M216: Exercise sheet 3

Warmup questions

- 1. Let $U \leq V$. Show that congruence modulo U is an equivalence relation.
- 2. Recall (from Algebra 1A) that if $f: X \to Y$ is a map of sets and $A \subset Y$, the *inverse* image of A by f is the subset $f^{-1}(A) \subset X$ given by

$$f^{-1}(A) := \{ x \in X \mid f(x) \in A \}$$

Now let $\phi: V \to W$ be a linear map of vector spaces and $U \leq W$. Prove that $\ker \phi \leq \phi^{-1}(U) \leq V$.

3. Let $U \leq V$ and $v \in V$. Let $v_1, \ldots, v_k \in v + U$. Show that $\lambda_1 v_1 + \cdots + \lambda_k v_k \in v + U$ whenever $\lambda_1 + \cdots + \lambda_k = 1$.

Homework

4. Let $v_1, \ldots, v_k \in V$. The affine span of v_1, \ldots, v_k is the subset

$$A(v_1,\ldots,v_k) := \{\lambda_1 v_1 + \cdots + \lambda_k v_k \mid \lambda_1 + \cdots + \lambda_k = 1\} \subset V.$$

- (a) Show that each $v_i \in A(v_1, \ldots, v_k)$.
- (b) Show that $A(v_1, \ldots, v_k)$ is a coset of some subspace $U \leq V$. **Hint**: If this was true, each $v_i - v_1 \in U$: use this to define U.

Together with question 3, this shows that the affine span is the smallest affine subspace containing v_1, \ldots, v_k .

- 5. Let $U, W \leq V$. Define a linear map $\phi: U \to (U+W)/W$ by $\phi(u) = u + W$.
 - (a) Use the first isomorphism theorem, applied to ϕ , to prove the second isomorphism theorem:

$$U/(U \cap W) \cong (U+W)/W.$$

(b) Deduce that, when V is finite-dimensional,

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

Extra questions

- 6. Let $U \leq V$ and $q: V \to V/U$ the quotient map. Let W be a complement to U. Show that $q_{|W}: W \to V/U$ is an isomorphism.
- 7. Let $U \leq V$ and suppose that V/U is finite-dimensional. Show that U has a complement.

Please hand in at 4W level 1 by NOON on Friday 27th October

M216: Exercise sheet 3—Solutions

- 1. Reflexive $v v = 0 \in U$ so $v \equiv v \mod U$. Symmetric If $v \equiv w \mod U$ then $v - w \in U$ so that $w - v = -(v - w) \in U$ and $w \equiv v \mod U$.
 - **Transitive** If $v \equiv w \mod U$ and $w \equiv u \mod U$, then $v w, w u \in U$ whence $v u = (v w) + (w u) \in U$ and so $v \equiv u \mod U$.
- 2. First, if $v \in \ker \phi$ then $\phi(v) = 0 \in U$ so $v \in \phi^{-1}(U)$. Thus $\ker \phi \subset \phi^{-1}(U)$ and, in particular, $\phi^{-1}(U)$ is non-empty. Next we see that $\phi^{-1}(U)$ is closed under addition and scalar multiplication: if $v, w \in \phi^{-1}(U)$ and $\lambda \in \mathbb{F}$, then $\phi(u), \phi(w) \in U$ so that $\phi(v+w) = \phi(v) + \phi(w) \in U$ and $\phi(\lambda v) = \lambda \phi(v) \in U$, since U is closed under addition and scalar multiplication. Otherwise said, $v + w, \lambda v \in \phi^{-1}(U)$ and we are done.
- 3. Since $v_i \in v + U$, there is $u_i \in U$ so that $v_i = v + u_i$. Now, if $\lambda_1 + \cdots + \lambda_k = 1$, we have

$$\lambda_1 v_1 + \dots + \lambda_k v_k = \lambda_1 (v + u_1) + \dots + \lambda_k (v + u_k)$$

= $(\lambda_1 + \dots + \lambda_k) v + (\lambda_1 u_1 + \dots + \lambda_k u_k) = v + (\lambda_1 u_1 + \dots + \lambda_k u_k) \in v + U$

- 4. (a) Take $\lambda_i = 1$ and $\lambda_j = 0$, for $i \neq j$, to get $v_i = \lambda_1 v_1 + \dots + \lambda_k v_k$ with $\lambda_1 + \dots + \lambda_k = 1$ so that $v_i \in A(v_1, \dots, v_k)$.
 - (b) If $A(v_1, \ldots, v_k)$ was a coset of a subspace U, we would have to have

$$A(v_1,\ldots,v_k) = v_1 + U$$

and then each $v_i - v_1$, $2 \le i \le k$, would lie in U. So set

$$U := \operatorname{span}\{v_i - v_1 \mid 2 \le i \le k\}$$

Then each $v_i - v_1 \in U$ so that $v_i \in v_1 + U$. Now question 3 tells us that $A(v_1, \ldots, v_k) \subset v + U$.

Conversely, any element of $v_1 + U$ can be written

$$v_1 + \sum_{i \ge 2} \mu_i (v_i - v_1) = \lambda_1 v_1 + \dots + \lambda_k v_k$$

with $\lambda_1 = 1 - \sum_{i \ge 2} \mu_i$ and $\lambda_j = \mu_j$, for $j \ge 2$. Thus $\lambda_1 + \cdots + \lambda_k = 1$ and we conclude that $v + U \subset A(v_1, \ldots, v_k)$.

5. (a) Let $q: U + W \to (U + W)/W$ be the quotient map. Then ϕ is simply the restriction $q_{|U}$ of q to U and so is linear. Moreover, ker $\phi = U \cap \ker q = U \cap W$. Finally, if $q(u+w) \in (U+W)/W$, then, since q(w) = 0,

$$q(u+w) = q(u) + q(w) = q(u) = \phi(u)$$

so that ϕ is onto. The first isomorphism theorem now reads

$$U/(U \cap W) = U/\ker \phi \cong \operatorname{im} \phi = (U+W)/W.$$

(b) When V is finite-dimensional, we have

$$\dim U - \dim(U \cap W) = \dim U/(U \cap W) = \dim(U + W)/W = \dim(U + W) - \dim W$$

and rearranging this gives the result.

6. Let $v \in V$. Since V = U + W, we write v = u + w with $u \in U$ and $w \in W$. Then, since $\ker q = U$, q(v) = q(u + w) = q(w) so that $\operatorname{im} q_{|W} = \operatorname{im} q = V/U$. Thus $q_{|W}$ surjects. Further, $\ker q_{|W} = \ker q \cap W = U \cap W = \{0\}$ since $\ker q = U$. Thus $q_{|W}$ has trivial kernel and so injects. 7. Let $q: V \to V/U$ be the quotient map and $q(v_1), \ldots, q(v_k)$ be a basis for V/U, for some $v_1, \ldots, v_k \in V$. Set $W = \operatorname{span}\{v_1, \ldots, v_k\} \leq V$. I claim that W is a complement to U. So let $v \in V$. Then there are $\lambda_1, \ldots, \lambda_k \in \mathbb{F}$ so that

$$q(v) = \lambda_1 q(v_1) + \dots + \lambda_k q(v_k) = q(\lambda_1 v_1 + \dots + \lambda_k v_k).$$

Otherwise said, $v - (\lambda_1 v_1 + \dots + \lambda_k v_k) \in \ker q = U$ so that

$$v = \lambda_1 v_1 + \dots + \lambda_k v_k + u,$$

for some $u \in U$ and we have V = U + W.

Now suppose $v \in U \cap W$. Then we can write $v = \lambda_1 v_1 + \cdots + \lambda_k v_k$ since $v \in W$ but $v \in \ker q$ so that

$$0 = q(v) = \lambda_1 q(v_1) + \dots + \lambda_k q(v_k).$$

Since the $q(v_i)$ are linearly independent, we get that each $\lambda_i = 0$ and so v = 0.