part) zero is not a root of p if and only if p has non-zero
constant term.

6. If a0 idV +a1φ+ · · ·+φn = 0 then, multiplying by φ−n gives a0φ−n+a1φ
n−1+ · · ·+an idV = 0.

In the case at hand, this means that

4φ−5 + 5φ−4 + 6φ−3 − 7φ−2 − 8φ−1 + idV = 0.

If there was a non-zero polynomial q =
∑4

k=1 bkx
k of lower degree with q(φ−1) = 0 gives

b4 idV + · · ·+ b0φ
4 = 0,

contradicting the minimality of p. Thus, dividing by 4 to get a monic polynomial, the minimum
polynomial of φ−1 is 1/4− 2x− 7/4x2 + 3/2x3 + 5/4x4 + x5.
More generally, the same argument says that if

∑n
k=0 akx

k is the minimal polynomial of
invertible φ with degree n then 1/a0

∑n
k=0 an−kx

k is the minimal polynomial of φ−1.


