M216: Exercise sheet 1

Warmup questions

1. Let U be a subset of a vector space V. Show that U is a linear subspace of V if and
only if U satisfies the following conditions:
(i) 0eU;
(ii) For all uj,ug € U and A € F, ug + Aug € U.
2. Which of the following subsets of R? are linear subspaces? In each case, briefly justify
your answer.
(a) Ur = {(21,22,23) | 2f + 25 + a3 = 1} (b) Us == {(21, 22, 23) | 21 = 22} (¢) Us 1=
{(.%'1, T9, xg) ’ T, + 229 + 33 = 0}
3. Which of the following maps f : R? — R? are linear? In each case, briefly justify your
answer.
(a) f(z,y) = (5z +y,3z — 2y) (b) f(z,y) = (5x +2,7y) (c) f(z,y) = (cosy,sinz)
() f(z,y) = (3y* 2%).
Homework
4. Let T be a set and V a vector space over a field F. Recall that V7 is the set of maps
r—V.
Show that V7 is a vector space under pointwise addition and scalar multiplication.
5. Let R[z] be the space of real polynomials. This is a vector space under coefficient-wise

addition and scalar multiplication.

For d € N, let P; C R[z] be the set of polynomials of degree no more than d. Show
that P; < R[z] and has basis 1,2, ..., 2%

Define a linear map D : P; — Py by D(p) = p’. Compute its matrix with respect to
1,z,...,2% What are ker D and im D?

Additional questions

6.

Which of the following subsets of C? are linear subspaces over C? In each case, briefly
justify your answer.

(a) Uy = {(21,22,23) | 2120 = 1} (b) Us = {(21,22,23) | 21 = Z2} (¢) Us :=
{(2’1, 29, Z3) | 21 + \/?122 + 323 = 0}

Let V' be an n-dimensional vector space over C, and let Vg be the underlying vector
space over R (thus Vg has the same set of vectors as V', but scalar multiplication is
restricted to real scalars). Prove that Vx has dimension 2n.
[Hint: let B : v1,va, ..., v, bea basis for V and show that Bg : v1, ivy, ve, iva, . . ., Uy, iy
is a basis for Vg, where i € C is v/—1 rather than an index!]
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M216: Exercise sheet 1—Solutions

1. First suppose that U < V. The U is non-empty so there is some u € U and then, since U is

closed under addition and scalar multiplication, 0 = u 4+ (—1)u € U also and condition (i) is
satisfied. Now if uj,us € U and A € F, then Aug € U (U is closed under scalar multiplication)
and so u; + Aug € U (U is closed under addition). Thus condition (ii) holds also.
For the converse, if conditions (i) and (ii) hold, then, first, 0 € U so U is non-empty and,
second, U is closed under addition (take A = 1 in condition (ii)) and under scalar multiplication
(take u; = 0 in condition (ii)). Thus U < V.

2. (a) U is not a subspace as it does not contain 0!

b) U, is a subspace: in fact, it is ker ¢4 where A= (1 —1 0).

(b)
(c) Us is a subspace. It is ker¢y for A= (1 2 3).
(a)

Here f is linear: it is the map ¢4 corresponding to the matrix

A:(g _12).

(b) This is not linear (because of that +2 term). In particular f(0,0) = (2,0) # 0!

(c) Again f(0,0) = (1,0) # 0 so this f cannot be linear. Of course, we already know this
because it is certainly not true that cos(y; + y2) = cosy; + cosys.

a

(d) Another non-linear map: for example f(2x,2y) # 2f(z,y).

4. The basic idea is that the vector space axioms for VZ will follow from those of V applied to
the values of elements of VZ. Since those elements are completely determined by their values,
this will bake the cake.

In more detail: let u,v,w € VI, then, for i € Z,

(u+v)(7) = u(i) +v(i) = v(i) +u(@) = (v +u)(4),

whence v + v = v + u. Here the first and last equalities are just the definition of pointwise
addition and the middle one of commutativity of addition in V.
Similarly,

((utv)+w)(i) = (u+v) (@) +w(@) = (u(@)+v(E)+w(@) = u(@)+ (v(E)+w(@) = (u+ (v+w))(7)

so that (u+v) +w =u+ (v+w).
The zero element is the zero map defined by 0(i) := 0, for all ¢ € Z, while the additive inverse
—v of v € VT is defined by (—v)(i) := —(v(i)). Now

(v+0)(3) =v(i) +03) = v(3)

+0=0(3)
(v 4 (=0))(@) = v(i) + (—v)(§) = v(i) —

(i) = 0= 0(4)

so that v+ 0 = v and v + (—v) = 0 as required.
The axioms around scalar multiplication are verified in the same way. For example, for
A p €,

(A4 p0)(@) = (A + p)(v(@) = AMv(d) + p(e(i)) = M) (@) + (p0) (i) = (Av + po) (i)

so that (A + p)v = v + pw.
Again, for u,v € VZ and \ € I,

(M +0))(0) = AMu + )(6) = Au(i) + v(i) = Mu(i) + Av(d)
= (\)(6) + () (6) = (Au + M)(i)

so that AM(u +v) = Au + Av.



For \,u € F and v € VZ,

((Awv) (@) = (Aw)o(i) = Mpo(i)) = (A(uv)) ()

so that (Ap)v = A(pw).
Finally, (1v)(4) = 1v(i) = v(i) so that 1lv = v and we are (at last!) done.
Clearly P, is non-empty as it contains the zero polynomial. Moreover, for any polynomials

p,q and A € R, we have

deg(p + q) < max{degp,degq}
deg(Ap) < degp,

from which it easily follows that P, is closed under addition and scalar multiplication.
Any polynomial p € Py has a unique expression of the form
p=a0+a1x+-~-—|—adxd.

It now follows from Proposition 1.1 that 1,x,...,z% is a basis for P,.

Set v; = 2771 for 1 < j < d+ 1, and compute Dwvj in terms of the v;:
D’Uj = (] — ]-)'Ujfl

so that the matrix A of D with respect to this basis has all entries 0 except just above the
diagonal where A(;_;); = j — 1. For example, if d = 3, we have
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The kernel of D is the constant polynomials Py and the image is Py_1.

(a) 0 ¢ Uy so Uy is not a subspace.

(b) U, is not a subspace because it is not closed under complex scalar multiplication: (1,1,0) €
Uy but i(1,1,0) = (4,4,0) is not (here i = v/—1). In general, any time you see complex
conjugation in the definition of a subset, it is unlikely to be a complex subspace.

(c) Us =ker¢y for A = (1 V-1 3) and so is a subspace.

Following the hint we need to show that any v € Vg can be written uniquely as a real linear
combination of vectors in the list Bg. Since v € V, we may write v = Z?zl Ajv; for unique
Aj € C. Write \; = a; +1ib; with a;,b; € R. Then v = 377, (a;v; +bjiv;) and this expression
is unique: it suffices to observe that for v = 0, A; = 0 for all j, and hence a; = b; = 0 for all j.



