
M216: Exercise sheet 1

Warmup questions

1. Let U be a subset of a vector space V . Show that U is a linear subspace of V if and
only if U satisfies the following conditions:

(i) 0 ∈ U ;
(ii) For all u1, u2 ∈ U and λ ∈ F, u1 + λu2 ∈ U .

2. Which of the following subsets of R3 are linear subspaces? In each case, briefly justify
your answer.
(a) U1 := {(x1, x2, x3) | x21 + x22 + x23 = 1} (b) U2 := {(x1, x2, x3) | x1 = x2} (c) U3 :=
{(x1, x2, x3) | x1 + 2x2 + 3x3 = 0}

3. Which of the following maps f : R2 → R2 are linear? In each case, briefly justify your
answer.
(a) f(x, y) = (5x + y, 3x − 2y) (b) f(x, y) = (5x + 2, 7y) (c) f(x, y) = (cos y, sinx)
(d) f(x, y) = (3y2, x3).

Homework

4. Let I be a set and V a vector space over a field F. Recall that V I is the set of maps
I → V .
Show that V I is a vector space under pointwise addition and scalar multiplication.

5. Let R[x] be the space of real polynomials. This is a vector space under coefficient-wise
addition and scalar multiplication.
For d ∈ N, let Pd ⊂ R[x] be the set of polynomials of degree no more than d. Show
that Pd ≤ R[x] and has basis 1, x, . . . , xd

Define a linear map D : Pd → Pd by D(p) = p′. Compute its matrix with respect to
1, x, . . . , xd. What are kerD and imD?

Additional questions

6. Which of the following subsets of C3 are linear subspaces over C? In each case, briefly
justify your answer.
(a) U1 := {(z1, z2, z3) | z1z2 = 1} (b) U2 := {(z1, z2, z3) | z1 = z̄2} (c) U3 :=
{(z1, z2, z3) | z1 +

√
−1z2 + 3z3 = 0}

7. Let V be an n-dimensional vector space over C, and let VR be the underlying vector
space over R (thus VR has the same set of vectors as V , but scalar multiplication is
restricted to real scalars). Prove that VR has dimension 2n.
[Hint: let B : v1, v2, . . . , vn be a basis for V and show that BR : v1, iv1, v2, iv2, . . . , vn, ivn
is a basis for VR, where i ∈ C is

√
−1 rather than an index!]
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M216: Exercise sheet 1—Solutions

1. First suppose that U ≤ V . The U is non-empty so there is some u ∈ U and then, since U is
closed under addition and scalar multiplication, 0 = u + (−1)u ∈ U also and condition (i) is
satisfied. Now if u1, u2 ∈ U and λ ∈ F, then λu2 ∈ U (U is closed under scalar multiplication)
and so u1 + λu2 ∈ U (U is closed under addition). Thus condition (ii) holds also.
For the converse, if conditions (i) and (ii) hold, then, first, 0 ∈ U so U is non-empty and,
second, U is closed under addition (take λ = 1 in condition (ii)) and under scalar multiplication
(take u1 = 0 in condition (ii)). Thus U ≤ V .

2. (a) U1 is not a subspace as it does not contain 0!
(b) U2 is a subspace: in fact, it is kerφA where A =

(
1 −1 0

)
.

(c) U3 is a subspace. It is kerφA for A =
(
1 2 3

)
.

3. (a) Here f is linear: it is the map φA corresponding to the matrix

A =

(
5 1
3 −2

)
.

(b) This is not linear (because of that +2 term). In particular f(0, 0) = (2, 0) 6= 0!
(c) Again f(0, 0) = (1, 0) 6= 0 so this f cannot be linear. Of course, we already know this

because it is certainly not true that cos(y1 + y2) = cos y1 + cos y2.
(d) Another non-linear map: for example f(2x, 2y) 6= 2f(x, y).

4. The basic idea is that the vector space axioms for V I will follow from those of V applied to
the values of elements of V I . Since those elements are completely determined by their values,
this will bake the cake.
In more detail: let u, v, w ∈ V I , then, for i ∈ I,

(u+ v)(i) = u(i) + v(i) = v(i) + u(i) = (v + u)(i),

whence u + v = v + u. Here the first and last equalities are just the definition of pointwise
addition and the middle one of commutativity of addition in V .
Similarly,

((u+v)+w)(i) = (u+v)(i)+w(i) = (u(i)+v(i))+w(i) = u(i)+(v(i)+w(i)) = (u+(v+w))(i)

so that (u+ v) + w = u+ (v + w).
The zero element is the zero map defined by 0(i) := 0, for all i ∈ I, while the additive inverse
−v of v ∈ V I is defined by (−v)(i) := −(v(i)). Now

(v + 0)(i) = v(i) + 0(i) = v(i) + 0 = v(i)

(v + (−v))(i) = v(i) + (−v)(i) = v(i)− v(i) = 0 = 0(i)

so that v + 0 = v and v + (−v) = 0 as required.
The axioms around scalar multiplication are verified in the same way. For example, for
λ, µ ∈ F,

((λ+ µ)v)(i) = (λ+ µ)(v(i)) = λ(v(i)) + µ(v(i)) = (λv)(i) + (µv)(i) = (λv + µv)(i)

so that (λ+ µ)v = λv + µv.
Again, for u, v ∈ V I and λ ∈ F,

(λ(u+ v))(i) = λ(u+ v)(i) = λ(u(i) + v(i)) = λu(i) + λv(i)

= (λu)(i) + (λv)(i) = (λu+ λv)(i)

so that λ(u+ v) = λu+ λv.



For λ, µ ∈ F and v ∈ V I ,

((λµ)v)(i) = (λµ)v(i) = λ(µv(i)) = (λ(µv))(i)

so that (λµ)v = λ(µv).
Finally, (1v)(i) = 1v(i) = v(i) so that 1v = v and we are (at last!) done.

5. Clearly Pd is non-empty as it contains the zero polynomial. Moreover, for any polynomials
p, q and λ ∈ R, we have

deg(p+ q) ≤ max{deg p,deg q}
deg(λp) ≤ deg p,

from which it easily follows that Pd is closed under addition and scalar multiplication.
Any polynomial p ∈ Pd has a unique expression of the form

p = a0 + a1x+ · · ·+ adx
d.

It now follows from Proposition 1.1 that 1, x, . . . , xd is a basis for Pd.
Set vj = xj−1, for 1 ≤ j ≤ d+ 1, and compute Dvj in terms of the vi:

Dvj = (j − 1)vj−1

so that the matrix A of D with respect to this basis has all entries 0 except just above the
diagonal where A(j−1)j = j − 1. For example, if d = 3, we have

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

The kernel of D is the constant polynomials P0 and the image is Pd−1.

6. (a) 0 /∈ U1 so U1 is not a subspace.
(b) U2 is not a subspace because it is not closed under complex scalar multiplication: (1, 1, 0) ∈

U2 but i(1, 1, 0) = (i, i, 0) is not (here i =
√
−1). In general, any time you see complex

conjugation in the definition of a subset, it is unlikely to be a complex subspace.
(c) U3 = kerφA for A =

(
1

√
−1 3

)
and so is a subspace.

7. Following the hint we need to show that any v ∈ VR can be written uniquely as a real linear
combination of vectors in the list BR. Since v ∈ V , we may write v =

∑n
j=1 λjvj for unique

λj ∈ C. Write λj = aj + ibj with aj , bj ∈ R. Then v =
∑n

j=1(ajvj + bjivj) and this expression
is unique: it suffices to observe that for v = 0, λj = 0 for all j, and hence aj = bj = 0 for all j.


