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The aim of this set of notes is two-fold. The first is to provide some teaching material in which
the methods of linearised theory, weakly nonlinear theory and multiple scales theory are used
for systems of engineering importance. The second is to begin the process of having a resource
of detailed but mainly analytical results which may be referred to when considering convecting
problems which are more complicated than those presented here.

The approach I take is quite mathematical, although it is possible to be considerably more rig-
orous than I have been. These notes do not comprise a comprehensive repository of information
on the Darcy-Bénard problem since I concentrate only on some aspects of linearised and weakly
nonlinear theories. Much more information may be gleaned from Chapter 6 of Nield and Bejan
(1998) and the review chapter, Rees (1999).
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Governing Equations and Basic Solution

Dimensional equations.

The most basic equations governing fluid flow in a porous medium are given by Darcy’s law. This
is a macroscopic law which relates the fluid flux to the applied pressure gradient. The constant
of proportionality involves the permeability of the porous medium and the viscosity of the
saturating fluid, although the dependence on viscosity was not realised by Darcy himself (Lage
1998). When considering free convection effects in a porous medium, it is common to assume
the Boussinesq approximation (or, more properly, the Oberbeck-Boussinesq approximation, see
Nield and Bejan 1998 p29). This yields an extra term, a buoyancy term, in Darcy’s law.
Therefore we take the following as the dimensional equations which govern fluid motion,
ﬂ:—]—‘a—f, ?:—]—‘a—z_)JripfgﬁA(T—T,,), m:—éa—g. (1.1)
1 0T w0y I 1 0z

In these equations all the terms take their common meanings. The coordinate directions T and
Z are horizontal, while 7 is vertically upwards. T is the temperature of the saturated medium,
T, is a reference temperature, p is the pressure, K the permeability, u the viscosity, § gravity,
ps a reference density of the fluid, and 3 the coefficient of cubical expansion of the fluid. The
quantities w, 7 and w, correspond to the fluid flux velocities in the T, ¥ and Z directions,
respectively.

The full equations are completed by the equation of continuity,

ou 0v oOw

and the energy transport equation,

or _or 0T _0T o*rT  9*r 0T

T e : 1.3
8t+u8f U8§+w82 H852+8§2+822 (1.3)
where « is the thermal diffusivity of the saturated porous medium.
Nondimensionalisation .
Equations (1.1) to (1.3) may be nondimensionalised using the transformations,
(7.9.9) = d(a,y,2), (TFED) = ~(w,0,w),  F=Cp,
_d?
T = (Tmax — Tmin )0 + T, t = —t, (1.4)
K

Here d is a representative lengthscale, which, in the present context is the depth of the layer.
The nondimensional equations are

du Ov OJOw
os P oy T s " (1.5)
_Op . 0p _Op
u__(’)_:c’ v = ay—l—Rt‘)7 w = 55 (1.6)
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The sole nondimensional parameter is the Darcy-Rayleigh number, R, which is defined here as

(1.7)

R= pfgﬁ(Tmax - Tmin)fﬁd‘ (18)
1K

In what follows we set T, = Tmin-

Two-dimensional flows.

When the flow is two-dimensional, which we will take as being in the z and y directions, then
we may assume that w = 0 and all z-derivatives are zero. The equation of continuity, (1.5), is
satisfied automatically when the streamfunction, %, is introduced according to

oY _
T V= (1.9)

In these circumstances, equations (1.6) and (1.7) reduce to

(92‘¢ (92¢ _ 00

W v avan_ a0 o o
ot 0z dy Oy Ox 0z 0Oy '

Boundary conditions.

We are considering the classical Darcy-Bénard problem, a layer of uniform thickness which
is heated from below. In its most common form (i.e. impermeable and perfectly conducting
boundaries) the boundary conditions are

Jop dp
9 ay 9 y v 9 ( )

y v b 8y

When the flow is two-dimensional the boundary conditions are,
y=0: ©=0,0=1, y=1: ¥»=0,60=0. (1.13)

Basic solution.

Given the above boundary conditions, which are uniform in the z-direction, we expect the basic
solution to be independent of z. The basic state consists of no flow, a linear temperature profile
and a parabolic pressure profile:

u=v=w=1=0, 0=1-—y, p=R(y— %y2) + constant. (1.14)



2.1.

Dr. D. Andrew S. Rees Neptun, Romania 25/07/2001 to 29/07/2001 4

Linearised Stability Theory

The classical Darcy-Bénard problem..

In the last section we determined the basic flow, which is given by (1.14), and we will now
perform a linear stability analysis to determine conditions under which the solution can be
expected to exist in practice. This is undertaken by perturbing the basic solution and finding
the growth rate of the perturbation, which is assumed to be small in magnitude. Therefore we
set

into equations (1.10) and (1.11). If we assume that |¥| < 1 and |©| < 1, and neglect products
of the perturbations, we obtain

Voot U, = RO, 0,-V,=0,,+0,, (2.2)

where subscripts denote partial derivatives. This partial differential system may be transformed
into ordinary differential eigenvalue form by means of the substitutions,

U = f(y)eM coskz, 0 = g(y)e  sin kz, (2.3)

where A is the exponential growth rate, and k is the wavenumber of the disturbance.
Equations (2.2) reduce to

f" —k*f = Rky, g" — kg =kf+ \g, (2.4a,b)
subject to the homogeneous boundary conditions
f=g=0 on y=0,1. (2.4¢)

These equations form an eigenvalue problem for A in terms of £ and R. The solution may be
obtained analytically in terms of sines:

k? LD
f= —%A sin 7y, g = Asinry, (2.5a,b)
with 2
R 2 2

Here the overall amplitudes of f and ¢ are unspecified, i.e. A may take any value. The variation
of A with R and k is given by (2.5c), and negative values correspond to disturbances which
decay exponentially with time and which are therefore stable. Positive values imply that the
disturbance is unstable, and it grows exponentially although, clearly, there will come a point
when nonlinear effects take over and moderate the evolution of the instability. However, when
A = 0 we have what is known as marginal stability or neutral stability since the disturbance
neither grows nor decays. Setting A = 0 in (2.5¢c) yields what is called the neutral stability
curve,
(K 4 72)?
k2 ’
which is plotted in Figure 2.1. We note that points which lie above the curve correspond to
instability, while the points below correspond to stable disturbances. Thus the minimum point

R= (2.6)
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of the curve is of great importance, for below it disturbances of all wavenumbers decay with
time, while above it there is a range of wavenumbers, k, for which disturbances grow. This
minimum point corresponds to the critical values:

R.=4r*  k.=rm. (2.7)

This particular wavenumber corresponds to convection cells which have an aspect ratio of exactly
unity.

12
R/Ax?

10¢

0 1 ? 3 I 5 5 k/m

Figure 2.1. Showing the neutral curves for the first three
modes for the classical Darcy-Bénard problem. These are
denoted by n = 1, 2 and 3.

The solutions given by (2.5) and (2.6) are not the only ones which are admissible. We also have

k2 2,2 A
f= —#A sin nwy, g = Asinnry, (2.8a,b)
with )
Rk 2 22

and hence A = 0 yields
(k2 + n2r?)?

R = e ,

(2.9)
the minimum value of which is
R, = 4n*r?, at k. =nm. (2.10)

Here n must be an integer in order that the upper boundary conditions are satisfied. Thus
(2.8a,b) corresponds to n convective rolls stacked above one another. But both (2.9) and (2.10)
show that the critical value of R is well above those given by (2.5) and (2.6), and which are also
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shown in Figure 2.1. These modes are known as higher modes, and while they exist theoretically,
it is rare that they become important practically.

We note that solutions of the form (2.3) also exist in finite cavities where the sidewalls are
impermeable (¥ = 0) and insulated (®, = 0). In such cases only certain wavenumbers are
permissible in order to fit a whole number of identical convecting cells into the cavity.

The effect of form-drag.

This the first of various extensions to the Darcy-Benard problem which we will consider briefly.
Here we will consider the effect on stability of the presence of form-drag. The extra term which
arises in Darcy’s law is quadratic and reflects the increased resistance to flow at relatively high
microscopic fluid velocities within the porous medium. The governing equations are given by

Uy + vy + w, =0, (2.11)
u(l+ Gq) = —pg, v(14+ Gq) = —p, + RS, w(l+ Gq) = —p., (2.12)
0 + uby + v0, + wh, = 0., +6,, +0.., (2.13)

where the fluid flux speed, ¢, is given by
¢ = u? + vt 4+ w?, (2.14)

and the inertia parameter GG is defined as
, (2.15)

where K is a material parameter.

On introduction of the streamfunction for two-dimensional flows, the above equations reduce to

(14 Ga)(Yoo + Yyy) + G(Yoto + Pyay) = RO, (2.16)
B, + VpBy — by = Ouy + B,y (2.17)

In terms of the streamfunction we have

¢ = P2+, (2.18)

The basic flow and temperature fields are given by equation (1.14). If we introduce the small-
amplitude perturbations, (2.1), then the linearised stability equations are

Vo + U, =RO,, 0,-V,=0,,+0,, (2.19)

which are identical to those given in (2.2) for the classical Darcy-Bénard problem. Therefore
we conclude that form-drag does not affect the criterion for the onset of convection in a porous
medium. However, appearances can be deceptive, for inertia does affect strongly the resulting
flow at higher Rayleigh numbers and the range of influence of instability mechanisms, but such
aspects are dealt with in Rees (1996) and Strange and Rees (1996).
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The effect of the Brinkman terms.

When a porous medium has high porosity Darcy’s law no longer remains valid near bounding
surfaces where the sparsity of the solid phase means that the no-slip condition, which is prevalent
in standard fluid mechanics, must be applied near such surfaces. Brinkman (1947) undertook
an analysis of the effective viscosity of a swarm of particles in a fluid and this has been used as
a means of extending Darcy’s law for rigid porous media to account for the transition between
a porous medium and a clear fluid as the porosity tends towards unity.

For two-dimensional flows the governing nondimensional equations are

—DV*% + V% = R#,, (2.20a)
0; + V.0, — ¥, 0, = V0, (2.200)

and the boundary conditions are
y=0: Pp=1,=0, =1, y=1: =1, =0=0. (2.21)

Here D is the Darcy number given by

D= ,ueffﬁ
pd?

(2.22)

where pegr is the effective viscosity.

The basic velocity and temperature fields are unchanged from those given in (1.14), and therefore
the linearised perturbation equations are

~DV*U 4+ VU = RO, 0; -V, = V0. (2.23)

On substitution of
U = f(y)eM cos kz, 0 = g(y)e M sin kz (2.24)

into (2.23) we obtain the equations,
~D(f" =22 f" + B )+ f' — k' f = Rkyg, g" — kg =kf + Ag. (2.25)

These equation cannot be solved analytically and therefore numerical methods must be em-
ployed. This system was first solved by Walker and Homsy (1977) who found that the critical
value of R not only depends on the value of D, but increases as D increases, as shown in Fig-
ure 2.2. This figure shows R, as a function of D where the values of R have been minimised with
respect to the wavenumber k. The minimising wavenumbers are shown in Figure 2.3. For small
values of D, R, is very close to 472, which confirms that the small-D limit recovers the well-
known Darcy-flow criterion. At the opposite extreme, for large values of D, the curve becomes
a straight line satisfying the asymptotic relation,

R/D ~ 1708 (2.26)

The large- D limit corresponds to the clear fluid limit, and it should therefore be no surprise that
the parameter, R/ D, is the Rayleigh number of a clear fluid (on taking peg = p5), and that the
numerical value in (2.26) is precisely the onset criterion for the classical Bénard problem with
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no-slip boundary conditions. A quick glance at Figure 2.3 shows how the critical wavenumber

varies from 7 when D is very small, to 3.116, the Bénard value, when D is large.

R./D

T 0 1 2

logyo D

Figure 2.2. Neutral curves for the onset of convection for
1076 < D < 102. Values are presented in terms of the
Darcy-Rayleigh number, R., and the clear-fluid Rayleigh
number R./D. The dashed line denotes the small- D asymp-

totic values given in (2.27a).
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Figure 2.3. Critical wavenumber, k., for the onset of con-
vection for 107% < D < 10%. The dashed curve denotes the
small-D asymptotic values given in (2.27b).
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Space does not permit an asymptotic analysis of the small- D limit, which may be undertaken
analytically — for further details see Rees (2001). But this limit is not straightforward to analyse
since the small parameter, D, multiplies the term with the highest derivative. Therefore the
mathematical problem requires a singular perturbation analysis using the method of matched
asymptotic expansions. Briefly, the flow is split into three regions, two of thickness O(D1/2) near
the upper and lower surfaces, and a main core region where Darcy flow prevails. Rees (2001)
has shown that the critical Rayleigh number and wavenumber take the following form for small
values of D:

R, = 471'2[1 1+ D2 4 (27r2 +34+ 7r\/§tanh(\/§7r/2)D + -, (2.27a)
k.= x[1+ DY .. J1. (2.27b)

The effect of a horizontal pressure gradient.

In the above sections the neutral stability criterion may also be obtained by setting A = 0 in
the disturbance equations, (2.4) and (2.25), and by then solving the resulting equations as an
eigenvalue problem for R in terms of k. The analysis given for the classical Darcy flow case
in §2.1 demonstrates that this procedure is correct for the problems studied thus far. Stability
problems where this is so satisfy what is called the exchange of stabilities. However most
stability problems do not satisfy exchange of stabilities, and the most common flows where this
is so are boundary layer flows. Such problems are characterised by having an overall mean
flow which is perpendicular to the axes of the convective cells, and therefore instability, when
it occurs, consists of convective rolls which move in the same direction as the mean flow. This
is also true for channel flows such as plane Poiseuille flow. Therefore in this subsection and the
following two we will consider the effect of a horizontal pressure gradient on the above stability
criteria.

Let us return to the classical Darcy-Bénard problem but add in a nondimensional horizontal
pressure gradient of magnitude H. From equation (1.6) this means that we have a basic hori-

zontal flow given by
w=H, =  b=-Hy-1) (2.28)

where we have chosen the constant of integration for ¥ to be such that 1 is antisymmetric about
Y= % The equations for the small-amplitude perturbations are now

Vo + U, = RO, O,—V,+HO,=0,,+0,,. (2.29)

The perturbation analysis given in §2.2 does not carry through easily in the form given there,
and therefore we will assume that the small-amplitude perturbations are given by

U= Real{f(y)e”eim}, O = Real | —ig(y)e e’ |, (2.30)

Comparison of (2.29) with (2.3) shows that they are precisely the same if f and g are real. The
resulting equations for f and g are

"=k f=Rkg, g¢"-kg=kf+(A+iHk)g, (2.31)

and the solution of this eigenvalue problem is precisely the same as for the H = 0 case given in
§2.2 except that
Imag[A] = —Hk. (2.32)
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If this is substituted back into, say, the expression for ¥ given in (2.30) and the real part is
taken (noting that f(y) remains real), then we have

U = Real | f(y)e'* == Y| = f(y)cosk(z — HY), (2.33)

at onset. This solution shows that the convecting pattern not only moves in the direction of the
mean basic flow but it also travels at exactly the same speed. This result was first shown by
Prats (1967). It may also be shown, by transformation into a frame of reference which is moving
at the same velocity as the basic flow, that even the nonlinear equations of motion become
independent of H, which implies that the ensuing nonlinear motions are independent of H.

The combined effect of form drag and a horizontal pressure gradient.

We now combine two of the above cases, namely form-drag and a horizontal pressure gradient.
We have already shown that neither of them affect the critical Rayleigh number and wavenumber
when they operate separately, although the latter causes the convection cells to move horizon-
tally. The aim here is to determine whether these two effects interact and alter the stability
criterion.

The two-dimensional equations of motion are as given in (2.16) and (2.17), but are repeated for
completeness’ sake:

(14 Gq)(Yzz + '¢yy) + G(Pzqs + f@byqy) = RO, (2.34a)
Or + o0y — Py, = 0,0 + 0y, (2.34b)

and the boundary conditions are that
y=0: »=1Q, 0#=1, y=1: ¢v=-1Q, 6#=0. (2.35)

Here we have introduced the value ¢) which is related to the size of the pressure gradient, — H,
by the relation,

H=Q(1+G|Q|). (2.36)

By this we mean that the horizontal pressure gradient causes the horizontal fluid motion v = @,
and therefore the basic low and temperature fields are

b=-Qu-. e-1-u. (27

After perturbing about this basic state, the equations for the disturbances are
[1+G1QI| V2w + GlQIv,, = RO, (2.38)
0,-9,+Q0, =V0, (2.39)
and these are to solved subject to the usual homogeneous boundary conditions.

On introducing

U= Real{f(y)e”eikx}, O = Real|—ig(y)ee*|. (2.40)
we eventually find that

(7% 4+ k) (27% + k?)
L2

(7['2 + k,2)2

R = 2

+G|Q

: (2.41)
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Clearly this result implies that the critical Rayleigh number increases when the product G|Q)|
increases from zero. We also get Imag(\) = —kQ@Q, which implies that the cells travel with the
same velocity as the induced mean flow.

We may minimise this value of R with respect to k to obtain

2

Re=7*[(1+ GIQN' + (14 26G]Q)'?] (2.42)
and 1+ 2G|Q71/4

We can see easily that the critical wavenumber also increases with G|@]|.

It is straightforward to use (2.42) and (2.43) to determine how R, and k. vary in both the small
and large G|@Q| limits. When G|Q| is very small, then

Ron (44 6GIQ +- 97, ke~ (14 1GIQ| 4+ ), (2.44)
and, when G|Q)| is very large, then

R.~ [3+42V2G|Q|x%, k.~ 2'/4r. (2.45)

Although it has not been proved above, the present case is the first one considered in these notes
where the orientation of the convection roll is important in determining the onset criterion. If
we denote perturbation quantities by upper-case characters, then the perturbation equations for
the fully three dimensional equations of motion are given by

Uy +V, + W, =0, (2.46)
U(1+2G|Q]) = —Px,
V(1+G|Q|) = P, + RO,
W(l+daQl)=-r:,
®t‘|’Q®x_V: ®xx+®yy ‘|’®zz

These equations admit solutions of the form,

2.47
2.48
2.49

(2.47)
(2.48)
(2.49)
(2.50)

2.50

U J* cos Ty
|4 V*sinmy
W | =exp|At+ tk[(z — Qt)cosp — zsin ]| | W*cosTy |, (2.51)
0] O*sin Ty
P P*cosmy

where the starred quantities are constants, and where ¢ is the orientation of the roll away from
having its axis in the z-direction.

For arbitrary wavenumbers and roll orientations neutral stability occurs when
T2 4 k?
cos® ¢ sin? ¢

1+26G1Q] * 1+ G[Q

R=(r"+k)(1+GlQ)+

(2.52)
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For general roll orientations the minimising value of the wavenumber is

1+ G|Q 2 g TV
e =T [m COS ¢ + sin ¢:| ) (253)
while the corresponding critical Rayleigh number is
14+ 2G|Q] 1/2q2
R.=7*(14+G|Q))|1 . 2.54
w1+ |Q|){ +<1—|—G|Q|(1—|—51112q5)) } ( )

We are now in a position to determine which orientation of the roll gives the earliest onset
of convection. A brief examination of (2.54) is sufficient to be convinced that ¢ = 37 is the
preferred orientation, i.e. the rolls have axes in the direction of the mean flow. Thus we get

R.=4r*(1+G|Q|), k.=, (2.55)
when a = %ﬂ'.

This analysis also appears as Rees (1997).

The combined effect of the Brinkman terms and a horizontal pressure gradient.

We will concentrate solely on the two-dimensional case, even though it is highly likely that
three-dimensional flows with axes in the direction of the mean flow will form the most unstable
roll direction. The following work is original and does not yet appear in the research literature.

Once more the basic temperature profile is linear, but the velocity profile is no longer constant.

We find that v is given by

b= _10 {(y — 1) cosha — D'/? sinh(2a(y — %))} (2.56)
2 > cosha — D'/2sinh o ’ .
where o = 1/(2D'/?), and therefore
L [cosha —cosh2a(y — 1)1
=—3 =-F 2.57
Yy ZQ{ Lcosha — D1/2sinh a } (), (2:57)

2

which defines the velocity function F(y). When D is small (i.e. a is large) the second terms
in both the numerator and denominator of the fraction in (2.57) are negligible compared with
their respective first terms when y is not close to either 0 or 1. Therefore the flow in the main

bulk of the layer is —, ~ Q.
The linearised perturbation equations are now
~DV*V¥ 4+ V¥ = RO,, O; — U, + F(y)0, = V0. (2.58)
On substitution of
U = Real {f(y)e”eikx}, O = Real|—ig(y)e e |. (2.59)
into (2.58) we obtain the equations,

—D(fM =2 A )+ f" — K f = Rkg,  ¢" —Klg=kf+(N—kFi)g.  (2.60a,b)
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This system, being complex, is more difficult to solve than is (2.25). Further, we cannot reduce
it to the case given by (2.25) where the horizontal flow is absent because the coefficient of g on
the right hand side of (2.60b) is a function of y. In the Table below we see how the wavespeed
depends on D when ¢) = 1. Although the wavespeed is greater than @, it is always less than
the maximum speed in the layer. It also tends towards Q as D — 0.

D R Imag[A]/k Finax Imag[A]/ Finax
0.005 51.367 1.139 1.163 0.9798
0.010 60.452 1.183 1.233 0.9592
0.020 77.951 1.226 1.312 0.9343
0.030 95.208 1.248 1.355 0.9207
0.040 112.387 1.261 1.383 0.9124
0.050 129.530 1.270 1.401 0.9067

Table 2.1. Comparison of the neutral Rayleigh numbers,
wavespeeds and maximum channel velocities of various
values of D for k = 7w and @) = 1.

2.7. Concluding remarks.

The above analyses do not exhaust the possibilities for linearised theory. We have not touched
upon thermal dispersion, local thermal nonequilibrium between the solid and fluid phases, non-
Newtonian effects, inclination, throughflow effects, solutal effects, rotation, anisotropy, variable
permeability, nonBoussinesq effects, layering etc.. We have also assumed that the domain in
which the convection is taking place is unbounded, whereas in practice it will be confined. All
of these different modifications to the classical case will affect the onset criterion. The methods
presented above may be used in the great majority of these cases and combinations of the cases
to determine onset criteria.

However useful onset criteria are, it is nevertheless essential to consider nonlinear effects. For the
classical Darcy-Bénard problem we assumed a disturbance in the form of a single roll, but there
is no a priori reason that a single roll will appear in practice, even though this is true, at least for
moderate Rayleigh numbers, for the classical problem. The nonlinear behaviour of convection
can and does show quite a variety of behaviours depending on the precise modification to the
classical case. For example convection may take the form of square or rectangular cells (which
may be thought of as the superposition of two different rolls), hexagonal cells (three rolls), or
concentric circles (an integral over all possible roll directions). Further, although linear theory
gives a criterion for the onset of convection, this is not always reflected in practice as flows may
sometimes appear at Rayleigh numbers which are below the onset criterion.

It is at this point that weakly nonlinear theory can be used to examine the stability characteristics
at Rayleigh numbers which are fairly close to the critical value. Within this regime important
information such as pattern selection, wavenumber selection, modes of secondary instability and
postcritical rates of heat transfer may be decided. It is frequently the case that such qualitative
information remains correct well into the strongly nonlinear regime.
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2D weakly nonlinear solutions

Weaklv nonlinear scalings.

Consider weak convection where the amplitude of the roll disturbance is of O(¢) where ¢ is
considered to be asymptotically small in this section. The roll will have a wavenumber which is
precisely equal to k. = 7 and the Rayleigh number will be an O(e?) amount above its critical
value of 47%. We will work with the perturbation to the basic conduction state, ) = 0,6 = 1—y,
given by (2.1):

=V, 0=1—-y+0, (3.1)

and therefore ¥ and © satisfy the fully nonlinear equations,
Vor+ V¥, = RO, 0;-9,4+9,0,-V,0, =0,,+0,,, (3.2)

subject to ¥ = O = 0 at both y = 0 and ¥y = 1. We will introduce the following asymptotic

series for ¥ and ©:
AN TANNA TA WA A U
(6)=<(o1)+(e2) +o (&) + 2

and, to reflect the fact that the Rayleigh number is an O(€*) amount above its critical value, we
set

R=Ro+&Ry+--- where Ro = R, = 472, (3.4)

Finally, since the exponential growth of linearised disturbances is proportional to the difference
of the Rayleigh number from the critical value we will rescale time according to

= 12, (3.5)

where the numerical factor has been determined a posteriori in order to get convenient coeffi-
cients later. On substitution of (3.4) and (3.5) into equation (3.2) we obtain

Voo + ¥V, = (Ro+ € Ry)0,, (3.6a)

180, -0, 49,0, -¥,0, =0,,+0,,. (3.6b)

Leading order roll solution.

On substitution of (3.3) into (3.6) we obtain a sequence of linear equations at each subsequent
order in e¢. At O(¢) we obtain the homogeneous system,

V2 — Roby, = 0, V20, + ¥, = 0, (3.7)

which is identical to the linearised equations (2.2) with the exception of the absence of the time
derivative term. Therefore we may take the following as its solution,

2 1
Y1 = —Asintzsin Ty, 6 = — Acosmzsinmy. (3.8)
T T

This is the & = 7 version of the linearised solutions of §2.1. Once more we have chosen the
numerical coefficients on the right hand sides to yield the most convenient coefficients later.

In (3.8) the unknown amplitude, A, is assumed to be a function of 7 in order to reflect the fact
that convection becomes stronger in time when R is above R..
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O(€%) equations and solutions.

At O(e€?) the equations for ¥, and 6 are

V2’t/)2 = Rogg, (39(1)

V292 — Yoy = ‘¢"1x91y - ‘¢1y91x

1
= —A*sin 27y (3.9b)
by
The solution of this system is
by =0 6 L A2gin2 (3.10)
Wy = = ——— A"sin27y. .
Y2 ) 2 173 Y

Thus there is no flow at this order, but the fact that 6y is not dependent on z means that it is
from this term that the mean rate of surface heat transfer may be obtained. Thus

0 1 A%e?
0|~ [1—y- —EAtsin2r =125 3.11
Yly=0 Oy Y= 4 y y=0 272 ( )
It remains now to determine an expression for AZ%.
0(e®) equations, solvability conditions and amplitude equations.
At O(€é*) the equations are
Vi3 — Rofzz = Rabis,
1
= ——RyAsintzsin Ty, (3.12a)
iy
V205 — 3, = P12bay — V1ylan + Yoty — V201
1 1
= ﬁAS cos Tz(sinmy — sin 37y) + WAT cos mx sin Ty. (3.12b)

If we now attempt to solve these equations then we are left with an enormous amount of algebraic
difficulty because all but one of the inhomogeneous terms are proportional to the eigensolutions
of the left hand side differential operators (as given by the solutions (3.8)). The result of such
an endeavour would show us that a solution can only be obtained when R, and A satisfy the
appropriate equation. However, it is possible to find the equation for B, and A without solving
the system (3.12), but simply by insisting that the system has a solution.

We proceed by rewriting (3.12a) and (3.12b) in the form,
V293 — Robfs, = Ry, V203 — 3, = Ra, (3.13a,b)

for convenience, and by forming the integral,

2 1
I= / / {(v%/)g — RoB3)¥1 + (V203 — 13, ) Rob | dy dz. (3.14)
0 0
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On integration by parts, and by taking into account the fact that ¢, = 8, = 0 on y = 0 and
y = 1 for all values of n, we find that

2 1
I = / / [(Vzl,ﬁ’l — Rogl)@ﬁ’g + (V201 — ’l/)lx)Rogg} dy dxr = 0. (315)
0 0

That this integral is zero follows from the fact that the terms in the small square brackets are
zero by definition; see equations (3.7). On substitution of (3.13) into (3.14) this implies that

2 1
I= / / | Rut1 + Rab Ro| dy d = 0. (3.16)
0 0

The application of the condition by substitution of the definitions of Ry and Ry yields the
following equation for the amplitude, A, in terms of R,

A; = Ry A — A®. (3.17)

Such equations are known as amplitude equations, or as a Landau equations. The condition
(3.16) is an example of a solvability condition, or an orthogonality condition.

Solutions of the amplitude equation and stability.

It is straightforward to see that equation (3.17) has the following steady solutions,

A =0 for all values of Ry, A= :l:R%/2 when Ry > 0. (3.18a)
It is also possible to obtain the unsteady solution,

RY?
V1= Ce2Ra7’

where (' is an arbitrary constant. In fact, if we apply the initial condition, A = Ag > 0 at 7 =0,
then the unsteady solution is

A=+ (3.18b)

Ry’

\/1 - (1- i—z)e—mﬂ.

/2

A= (3.19)

when 0 < 4y < R%/Q

towards R;ﬂ when Ay > R;ﬂ. Thus we expect the A = 0 solution to be unstable when R, > 0.

This latter solution shows that A grows towards R% , and that A decreases

Let us consider the stability of the A = 0 solution. If we assume that |A| is very small in
equation (3.17) then the equation may be approximated by

A = RyA, (3.20)

whose solutions are A « ef27. Therefore this disturbance grows when Ry > 0 and decays when
Ry < 0; this result is consistent with the linearised analysis since R, represents the deviation
of R away from the critical value. Thus, for a very small amplitude initial disturbance the flow
grows in strength exponentially at first, but eventually this growth is attenuated by nonlinear
effects as given in (3.19).
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The above steady solutions and their stability characteristics may be summarised in the following
figure which is an example of a bifurcation diagram. Here the dashed line indicates that the
solution is unstable, while the continuous lines indicate stability. The shape of the system of
curves is reminiscent of the pitchfork used by farmers to gather in the hay, and therefore this
bifurcation is known as a pitchfork bifurcation. Moreover, since the outer two branches are
stable, it is also known more precisely as a supercritical pitchfork bifurcation.

33 ) 1 0 1 2 3 R

Figure 3.1. Showing the bifurcation diagram for the super-
critical bifurcation given by the steady solutions of (3.17).
The solid lines denote stable solutions, while the dashed
lines correspond to unstable solutions.
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2D weakly nonlinear theory: Eckhaus instability

Horizontal scalings for wavenumber changes.

In the last section we considered the weakly nonlinear evolution of a single roll of wavenumber
k. = m at Rayleigh numbers which are O(e*) above the critical value 47%. The aim of this
section is to relax the assumption that the wavenumber is precisely equal to 7w, and to allow k
to vary by a small amount. To determine the admissable size of variation we may set k = 7 + 4,
where |8] < 1, in the expression for R given in (2.6); hence

(k2 + n2)?

2

Given that R — R. was taken to be O(€®) in the last section, this means that é and ¢ may be
taken to be of the same magnitude. Therefore we will allow & to vary from 7 by O(€) amounts.

R = =4r? 4487 4. (4.1)

If we allow such a variation in k£ then we need to deal with quantities such as cos(m + €K )z
or exp[i(m + €K )z], and this may be done using the method of multiple scales. Therefore we
allow solutions to vary on two lengthscales, one of which is of O(1) and the other of O(1/¢).
The former takes account of the main convection pattern whereas the latter allows for “slow”
changes over many wavelengths. Thus we define the slow z-scale, X, according to

X = ez, (4.2)

and therefore we replace

0 0 0

in equations (3.6). Therefore equations (3.6) become
U, . +2c¥,.x + 62\IJXX + \Ilyy = (Ro + €2R2)(®r + €®X), (4.4@)
%6297—\11:5—6\11)(—}—(\le(ay—\Ily®x)+€(\px®y—qu®x) = ®xr‘|’2€®xX‘|’€2®XX‘|’®yy- (44b)

O(¢) solutions.

We substitute the expansion (3.3) into equations (4.4) to obtain a sequence of equations at each
order in €. At leading order we recover equations (3.7) but we will not take (3.8) as our solution
as this representation is real. Rather, it is more convenient to use a complex representation of
the same solution:

i iTT A,—imr | o1
U = - [Ae — Ae } sin Ty, (4.5a)
6, = 57 [Ae + Ae } sin Ty. (4.5b)

Here we will allow A to vary with both X and 7. The small changes in wavenumber will be
equivalent to setting A to be proportional to exp(iK X ).

O(€?) solutions.

At O(e€?) the equations are
V24 — Roblay = Robhx — 2010x

=0, (4.6a)
V205 + o = Y1201y — V1012 — Pr1x — 201,x
1 -
= —AAsin27y. (4.6b)
T

So, although there are officially extra terms on the right hand sides of these equations, as
compared with (3.9), they cancel, and therefore the O(¢?) is as given in (3.10).
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4.4. O(€3) solutions.

The equations at this order are

V23 — Robar = Rifax + Robix — 2¢0.x — hixx

iR 4 - i ‘ .
= 2—2 Ae'™ — Ae_“””} sinTy + — {Ae’” — Ae™ "™ | sinTy
T T
+ nonresonant terms, (4.7a)

V203 + 3, = Porbiy — Vaybie + Y1200y — V1ybas
+ ixbiy — P1ybix — Yox — 200,x —Oixx

1 4 o 1 . o
=—— {ATeZ” + A,,e_“”?} — —2AA{A62” + Ae7"?| sin my cos 27y
4T 2T
1 4 _ )
- 53 [AXXeZ” + AXXe_””U} sin Ty + nonresonant terms. (4.7b)

For this complex system the solvability condition changes very slightly. Using the notation, R
and R2, to denote the right hand sides of equations (4.7a) and (4.7b), respectively, then the
solvability condition may be written in the form,

2 1
/ / [Riths + RoRabr | dyde = 0. (4.8)
0 0

Here the terms t; and 6 are given by the A coefficients of the O(¢) eigensolutions:

i . 1
v = —e " sinTwy, 01 = 2—26_2” sin Ty. (4.9)
T T

Application of this condition yields the amplitude equation,
A, = RyA +4Axx — A*A. (4.10)

We may take as the steady solution of (4.10) what is called the phase winding solution,

A =+/Ry — 4K2e' KX (4.11)

The physical effect of the complex exponential here is to vary the phase of the convecting roll
relative to that given by ™. If we substitute (4.11) into (4.5b) we obtain

V IRy —4K? T KX 4 —imr—iKX V Ry — 4K?

o, = s sinTy = - cos[(m + eK)z], (4.12)

which shows that that wavenumber of the convecting roll has been altered slightly from 7.

The presence of the Axx term in the amplitude equation reflects the parabolic nature of the
neutral curve near its minimum. The solution (4.12) also shows that Ry = 4K* may be regarded
as the marginal stability curve — this is consistent with (4.1) above.
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Stability of rolls to sideband disturbances.

The small amplitude of the solution given by (4.12) when R; is close to 4K? suggests that it
may be possible for such a roll to be unstable to disturbances of the form of a different roll
whose wavenumber is closer to w. Such disturbances are called sideband disturbances and
the instability mechanism is the Eckhaus instability.

If we were to linearise equation (4.10) about the solution (4.11), then the introduction of a
disturbance which is proportional to exp[i(K + L)X] yields a term which is proportional to
exp[i(K — L)X], and vice versa. Therefore we need to use two disturbances for this analysis. If

we set ‘ ‘ -
Ry — A ZeEX + Blez(K+L)X+AT + B262(K—L)X+A7-7 (4'13)

and linearise with respect to By and Bj, then we obtain the determinantal equation which must
be satisfied if nonzero solutions are required,

Ry — A —4(K + L)* — 2(Ry — 4K?) —(R - 4K?) _ 0 (4.14)
—(R - 4K?) Ry — A —4(K — L) —2(Ry —4K?)| — '
On setting A = 0 this determinant reduces to
R=12K*-2I? (4.15)

with A > 0 for values of Ry which are smaller than 12K? — 2L?. The region of instability
is maximised by taking the limit I — 0, and therefore the stability criterion for the Fckhaus

instability is that
Ry > 12K2, (4.15)

which should be compared with the region of existence of rolls, Ry > 4K?2.
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Cross-roll instability

In this section we will deal with the instability of the basic roll with respect to roll disturbances
aligned at a finite nonzero angle, ¢, away from the basic roll. As the resulting flow no longer
remains two-dimensional, it is necessary to rework the stability analysis in an alternative form.
We will use a pressure/temperature formulation.

Perturbation Equations.

To recap, the basic equations are

Uy + vy +w, =0, (5.1a)
U= —Pg, v=—py, + RO, w= —p,, (5.1b,¢,d)
0: + uby, + v8, + wh, = V20, (5.1€)
subject to the boundary conditions,
y=0: 6=1,v=0, y=1: 6=0, v=0. (5.1f)

On elimination of the velocities from (5.1) we obtain the pressure/temperature formulation:
Vip= RO,  6,+ ROO, - Vp.VO =V?0, (5.2a,b)

subject to
y=0: 0=1, p,=R, y=1: 6=0,p,=0. (5.2¢)

The conduction solution is easily found to be
f=1-uy, p = R(y — 3y*) + constant. (5.3)

It is more convenient, in terms of derivation, to work with perturbations with respect to this
solution, and therefore we set

f=1—y+0, p=R(y-— %yQ) + constant + P. (5.4)
into equations (5.2). After dropping the asterisks, we obtain
VP = RO,, 0, + RGO, — VP.VO = V?0 + RO - P,, (5.5a,b)
subject to the homogeneous boundary conditions,

y=0: ©=0, P,=0, y=1: ©=0, P,=0. (5.5¢)

Weakly nonlinear expansion.

The weakly nonlinear theory is undertaken in the usual way by setting,

(g):€<§i)+€2(§j)+...7 (5.60)

R:R0—|—€2R2+---, T = %th. (5.6¢,d)

where € < 1 in magnitude. Substitution into (5.5) yields systems of equations at each order in
€.

At O(¢) we obtain,
V2p1 = Robhy, V%0, = p1y — Robs. (5.7a,b)
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We remain interested in stability at the bottom of the neutral curve for which the horizontal
wavenumber is 7 and the critical Rayleigh number is 472. Therefore we may use the following
as an eigensolution of the homogeneous system (5.7),

1 4 .

mo=— [Ae“”” + Ae_“””} cos Ty, (5.8a)
1 T Pt A

6, = 37 {Ae + Ae } sin 1y, (5.8b)

Ry = 47 (5.8¢)

Here we assume that A = A(7) only and we will delay consideration of slow z-variations using
X = €z until §5.4. However, we are interested in the stability of one roll with respect to
disturbances in the form of another roll aligned at a relative angle of ¢, and therefore we use

1 . _ 1 . . _ .
p=—— [Aewrz + Ae—wrz} cosTy — — [Bewr(rcos ¢—zsin ¢) + Be—wr(l’cos ¢—zsin (b)} cos Ty, (59@)
™ m

1 . _ 1 . . _ . .
01 — 53 [Aemrx + Ae—mrx} sin 7Ty+ 2_2 |:Bez7r(rcos ¢—zsin ¢) + Be—mr(xcos ¢—2zsin (b)} sin Ty, (596)
s T

instead of (5.8a,b) Note that these A and B components represent precisely the same form of
solution as one another, except for the fact that they are aligned at different angles.

At O(€*) the equations for py and 6, are

Vipy — Roby, =0, (5.10a)
V202 + R()HQ — pr :R00101y — Vp1V01 (510b)

The inhomogeneous terms in (5.10b) expand into many lines, and these are omitted for the sake
of brevity. The full solutions for p, and 8y are

P2 = %[AA + BB} cos 21y

T
(1 — cos ¢)

F(cos2 ¢+4cosp+7)

1 (1 + cos ¢)

72 (cos? ¢ — 4cosd + 7)

{ABeiw(r(l—}—cos ¢)—zsin ¢) 1+ ABe—iW(l’(1+COS ¢)—zsin d))} cos 2Ty

{ABeiw(r(l—cos @)+ 2z sin ¢) + ABe—iW(J;(l—cos ¢)+2zsin d))} cos 27ry

(5.11a)

0, = —% {A/i + BB} sin 27wy
1 (cos* ¢+ 2cosp —3)
m(c052¢—|—4cos¢—|—7)
1 (cos? ¢ —2cos¢ — 3)
473 (cos? g — 4cos + 7)

n {ABeiﬂ(:ﬁ(l—}—cos ¢) —zsin ¢) + ABe—iT(I(l‘FCOS ¢)—zsin ¢)} sin 2Ty

+

{ABeiﬂ(r(l—cos ¢)+zsin ¢) + ABe—iTr(r(l—cos ¢)+zsin d))} sin 27r’y
(5.11b)

We note that these solutions are valid for all possible angles, ¢. It might be thought that the
value ¢ = %71' would cause difficulties since the overall wavenumber of the AB terms above is 7,
the resonant wavelength. However, the y-dependent part of the inhomogeneous terms in (5.10b)
is sin 27y, which is a different Fourier component from the resonant sin 7y component given in
(5.8b). Thus the forcing terms in (5.10b) are always nonresonant, which is confirmed by the

fact that the solutions (5.11) are regular for all ¢.
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At O(€) the equations are

V2p3 — R003y IRggly (512@)
V202 + R003 — pgy IR0(0102y + 0201‘y) — Vp1V02 — VngHl + %017 — R201. (512b)

As usual, we obtain a time derivative term and a term involving R, at this stage, together with
nonlinear resonant forcing terms. The nonlinear terms in (5.12b) contain many componants
which are nonresonant, and therefore solutions corresponding to those may be obtained if one
had the need, the will and the time. However, our aim here is to find a condition which guarantees
a solution for the system, and which, therefore, renders the inhomogeneities nonresonant overall.
Such a solvability condition is the following.

1
/// 1Ry — Robi Ry | dydar dz = 0. (5.13)
0

This condition needs to be applied twice, once for the A-roll and once for the B-roll. In the case
of the A-roll we set

~ 2 < —imx

hr=——3 Ae cos Ty, (5.14a)
) 1 —iTT

6, = - Ae sin Ty, (5.14b)

and take Ry and R to be those inhomogeneous terms in (5.12a) and (5.12b), respectively, which
are proportional to e'™ only. Then the integration in (5.13) takes place over one wavelength of
the convective roll. For the A-roll we obtain the following for Ry and Rs:

R = %RgAei” cos Y, (5.15a)
1 R, 1 o~ 1 770+ 28cos’*¢—2cos? ¢ _

=—A, - —A A*A ABB. .15b

R 472 212 t 472 t 472 ( 49 — 2 cos? ¢ + cos? ¢ ) (5.15b)

Application of the solvability condition for A now gives

- 70 + 28 cos? ¢ — 2 cost ¢ _
A = RyA— [APA ABB 1
=R { + ( 49 — 2 cos? ¢ + cost @ ) } (5.16a)
_ 70 + 28 cos® ¢ — 2 cos* ¢ -
B. = R,B - |B’B BAA|. 160
= { +( 49 — 2 cos? ¢ 4 cos* ¢ ) } (5.166)
The coupling coefficient, Q(¢), is defined by
70 4 28 cos? ¢ — 2 cos? ¢
Qo) = Nl
(¢) 49 —2cos? ¢+ cost @ (5.17)
varies from 2 down to %; this latter value has great importance in view of the stability charac-

teristics of the convective flow, as will now be demonstrated.
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Basic stability analysis of rolls.

Equations (5.16) have an infinite number of solutions since, for every solution which exists, a
similar one with a different phase may be obtained by changing, say, A to Ae'®. However, there
are three main solutions for which A and B are real and nonnegative. They are

A=RY*,  B=0o, (5.180)
A=0, B=R"", (5.18b)
and R .
A=B=(—2_) . 5.18
(1 n Q(¢)) (5.18¢)

Before analysing stability, it is instructive to consider the mean rate of heat transfer across the
layer for each solution. From equation (5.11b) we see that the mean rate of heat transfer is
proportional to (AA 4+ BB), and therefore the three solutions given in (5.18) yield values which
are proportional to

2R,

(a) Ro, (b) Rs, (c) TF90)

(5.19)

Thus the single-roll solutions, (a) and (b), have a higher rate of heat transfer when Q > 1, but
the mixed mode solution transfers a greater amount of heat when Q < 1. For the present flow
Q is always greater than or equal to %, and therefore single rolls are favoured from the point of
view of heat transfer.

Consider the stability of the single-roll solution given by (5.18a). Let

A=Ry*+6A, B=6B (5.20)

in equations (5.16) and linearise with respect to § A and 6 B. We obtain the linearised disturbance
equations,

§A, = —Ry(6A+ 84A), 6B, = (1 - Q)R,6B. (5.21a,b)

The equation for § A is a little unusual, but if we split 6 A into its component real and imaginary
parts using 6A = AR + 16 A1 we get

6AR'.- = —2R25AR, 6‘4[7 = 0. (522@,[))

The equation for §Ag yields an exponentially decaying solution, and therefore the solution
(5.18a) is stable with respect to real perturbations in A. The equation for §A; gives 6A;
to be equal to a constant. Therefore if A is perturbed in terms of its imaginary part, then
that perturbation remains, and neither grows nor decays. Therefore A is neutrally stable with
respect to phase perturbations. Finally, the equation for 6 B has a decaying solution only when
@ > 1. Therefore in cases like the present, for which € is always greater than 1, the roll solution
corresponding to the critical wavenumber is always stable. But conversely, for fluid problems
where the minimum value of Q is less than 1, then the mixed mode solution (5.18c) becomes
stable, and single rolls are unstable — see §10, for example.
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The effect of small wavenumber variations.

Although we have not yet included small wavenumber changes within the pressure/temperature
analysis, the result of doing so for the A-roll yields the same amplitude equation as was obtained
using the two-dimensional streamfunction/temperature formulation. Thus A would satisfy
A, = RyA+4Axx — A*A — Q(¢)ABB. (5.23)
The phase-winding solution for A (which replaces (5.18a)), is now
A= (Ry —AKH)V2EX B =, (5.24)
For this solution the equation for § B becomes,

6B, = [Ry(1 — Q)] + K*Q(4)]6B (5.25)

from which we see that we have instability whenever

Q
K2 (5.26)

B <97

For the present problem the right hand side is maximised by ¢ = %71' and therefore the stability
region is
40 72
Ry = T K~°. (5.27)

which is more restrictive than the Eckhaus instability (Ry < 12K?). It is usual that the roll
at 90° is the most dangerous disturbance, and this is why the instability is called the cross-roll
instability.
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The zigzag instability

The zigzag instability is so-called because when it is operative the cell boundaries, as viewed
from above, appear to form slow sinusoidal deformations before eventually becoming a single
roll inclined at a very small angle to the original direction with a slightly different wavenumber.

Reason for the existence of the instability.

When the wavenumber of a roll is slightly less than 7, i.e. of the form k& = 7 + ¢ K where K is
negative, then it is possible to introduce a small z-component to make the overall wavenumber
equal to 7. To fix ideas, suppose the original roll were to correspond to the horizontal planform,
exp[i(7 + €K )z], then the wavenumber is simply (7 + ¢K'). If now the roll has the planform

expli(m + €K )z + iMe'/?z] (6.1)

then the overall avenumber is

k= (r+ k)2 + (Mc/2)2
= /72 4+ 27K + M%)c + - -

:7r—|—<[(—|—£;{:)€—|—---. (6.2)

Thus the O(¢) correction to m disappears when

M =v=27K. (6.3)

And therefore a roll with planform (6.1) where M is given by (6.3) has wavenumber equal to T,

at least to O(e), and is inclined at an O(¢'/?) angle to the orginal roll. This suggests that we
now introduce a slow spatial scale in the z-direction.

Weakly nonlinear analysis.

Unfortunately the analysis remains three-dimensional, and therefore it is still essential to use
the pressure/temperature formulation, but we need only consider a single roll. Therefore we use
the slow spatial variables

X =ex Z =z, (6.4)

and use the method of multiple scales. As for the Eckhaus instability we make the following
replacements

J 0 N J d 0* 0* P 0* L 0?

— = —+4e—= an — = =+ 2 € .

Ox Ox X’ Ox? Ox? 0x0X 0X?
But since the roll we will be considering is not dependent on z except on the long length scale
represented by Z we may use a straightforward transformation from z to Z using

(6.5)

d d 0? 0?
— = == d — = & .
0= 9z M 92 <7 (6.6)
Therefore the perturbation equations given by (5.5a,b) become,
Vp — Roby = € Ryb, — €(2pox + pzz) — €pxx, (6.7a)

V20 =Py — (RO + €2R2)0
—€(20,x +0z7) — €0xx
— Vp.VO — e(pbx + pxs +pz0z) — Epxbx (6.7b)
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At O(¢) we obtain the equations (5.7) for which the solution is

1 4 o
p=—= [Ae””” + Ae_””?} cos Ty, (6.8a)
1 iTT A,—imz| o2
6, = F[Ae + Ae } sin Ty, (6.8b)

where A is now a function of 7, X and Z.

At O(€*) the equations are

V2py — Robay = —2p1ax — P127

4 ~ 4 1 4 ~ 4
= 2mr |Axe™ — AXe_”””} cosTY + — [Azze”“” + Azze "™ | cosmy. (6.9a)
T

V20, + Roby — pay = —201.x — 0127 + Rob101, — p12612 — p1,01,y

{ ; - .
- — {Axe”r — Axe Z”} sin my
T

1 4 - 4
- 53 {Azze”x + Azze_“”?} sin my + old terms (6.9b)
T

Although these new inhomogeneous terms appear to be resonant, the application of the solvabil-
ity condition shows that the equations are indeed solvable. This may be tested by substituting
back into the governing equations (6.9) the following solutions,

1 - 1 . _ , ; . _ )
Py = WAA cos 2Ty — ywe {Azze“”: + Azze_“”:} cos Ty — # {Axezm - Axe_”m] cos Ty,

(6.10a)

1 . 1 < - 4 ; 4 - 4
fy = 1 AAsin 2wy — ) {Azze’” + Azze_”m} sin Ty — 41? {Axezm - AXE_W] sin Ty.
(6.106)

At O(é®) we obtain all the right hand sides which appear in equations (5.15), but with the extra
terms,

i

4 _ 4 1 4 ~ 4
5 [AXXZe””U — AXXZe_”””} cos Ty + 1 [Azzzze“”” + AZZZZe_”””} cos TY (6.11a)

i

in (5.15a) and

1 4 - 4 ; 4 - 4
R — {AXXe“”” + AXXe_Z”} sinmy + o {AXXZeZ” — AXXZe_”””} sin my
2 273
1 S el
+ - {Azzzzemr + Azzzze_m} sin Ty (6.110)

in equation (5.15b). Application of the solvability condition now yields

P 1 _
A= RoA+4[Axx = SAxzz = 5 Azzzz| — AP A =0, (6.12)
T 4w
This may be shortened slightly to the following form,
d i 0% 12 -
A,,_RQA+4{§—§W} A—AYA = 0. (6.13)
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Stability analysis.

Now we may proceed to the analysis of the zigzag instability. We perturb about the basic
solution, A = (Ry — 4]&'72)1/26”{)(, using a pair of rolls with infinitesimal amplitude. Therefore
we set

A=(Ry— 41(2)62‘KX 4 A UEFDX+MZ] | 4 Al(K=1)X =M 7] (6.14)

into equation (6.13). We eventually obtain the amplitude equations

M? 2

Air = Rydy — { — 42K+ L)} A1 — 2Ry — AK?) Ay — (Ry — AK?) Ay, (6.150)
M? . 2 ) -2

Ay = RyAy — {T + 2([& — L)} Ay — 2(R2 — 4K )A2 — (R2 — 4K )Al (615b)

for A; and A,. On setting both A; and A to be proportional to exp(At), the condition for a
nonzero solution reduces to the following determinantal equation,

M? 2
Ry = - | — oK+ D] = 2Ry - 4K?) —(R - 4K?)
-2 M? - ? -2
—(R - 4K?) Ry—A— |2 4 2(K - L) —2(Ry — 4K?)
T
=0. (6.16)
which clearly reduces to (4.13) when M = 0.
We find that
AM?*K  M* M?\2
A= =Ry — 4K 4412+ = ~+ o]+ \/(32 — 4K 41612 (2K + . ). a7

On setting dA/0L = 0 we may maximise the growth rate. This turns out to be when L = 0.
Hence the above expression for A reduces to

M?
A= - (M +akr). (6.18)
T
This, in turn, is maximised when
M? = —27K. (6.19)

The expression (6.18) is positive only when K < 0, and whenever K < 0 we can obtain a value
for M for which the roll is unstable. Therefore the stability criterion is that K > 0 for stability.

Concluding remarks.

We have considered three instability mechanisms for the roll A = /Ry — 4K2e*X X The Eckhaus
instability is operative when R, < 12K?, the cross-roll instability when R, < %—01(2 (which is
more restrictive in terms of the region of stability), and the zigzag instabity when K < 0. When
other effects are included then these neutral curves are modified and their relative importances
are also changed.




7.1.

Dr. D. Andrew S. Rees Neptun, Romania 25/07/2001 to 29/07/2001

Weak imperfections: form drag

In §2.2 we presented the linearised analysis of the effect of form drag on the onset criterion and
found that there is no effect. Now we will consider weakly nonlinear convection for it is to be
expected that there will now be an effect since there exists convection at supercritical Rayleigh
numbers.

Weakly nonlinear analysis.

The full perturbation equations are given by
(14+G)(Vor+ Vyy)+ GV + Vyqy) = RO, (7.1)

O, — U, +U,0,— V,0, = 0,, +0,,. (7.2)

We will consider the form drag effect to be weak and therefore we set
G=G"¢ (7.3)

in equation (7.1). The reason for this is that we wish to obtain a form drag modification to
the amplitude equation at O(e?), and this magnitude for G allows for these effects to arise at
that point in the analysis. In their seminal paper He and Georgiadis (1990) considered the
combined effects of form drag inertia, internal heating and thermal dispersion, but since the
form drag parameter was of O(1) it became essential to apply a solvability condition at O(€?),
and therefore the cubic nonlinear terms were absent from their amplitude equation. Allowing G
to be of O(¢) allows us to investigate the transition from inertia-dominated to inertia-free flow.

We will use the real form of the O(¢) solution given in §3.2 to perform this analysis which will

cover only the derivation of the basic amplitude equation. Therefore we take the O(¢) solutions
to be

Y1 = —Asintzsin Ty, 0, = —Acosmrsinmy, (7.4)
by w2
where A = A(7) is a real amplitude.

At O(e€?) the solution is again

1
-1 = A” sin 27y, (7.5)
T

llr/)Q = 07 02 -

At O(€*) we obtain a complicated set of equations which we have omitted for the sake of brevity.
Application of a solvability condition yields the amplitude equation

A; = Ry A — aA|A| - AP, (7.6)

where « is a constant given by

12
o= 87r2G*/ / [cos? wa sin? my + sin? 7z cos? 7y]>/? da dy
o Jo

= 0.776534 x 872G~
= 61.3127G". (7.7)

The steady solutions of equation (7.6) are

2R,
o+ [a? + 4Ry)]1/2

A=+ (7.8)
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a sketch of which is given in Figure 7.1. Here we see that the nonzero solution branches approach
the origin at a finite slope, rather than display the square root behaviour which is typical of the
classical Darcy flow case which is shown in Figure 3.1. Indeed, if we expand equation (7.8) for
small values of R, we obtain

(7.9)

Ry R_§+...}

A=t 22

which shows that A has a finite slope at the origin. However, for large values of Ry we obtain
A:j:|:Ré/2_%a+"':|7 (7.10)

which shows that the usual square-root behaviour is re-established when R, is relatively large.

Indeed, this is an unusual result for it seems that form drag effects are most prevalent when the
flow is relativly weak. However, intuition guides us correctly if we consider what happens when
the inertia parameter, «, increases. The asymptotic form for equation (7.8) as a becomes large
is given by (7.9), and therefore, for a fixed value of Ry, convection becomes weaker as the effect
of form drag increases.

This analysis, together with a study of the Eckhaus, cross-roll and zigzag instabilities, are given
in Rees (1996).

4= | | | | | | | | | R,

Figure 7.1. Showing the bifurcation diagram for convec-
tion in the presence of form drag inertia. The stability
characteristics of each branch are the same as for Fig-
ure 3.1, but the upper and lower branches have a finite
slope at Ry = 0.
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Weak imperfections: resonant thermal forcing

In this section we consider how a slight change to the boundary temperatures affect the onset of
convection. In particular we will assume that the temperatures of the upper and lower surfaces
are

y=0: 6=1+dbcosmz, y=1: 6 =bcosmx, (8.1)

where the amplitude, 4§, of the thermal imperfections is very small. We have chosen the sym-
metry of this imperfection carefully, since it represents the general case for imperfections of this
wavenumber — this aspect will be discussed in more detail at the end of the section.

The basic flow due to the imperfection.

The presence of a nonuniform temperature at the boundary causes fluid motions to exist at all
nonzero Rayleigh numbers, therefore it is necessary to determine this flow and temperature field
first. As § €« 1 we may do this using a perturbation expansion of the form,

(1 (2)
(§)-+(50) = () -

The equations for (") and (") are

vip — ReaM, v — (D) =, (8.4)

subject to the boundary conditions
pM =0, 0 =coswz on y=0,1. (8.5)

The solution is

p1) = R1/2 [coshx(y -3) _ coshy(y - %)} Gin (8.64)
2 cosh %X cosh %’y ’ '

2

1 1
() 1 {coshx(yl— 5)  cosh ’7(@/1_ 5)} cos T, (8.6b)
cosh 5x cosh 57
where
x! =7 —aRY? and 4?=r?4 xR (8.6¢)

From this expression for 81 it is possible to find the surface rates of heat transfer, but it is very
important to note that both ¥(!) and #(Y) are singular in the limit R — 472 = R,. That this is
so may be seen by considering the denominator,

cosh 1y = cos{%\/ TRY? — 71'2} — cosit=0 as R — 4z’ (8.7)

Removal of the singularity.

The solution becomes infinite because the thermal forcing at the boundaries becomes resonant
as the Rayleigh number tends towards 472. In fact, at R = 472 no solution exists. This situation
is similar to that which arises at O(¢®) in the above weakly nonlinear analyses where solvability
conditions are obtained in order remove the resonance. Therefore, if we are to determine how
the present thermal forcing affects the onset of convection, it is necessary to place the forcing
effects at O(€®) in our analysis. So we will set § = €3, and carry out the weakly analysis in the
same way as before.

We will assume that the O(¢) and O(€?) solutions given in §3.1-§3.3 are valid here too. At O(€)
the equations are given by (3.12):

1
V215 — Robs = _;RQA sin wx sin Ty, (8.8a)
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1 1
V205 — hg, = WAS cos mz(sinTy — sin 37y) + WAT cos Tz sin Ty, (8.8b)
and the boundary conditions by
Py =0, O3 =cosmz. (8.8¢)
The sole difference between the present system of equations, (8.8), and those given in §3, (3.12), is
that the present boundary conditions for #3 are inhomogeneous, whereas the boundary conditions
for (3.12) are homogeneous. This means that the solvability condition will be slightly different

from what was derived earlier.

Using (3.14) the solvability condition becomes

27 1
I = / / [[V2¢3 - ROOS]T,DI + [V203 — 'lr/JSI]ROOl} dy dm7
0 0

27 1
. 2AR
= / / [[V%ﬁl — Robh]s + [V20;, — ‘L/Jlg;]Rng} dydz + . 0
o Jo
2ARq
I I (8.9)
Hence the solvability condition is
27 1
2AR
! :/ / Rty + Rabh Ro dydo = === (8.10)
o Jo

where Ry and R, are the respective right hand sides of equations (8.8a) and (8.8b). After a
little more integration we obtain the amplitude equation,

A, = RyA — A® 4 87°. (8.11)

A sketch of the steady solutions corresponding to equation (8.11) are given in Figure 8.1. This
is an example of an imperfect bifurcation where one strongly convecting branch (the upper
one here) is connected smoothly to the solution which arises when Rj is large and negative, and
where the other two branches, the lower and middle branches, are now disconnected from the
upper branch.

A straightforward analysis of equation (8.11) shows that the subcritical branch and the middle
supercritical branch satisfy the relation A ~ —8/73/ Ry, while the upper and lower supercrit-

/2

ical branches satisfy A ~ j:Ré , which is asymptotically the same as for when the thermal

imperfections are absent.

Stability analysis.

Given that the bifurcation diagram has changed shape from what it was in Figure 3.1, it is
worth checking the solutions for stability.

If we assume that A = Ay is a steady solution of equation (8.11), then we may introduce a small
perturbation, 6 A, in the usual way. Therefore we set

A=Ay + 04, (8.12)
into (8.11) and linearise with respect to 6 A. The perturbation satisfies

6A; = (Ry — 3A3)6A. (8.13)
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33 ) 1 0 1 2 3 R

Figure 8.1. Showing the bifurcation diagram for the imperfect
bifurcation given by the steady solutions of (8.11). The thick
solid lines denote stable solutions, while the dashed lines corre-
spond to unstable solutions. The thin solid lines correspond to
the supercritical bifurcation (see Figure 3.1) for comparison.

We have neutral stability when Ry = 342, and this occurs when Ay corresponds to the turning
point which separates the lower and the middle branches of Figure 8.1. On the middle branch
Ry > 3A% and therefore this branch is unstable with respect to perturbations in amplitude. But
as Ry < 3A3 on the outer branches, this means that they are stable with respect to amplitude
perturbations.

We now turn to perturbations in phase. But to do this we must again retrun to the complex
form of the amplitude such as we did in §4. Thus if A is now the complex amplitude, equation
(8.11) is replaced by

A; = RyA — A*A 4 87°. (8.14)
If we again perturb according to (8.12), but allow § A to be complex, then § A satisfies

6A, = (Ry — 2A3)6A — AJ6A. (8.15)

We split §A into its real and imaginary components: 64 = JA,. + 16A;, and substitute into
equation (8.15) to obtain

§Arr = (Ry — 3A2)6A,,  6Ai = (Ry — A2)6A,. (8.16a, b)

Clearly (8.16a) is identical to (8.13). Perturbations with respect to phase may be seen to be
stable when Ry, < A2, and this occurs only for the upper branch. However, R, > A2 on the
lower branch, and this means that it is unstable with respect to phase perturbations.

This result may be interpreted physically by first noting that the thermal imperfections on
the boundary cause the fluid to circulate in one particular way, and since the upper branch is
connected to the subcritical branch, the upper branch represents the natural direction of flow.
However, the bifurcation diagram clearly shows that it is possible to have circulations in exactly
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the opposite sense and this corresponds to the lower branch. But it is unstable, and if it suffers
a perturbation with respect to its phase (i.e. its position relative to the thermal forcing) then
the perturbation will grow and the rolls will migrate towards the position corresponding to the
upper branch.

This work was presented in Rees and Riley (1986), although it should be noted that a slightly
more general problem was considered in that paper, and that the nondimensionalisation used
there was different.



9.1.

9.2.

9.3.

Dr. D. Andrew S. Rees Neptun, Romania 25/07/2001 to 29/07/2001
Weak imperfections: internal heating

Perturbation equations.

We will now modify the classical Darcy-Bénard problem by introducing weak internal heating.
The main effect of this modification to note at this stage is the fact that the basic temperature
profile does not remain antisymmetric about the centre of the channel. This eventually has
important ramifications for the weakly nonlinear theory. First, the presence of these imperfec-
tions serves to change the critical Rayleigh number slightly. Secondly, it alters completely the
character of the flow near R = R, by making it three-dimensional. The present analysis has not
yet appeared in the research literature.

The basic three-dimensional equations are given by
Vip =R,  0,+ RO, —Vp.VO=V?0+e. (9.1a,b)

The final term in equation (9.1b) represents the effect of internal heating, and we will assume
that € is small in magnitude in order to perform a slightly modified weakly nonlinear analysis.
The basic temperature and pressure fields are given by

y—?ﬂ)
9

Hzl—y—l—e( 5

py = RH. (9.2)
If we now perturb about this solution in the usual way we obtain
VP =RO,, 0O,+ROO,-VPVO+[-1+ei-y)][RO-P)]=V?0, (9.3a,b)

which is subject to P, =0 =0on y=0,1.

The O(e) solutions.

At O(¢€) we recover equations (5.7), but, instead of assuming a solution in the form of two rolls,
we will take three rolls at an angle of 60° to each other. Therefore we take

1 : : :

P = —;COS Ty {Aemrx + Bemr(r—\/gz)/Q + Cezw(x+\/§z)/2 + C.C.}, (94@)
1 ‘ ‘ ‘

0, = 53 Sinﬂ_y[Aeﬂrx + Bezw(x—\/gz)ﬂ + Ceﬂr(r+\/§z)/2 + C'C'}v (94())
™

where “c.c.” stands for “complex conjugate”, for convenience. Here the amplitudes, A, B and
C, are functions of 7 only.

The O(€%) solutions..

Clearly the solutions at this order are particularly lengthy to present, but the extra terms which
take the same form as those given in (5.11) may be determined easily simply by associating
coefficients with certain overall wavenumbers. However, the presence of the extra ¢ terms in
equations (9.3) gives rise to further forcing terms which were not present in the analysis of §5.
If we neglect the forcing terms shown in (5.10), just for clarity of presentation, then we need to
solve the system,

V2p2 — R002y = 0, (95&)
V20, + Roby — Pay = %(1 — 2y)sin ﬂy{Aei” + Beim(z=V32)/2 + Ceim(@+V32)/2 + c.c.}, (9.5b)

These terms appear to be resonant, given their horizontal wavenumber, but they are antisym-
metric in the y-direction, and therefore it is possible to solve the system. After much algebra
we find that the extra solutions at this order are

P2y _ Fp(y) T im(z—/32)/2 im(z+/32) /2
(02) = (Gp(’y) {Ae + Be + Ce + c.c.}, (9.6)
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where

V3 cosh/3r(y — 1)

sinmty + — , 9.7a
Y 72 sinh %\/§7r ( )

1 sinhv3r(y — 1)
8713 sinh %\/571' '

Fo(y) = Yy - y*)sinmy + 5.3

1

1
Gp(y) = _8_71_(3/ - yQ)COSﬂ'y—I- 8?cos7ry—|—

(9.7b)

The extra terms at O(€3).

There are two sets of extra terms which arise at this order. The first set are linear in the
amplitudes, but the second are quadratic. The first set of extra terms appear on the right hand
side of the equation (5.12b) and are

(

b=

) |:R002 —pgy} = (% ) [ROGp — Fé] Ae'™ 4 Beim(@—V32)/2 + Ceim(z+V32) /2 +ec.c.| (9.8)

The application of the solvability condition, as described in §5.2, yields a term which is propor-
tional to either A, B or (', depending on which mode is being considered.

The second set of extra terms arise from the nonlinear interaction of the new O(€*) solutions
with the O(e) rolls. Specifically, we are considering

R0[0102y —|— 0201‘y] — Vp1V02 — Vpg.VHly, (99)
where p; and 6 are given in (9.4) and p, and 6, are the new O(€*) solutions given by (9.6).
Again, these products expand into many lines, but most of the resulting terms are nonresonant

because the horizontal wavenumber is not equal to 7. However, the following are those terms
which are resonant:

3G; sinmy 457Gy cosmy — %Fp sin Ty — %Fé cosTY| X

BCe'™ 4+ A(?eiw(m_\/gz)/2 + ABeim(e+v32)/2 + c.c.|. (9.10)
Once more, these terms may be added into the solvability condition in the usual way.

The end result of dealing with this complexity is the following system of amplitude equations,

A =(Ry— Rp)A— A*A— Q(3m)A(BB + CC) + HBC, (9.11a)
B, =(Ry— Ry)B— B*B — Q(ir)B(AA+ CC)+ HAC, (9.11b)
Cr=(Ry— Ry)C — C*C — Q(ir)C(AA+ BB) + HAB, (9.11¢)
where 410
l = — =
Q(37) = 5g = 158301, (9.12)

The constants, H and R}, have not yet been computed. The value R} represents the change
in the critical Rayleigh number of a single roll due to the internal heating effect. The value H
represents the interaction of two of the rolls to form a disturbance in the form of the third roll,
and this is mediated by the slightly modified symmetry of the basic temperature profile.

Solutions of the amplitude equation.

While it is possible to obtain single roll solutions such as, A = /Ry — Ry, B = C =0, it is the
purpose of this section to consider the resulting three-dimensional solution when A, B and C
are all nonzero.
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Given the inherent symmetry of the system (9.12), it is to be expected that a solution satisfying
A = B = ( exists. If we assume this, then we obtain

H+\/H*+ 4(Ry — Rp,)(1+29Q)
2(1 +29)

A=B=0(C = . (9.13)

This solution will appear in practice as a hexagonal pattern of convection. A sketch of the
bifurcation diagram is given in Figure 9.1.

RE ) 1 0 1 2 3 I

Figure 9.1. Showing the bifurcation diagram for the tran-
scritical bifurcation given by the steady solutions of (9.11)

with A = B = (. The solid lines denote stable solutions,
while the dashed lines correspond to unstable solutions.

The bifurcation from A = 0 which takes place at Ry = R, is called a transecritical bifurcation.
The minimum value of Ry on the curve may be shown to be

H2
_ _ _ 14
at which point
pp— (9.15)
2014 29) '

This point is called a turning point. Although we do not present a stability analysis of the
various branches of the solution, their stability is indicated in Figure 9.1. Of great interest is the
fact that this diagram suggests that hysteresis is possible. Thus if we have a zero solution at a
strongly negative value of R,, then it becomes unstable when R is raised to a value above R,
and grows towards the upper branch. If, subsequently, R, is lowered, then the finite amplitude
solution will persist until B, is less than the value given in (9.14). This is one example of a
stability problem where the linearised theory (which predicts onset at Ry = R},) gives misleading
information. So we find that flow may occur at values of Ry which are subcritical from the point
of view of linearised theory.

Finally we need to comment on the instability of the upper branch of Figure 9.1. A detailed
linear stability analysis of hexagons on this branch reveals that once R, is sufficiently high, then
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the flow becomes unstable and it will eventually evolve back into the more usual single-roll.
That this is reasonable may be inferred from the behaviour of the mean heat transfer due to the
hexagonal pattern,

- _ _ H+ /H? + 4(Ry — Ry)(1+2Q)
AA+ BB+ (CC =3 . 9.16
+ + [ 2(1 +29Q) (9.16)
as compared with that for a single roll,

AA = R,. (9.17)

These rates of heat transfer are equal when

3H*?

Ry =R —_. 9.18
2 h+ Q1) ( )

When R is higher than this value, then single rolls transport more heat than do hexagons.
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Strong imperfections: finite conductivity effects

In all the problems considered so far the upper and lower surfaces of the layer have had a
temperature or temperature distribution imposed upon them. In the section we will relax this
assumption by allowing the porous layer to be sandwiched between two semi-infinite conducting
but impermeable regions. This set-up may be regarded as applying to a layer of porous rock
placed between two impermeable rocks. The following will give an extremely brief summary of
the results of the paper by Riahi (1983); the detailed analysis follows that of §5, and therefore
it is not necessary to repeat it here.

Boundary conditions.

We will denote by é; the temperature field in the impermeable region above the porous layer
and by 6, the temperature in the region below below the layer. The y = 0 boundary condition
for 8, the temperature of the porous medium, is given by

0 = Hb, Hy = 7b0by, (101@)

and, at y = 1
0= Ot, 0y = ’ytOty. (101b)

The presence of these finitely conducting regions will alter the boundary conditions used to
solve all the intermediate equations considered in §5, although the equations themselves remain
unaltered. Riahi (1983) also showed how to take account of the conduction field in the upper and
lower regions by modifying the above boundary conditions. So, for example, if the convective
cells in the porous layer have wavenumber k, then (10.1a,b) are replaced by

y=0: 0, =Fkv0 y=1: 0, =—Fkb. (10.2)

The basic temperature field is piecewise linear and there is no flow.

Amplitude equations.

Although the notation used in Riahi (1983) is substantially different from that used here, the
end result of his analysis is a pair of amplitude equations of the form given by (5.16):

A; = RyA— A*A — Q(¢,v,7:)ABB, (10.3a)

B, = RyB — B*B — Q(é,v,7:)BAA, (10.3b)

after a certain amount of rescaling of the amplitudes, A and B. A stability analysis of these
equations was carried out in §5.3 and it was found that a single roll is stable when © > 1 for
all relative orientations of the roll and its disturbance. However, whenever 2 < 1, it is possible
for three dimensional patterns to be stable, and rolls to be unstable. These three-dimensional
patterns tend to be square in planform (i.e. ¢ = 90°) because the minimum value of  is attained
by rolls at right angles to one another. Riahi (1983) undertook a detailed survey of variation of
Q as a function of 7; and 7. The following Figure depicts the regions in v; — 7, space where
either rolls or square cells are to be preferred. The classical Darcy-Bénard case corresponds to
infinitely large values of v; and -, and therefore this confirms the preference for rolls in that
case.

Squares or hexagons?.

Finally we pose a question the answer for which is not yet known. While Riahi (1983) has shown
that there are circumstances when squares are to be preferred over rolls, it is quite natural to
ask whether it is possible for hexagons to be preferred over squares. In order to begin to answer
this question, we’ll simply consider the rates of heat transfer for the two different planforms
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Figure 10.1. Showing I', the region of stability for square
cell convection, as a function of the conductivities, v, and
7t. Reproduced from Riahi (1983).

(noting that the relative stability of rolls and squares corresponds exactly to which planform
has the greater rate of heat transfer — see §5.3.

L

57, the solution is A = B =

For squares composed of rolls A and B at mutual orientation

\/Rg/(l + Q(37) and the rate of heat transfer is

2R

HT,, x A> + B> = ——= .
e AT T+ 9(n)

(10.4)

For hexagons composed of rolls A, B and C' at mutual orientation %71’, the solution is A = B =

C= \/Rg/(l +2Q(37) and the rate of heat transfer is

3R,

HTper x A* + B2+ C? = ————. 10.5
hew OC AT BT 1+ 207 (105)

From a heat transfer point of view, hexagons will be preferred to squares when

3R, 2R,
> . 10.6
14+29(i7) ~ 14 Q(37) (106)
Hence we must have

Q(4m) < 1 +30(4n) (10.7)

for hexagons to be preferred. At present we do not know if there are any cases in Riahi’s problem
for which this is so, and therefore it will be necessary to recompute his work.
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