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The Instability of Unsteady Boundary Layers
in Porous Media

D.A.S. Rees, A. Selim, and J.P. Ennis-King

1 Introduction

The aim of this Chapter is to summarise the state-of-the-art in the study of the
instability of unsteady diffusive boundary layers in porous media. We shall focus on
the boundary layer which is formed when the temperature or solute concentration
at a plane boundary is changed instantaneously to a new level. Such an idealised
system may be applied in a variety of contexts, such as in the subsurface storage
of carbon dioxide which is expanded upon below, and it shall be regarded as the
standard problem in this Chapter. The thermal/solutal field which then forms is un-
steady and it spreads outwards uniformly by diffusion. When the evolving system is
unstably stratified, i.e. less dense fluid lies below more dense fluid, it is stable at first
but eventually becomes unstable. It is therefore necessary to determine the critical
time after which the system is deemed unstable. Many methods have been used to
do this and much of the attention here will be focused on describing and compar-
ing these methods. It is hoped that such a discussion will inform and guide future
work on the stability of unsteady basic states. We also summarise modifications to
this standard problem: isolated disturbances, anisotropy, ramped heating, internal
heat sources and local thermal nonequilibrium. Thereafter, we discuss the present
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86 D.A.S. Rees et al.

knowledge on how the growing disturbances are modified when they become large
and enter the nonlinear regime. The Chapter ends with a checklist of topics which
could usefully be pursued.

2 Background

Although the thermal version of the problem has often been the focus of application
e.g. to porous insulation or geothermal systems, there is increasing interest in the
unsteady boundary layer due to solute diffusion in the subsurface. For example a
fertilizer or a pollutant can dissolve in the water near the ground surface and increase
its density. When convection begins, the dissolved substance is carried downwards.
A similar phenomenon can occur in the groundwater beneath saline lakes, where
evaporation at the surface increases brine density. The migration of brine due to
convection has implications for the possible use of salt lakes as disposal sites for
pumped saline groundwater (Wooding et al. 1997).

A more recent area of application has arisen from proposals for the large scale
subsurface storage of carbon dioxide in order to reduce atmospheric emissions and
so limit the effects of hydrocarbon usage on global climate. Typical storage locations
would be deeper than 800–1000 m, and at these subsurface conditions the carbon
dioxide-rich phase is about half to two-thirds the density of the formation water.
After injection into permeable rock beneath a suitable low permeability sealing rock,
some of the carbon dioxide will rise due to buoyancy and accumulate beneath the
seal. At the same time carbon dioxide dissolves in the formation water (typical sol-
ubility is 2–5% by weight depending on salinity). Unusually for a gas, the dissolved
carbon dioxide increases the fluid density, and thus the system becomes unstably
stratified (Ennis-King and Paterson 2005). The onset of convection significantly
accelerates the further dissolution of carbon dioxide, and is important for assessing
the security of storage over hundreds or thousands of years.

In these examples of solutal convection, the mapping onto the simplified prob-
lem of an instantaneous rise in concentration at a sharp boundary assumes that the
initial transport process (e.g. the migration of the gas-phase carbon dioxide) is fast
compared with the evolution of the boundary layer. In the carbon dioxide example,
there is the additional complication of a two-phase region at the top boundary, which
is simplified into a boundary condition of constant solute concentration for a single
phase system. The transport properties of typical rocks are neither homogeneous nor
isotropic, and indeed the inhomogeneity ispresentacrossawide rangeof length scales.
Thus the standard problem, based on an homogeneous and isotropic porous medium,
is only the first step to a theory that can make useful predictions in real contexts.

As a further complication, in many cases the solute can react with the minerals in
the rock, altering both permeability and fluid density. This is true of carbon dioxide,
which forms a weak acid when dissolved. These alterations can act to either oppose
or strengthen convection, depending on whether the geochemical reactions lead to
net precipitation or net dissolution. Such coupling goes well beyond the standard
problem, but again needs to be assessed in practical applications (Ennis-King and
Paterson 2007).
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The Instability of Unsteady Boundary Layers 87

3 Governing Equations

Darcy’s law and the Boussinesq approximation are assumed to be valid, the porous
medium is taken to be isotropic and rigid, and the fluid and solid phases are taken to
be in local thermal equilibrium. Subject to these constraints, the dimensional equa-
tions governing flow and the transport of one diffusing species (taken as temperature
here) are

�u

�x
+ �v

�y
= 0, (1a)

u = − K

μ

�P

�x
, (1b)

v = − K

μ

�P

�y
+ ρgβK

μ
(T − T∞), (1c)

�T

�t
+ u

�T

�x
+ v �T

�y
= α

(�2T

�x2 + �2T

�y2

)
. (1d)

In these equations x is the coordinate in the horizontal direction while y is vertically
upward. The corresponding velocities are u and v, respectively. All the other terms
have their usual meaning for porous medium convection: K is the permeability, μ
is the dynamic viscosity, ρ is the density of the fluid at the ambient temperature,
T∞. The heated horizontal surface is held at the temperature Tw, where Tw > T∞.
Finally, the quantities g, β and α are gravity, the coefficient of cubical expansion
and the thermal diffusivity of the saturated medium, respectively.

Two possible nondimensionalisations may be made depending on whether con-
vection is to take place in a deep-pool system (i.e. a semi-infinite domain) or in a
layer of uniform thickness. The former has no natural physical lengthscale while the
latter does. In the former case nondimensionalisation takes place using

L = μα

ρgβK (Tw − T∞)
(2)

as a natural lengthscale based on the properties of the porous medium and the satu-
rating fluid, while, in the latter case, the depth of the layer is taken. Thus there is no
Darcy–Rayleigh number for deep pool systems, but there is for the finite thickness
layer. Indeed, (2) is equivalent to setting Ra = 1, where Ra = ρgβK (Tw−T∞)L/μα
is the Darcy–Rayleigh number, and rearranging for L. In this Chapter we consider
the deep-pool system as representing our standard system.

On using the scalings,

t = L2

α
t, (x, y) = L(x, y), (u, v) = α

L
(u, v),

P = αμ

K
p, T = T∞ + (Tw − T∞) θ, (3)
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Equations (1a, b, c, d) become,

�u

�x
+ �v

�y
= 0, (4a)

u = −� p

�x
, (4b)

v = −� p

�y
+ θ, (4c)

�θ

�t
+ u

�θ

�x
+ v �θ

�y
= �2θ

�x2
+ �2θ

�y2
. (4d)

The boundary conditions corresponding to a sudden change in the boundary tem-
perature are:

y = 0 : v = 0, θ = 1 and y → ∞ : v, θ → 0, (4e)

while θ = 0 everywhere for t < 0.
For simplicity we shall treat the problem as two dimensional and adopt the

streamfunction in place of the velocities and pressure; we set

u = −�ψ

�y
and v = �ψ

�x
, (5)

and eliminate pressure by cross-differentiation. Equations (4) reduce to

�2ψ

�x2
+ �2ψ

�y2
= �θ

�x
, (6a)

�θ

�t
+ �ψ

�x

�θ

�y
− �ψ

�y

�θ

�x
= �2θ

�x2
+ �2θ

�y2
, (6b)

which are to be solved subject to the boundary conditions,

y = 0 : ψ = 0, θ = 1 and y → ∞ : ψ, θ → 0, (6c)

and the initial condition that

ψ = θ = 0 at t = 0. (6d)

The basic state which we analyse for stability is given byψ = 0, i.e. no flow, and

θ = erfc (η) = 2√
π

∫ ∞

η

e−ξ 2
dξ, (7)

where
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The Instability of Unsteady Boundary Layers 89

η = y

2
√

t
. (8)

Thus the basic state is one where the temperature field expands with time, but
otherwise keeps the same shape, i.e. it is self-similar.

4 Linearised Stability Equations

Given that the basic thermal profile has uniform thickness in terms of η, it is very
reasonable to make a coordinate transformation to take advantage of that fact, and
it means that computational grids may then be used efficiently. It is also convenient
to modify the time coordinate. Therefore we shall change from an (x, y, t) system
to an (x, η, τ ) system where

τ = t1/2. (9)

In addition, we shall introduce perturbations with amplitude, ε, according to

ψ = εψ̂, θ = erfc η + εθ̂ , (10)

where linearised theory is obtained when ε � 1, while the fully nonlinear perturba-
tion equations are obtained when ε = 1. The perturbation equations are, therefore,

4τ
�2ψ̂

�x2
+ 1

τ

�2ψ̂

�η2
= 4τ

�θ̂

�x
, (11a)

2τ
�θ̂

�τ
+ 2ετ

(�ψ̂

�x

�θ̂

�η
− �ψ̂

�η

�θ̂

�x

)
= 4τ 2 �2θ̂

�x2
+ �2θ̂

�η2
+ 2η

�θ̂

�η
+ 4√

π
τe−η2 �ψ̂

�x
.

(11b)

Small-amplitude roll cell perturbations may be analysed by setting ε = 0 in (11)
and by substituting,

ψ̂(η, x, τ ) =
[
iΨ (η, τ )eikx − c.c.

]
, (12a)

θ̂(η, x, τ ) =
[
Θ(η, τ )eikx + c.c.

]
, (12b)

where c.c. denotes complex conjugate. The wavenumber of the rolls is k, and there-
fore their wavelength is 2π/k. The resulting equations for Ψ and Θ are,

Ψ ′′ − 4τ 2k2Ψ = 4τ 2kΘ, (13a)

2τΘτ = Θ ′′ + 2ηΘ ′ − 4τ 2k2Θ − 4√
π
τke−η2

Ψ, (13b)



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

January 31, 2008 Time: 10:45pm t1-v1.3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

90 D.A.S. Rees et al.

where primes denote derivatives with respect to η. The boundary conditions to be
satisfied by these disturbances are that

η = 0 : Ψ = Θ = 0 and η → ∞ : Ψ,Θ → 0. (13c)

5 Comparison of the Methods Used

The overall system given by (13) is parabolic in time which implies that the most
natural method of solution is to follow the evolution of disturbances. The other
commonly used ways of assessing the stability characteristics are (i) by reducing
(13) to an ordinary differential eigenvalue problem for the critical time, (ii) using a
local Rayleigh number method which compares the system with the Darcy–Bénard
problem and (iii) using an energy method to find the earliest time for which a fully
nonlinear disturbance suffers no growth. In this section we shall discuss the merits
and demerits of each approach.

5.1 Quasi-Static Analyses

Generally, within the context of boundary layer stability theory, the earliest works
reduce the linearised stability equations to ordinary differential form in some way,
and then the critical parameter (e.g. Rayleigh number, Reynolds number, time)
is obtained as an eigenvalue. More specifically, in the present context, such ordi-
nary differential eigenvalue problems arise by assuming that all time-derivatives are
zero—this may be called a quasi-static assumption. Whilst this assumption seems
reasonable, it is essential to note that the critical time depends on whether the quasi-
static assumption is made before the coordinate transformation (8,9) or afterwards.
When it is made beforehand, (13) yield,

Ψ ′′ − 4τ 2k2Ψ = 4τ 2kΘ, (14a)

Θ ′′ + 2ηΘ ′ − 4τ 2k2Θ − 4√
π
τke−η2

Ψ = 0. (14b)

When it is made afterwards, (14a) remains the same, but (14b) is modified by the
removal of the 2ηΘ ′ term to give,

Θ ′′ − 4τ 2k2Θ − 4√
π
τke−η2

Ψ = 0. (14c)

We name these quasi-static cases QS1 and QS2 respectively, and they are known as
propagation theory and the frozen time method. Our computed critical values of τ
and k are shown in Table 1; these values correspond to the minimum value on the
neutral curve.
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The Instability of Unsteady Boundary Layers 91

Table 1 Critical times and wavenumbers for the different methods. QS quasi-static; LR local
Rayleigh number; ES energy stability; AT amplitude theory. Results marked with an asterisk are
extrapolated from finite thickness calculations

Case τc tc kc Reference

QS1 12.9439 167.544 0.06963 Selim and Rees (2007a)
QS2 7.4559 55.590 0.05834 Present chapter
QS3 12.43 154.5 0.0736 Yoon and Choi (1989)
QS4 7.27 52.85 0.07428 Kim et al. (2003)
LR1 46.5520 2261.2 0.06607 Tan et al. (2003)
LR2 9.8696 97.409 0.07958 Present chapter
ES1 * ∼ 9.6 ∼ 93 Caltagirone (1980)
ES2 * ∼ 5.5 ∼ 30 Ennis-King et al. (2005)
AT1 8.9018 79.242 0.07807 Selim and Rees (2007a)
AT2 * ∼ 8.9 ∼ 80 Caltagirone (1980)
AT3a * 8.7 75 0.066 Ennis-King et al. (2005)
AT3b 10.56 111.5 0.0752 Ennis-King et al. (2005)
AT4 12.1 147 0.07 Riaz et al. (2006)
AT5 * 8.671 75.19 0.06529 Xu et al. (2006)
AT6 * 7.75 60 0.05 Hassanzadeh et al. (2006)

It is clear from Table 1 that there is a very substantial difference between the
critical times and wavenumbers for cases QS1 and QS2. We believe that it is not at
all useful to discuss which case is the correct one, for both are the result of making
strong assumptions which are essentially arbitrary. There is no reason to believe
that the setting of the time derivative to zero corresponds to the behaviour of a real
disturbance. Indeed, it could be argued quite strongly that a zero time derivative is a
very strong constraint. The work of Selim and Rees (2007a) shows that disturbances
which evolve in time have profiles which vary in shape, and, in particular, they
become thinner in terms of η (but thicker, in terms of y) with time. Therefore the
magnitude of Θ at any chosen value of η (or y) evolves at a different rate from the
value ofΘ at any other chosen value of the coordinate. Thus the quasi-static method
puts a strong constraint on which disturbances are allowable.

In addition to the critical values differing greatly, the onset profiles (not shown
due to the need for brevity) are also very different. The presence of the 2ηΘ ′ term for
the QS1 case causes a superexponential decay in the temperature field, as opposed
to an exponential one for the QS2 case. The QS1 disturbance is much narrower than
the QS2 disturbance.

Two other chapters offer quasi-static results for the identical problem. Yoon and
Choi (1989) consider a finite layer, and when the Rayleigh number is large, the
deep-pool results are obtained. They approximated the complementary error func-
tion solution given in (7) by a fourth order polynomial in η, and employ propagation
theory. Their critical data are labelled as QS3 in Table 1 and they are close to those
of QS1, which is also a propagation theory analysis, but one which is based on
the precise basic temperature profile. The second chapter is by Kim et al. (2003);
these authors employ a propagation theory using v and θ as the dependent variables.
However, they apply the boundary condition, �v/�y = 0, on the lower surface and it
is termed a stress free condition. Given the equation of continuity, (4a), this implies
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92 D.A.S. Rees et al.

that �u/�x = 0 on x = 0, and hence that u is a constant. It is not clear how such a
condition may be interpreted, but certainly their critical data, labelled QS4, are very
different from those of cases QS1 and QS3 as the boundary condition used is quite
different.

Finally, we mention the use of a subtle technical detail in the chapters by Yoon
and Choi (1989) and Kim et al. (2002, 2003). In these chapters the disturbances
are assigned particular forms of variation with time prior to the setting of all time
derivatives to zero. All three of these chapters develop their linearised stability equa-
tions using the vertical velocity instead of the streamfunction. On scaling grounds
they set the vertical velocity to be proportional to t , but the equation for the vertical
velocity has a similar form to (13a) above by having no time derivative. Therefore
such a rescaling has no effect on the computed critical values, and their propagation
theory stability criteria are identical to that which would be obtained without using
the scaling. But we note that, should an analogous clear fluid problem be considered,
or even a porous medium system where the velocity time derivative is not negligible,
then such scalings will alter the stability criteria.

5.2 Local Rayleigh Number Analysis

This is a ‘quick and easy’ approach to finding the rough values of the critical
parameters. Therefore it may be used to provide a rapid estimate prior to using
more sophisticated techniques. In essence the method derives an expression for
a time-dependent Rayleigh number and compares this with the classical value of
4π2, which corresponds to Darcy–Bénard convection in a horizontal layer of uni-
form thickness (see Lapwood 1948, Horton and Rogers 1945). In addition, the
nondimensional wavenumber is set equal to π , which is the critical Darcy–Bénard
wavenumber.

The thickness of the thermal layer we are considering grows in time, and there-
fore a Rayleigh number which is based upon that thickness will also increase. The
chief issue, then, is how to define the thickness of the thermal layer. Tan et al. (2003)
used the following as the local Rayleigh number,

RaTan = −ρgβK

μα

(
ŷ2 �T

�ŷ

)
, (15)

so that this function depends on both ŷ and t̂ , which, we note, are dimensional quan-
tities. After the expression for the dimensional basic temperature field is substituted
into (15), RaTan is maximised over ŷ to find its largest value at any point in time.
The maximising value of ŷ is then taken as the thickness of the layer: ŷc = 2

√
αt̂ .

In terms of the present nondimensionalisation, we obtain

RaTan,max = ρgβK (Tw − T∞)

μα

4
√
αt̂

e
√
π

=
( 4

e
√
π

)
τ. (16)
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The Instability of Unsteady Boundary Layers 93

On setting this equal to 4π2 we obtain the critical time,

τc = π5/2e, (17)

which is given numerically in Table 1 as case LR1. This value is very different from
the quasi-static values, being roughly a factor of 4 times as large as for the other
methods. On the other hand, the dimensional wavelength of the cells may be taken
as being 2 ŷc, since Darcy–Bénard convection has cells of square cross-section as its
most unstable mode, and this translates into

kc = 2πL

2ŷc
= 1

π3/2e
, (18)

which is also given in Table 1. This value is quite close to those obtained by other
methods.

An alternative and less complicated approach would be to say that the boundary
layer thickness in terms of η is 2, and that a local Rayleigh number could be defined
according to

Ralocal = ρgβK (Tw − T∞)ŷbl

μα
, (19)

which varies only in time. The boundary layer thickness in terms of ŷ is given by

ηbl = ŷbl

2
√
αt̂

= 2, (20)

and therefore ŷbl = 4
√
αt̂ . The setting of the Rayleigh number given in (19) to 4π2

for this value of ybl yields,

τc = π2. (21)

The corresponding wavenumber becomes,

kc = 1

4π
. (22)

These values are also placed in Table 1 for comparison, and are denoted as
case LR2.

Admittedly, these are only two possible choices, but they seem to indicate that
the critical wavenumber is not so highly affected by different ways of defining the
boundary layer thickness or the way in which a local Rayleigh number number
is chosen. However, the critical time is affected strongly. Given that there is no
definitive way of choosing an expression for the local Rayleigh number, we would
conclude that this method is only capable of providing a very rough ball-park esti-
mate of the critical time and wavenumber prior to the use of more accurate methods.
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5.3 Energy Stability Analysis

The idea behind this method is to find a time before which no disturbances grow.
An energy functional is defined:

AQ1 Θ̄ = 〈Θ2〉1/2 =
[∫ ∞

0
Θ2 dy

]1/2
, (23)

and variational methods are used to determine the earliest time for which

dΘ̄

dt
= 0. (24)

Caltagirone (1980) applied this technique to the finite layer. His result for the deep-
pool system, which may be extrapolated from his large-Rayleigh number result,
is given in Table 1 and labelled as case ES1. A second analysis of this type, ex-
tending Caltagirone’s work to anisotropic media, was undertaken by Ennis-King
et al. (2005), but their isotropic results (labelled ES2 in Table 1) are somewhat
at variance with those of Caltagirone by suggesting a much earlier critical time.
An independent third study by Xu et al. (2006) undertakes an identical anisotropic
analysis to that of Ennis-King et al. (2005) and they present a graph for the critical
Rayleigh number against time. However, there is insufficent information within that
chapter to allow us to determine which, if either, of the energy stability analyses of
Caltagirone (1980) and Ennis-King et al. (2005) is correct.

There is a widely held belief that energy methods always yield the definitive
smallest parameter. In the present context Caltagirone’s critical time is much closer
to those using an accurate amplitude theory (described in the next subsection), but
his computed critical time using amplitude theory is lower than that for energy sta-
bility theory. The critical times obtained by Ennis-King et al. (2005) are such that
the energy stability analysis yields a earlier critical time than their amplitude theory.
Therefore it is clear that the energy stability analysis must be revisited in order to
clarify the situation. Some further comments are made on this towards the end of
the next subsection.

5.4 Amplitude Theory

This method utilises solutions of the full parabolic disturbance equations, such as
those given by (13). As the temperature equation has a single time derivative, it
is necessary to provide an initial condition, which is the initial perturbation whose
evolution will then be determined. Generally this has been undertaken using ei-
ther Galerkin methods for a finite thickness layer (Caltagirone 1980, Ennis-King
et al. 2005, Xu et al. 2006), or in the deep-pool system by Galerkin methods (Ennis-
King et al. 2005) or by finite difference methods (Selim and Rees 2007a). A means
of determining the amplitude of the evolving perturbation also has to be defined, and
this is not easy to resolve a priori. The options which have been used in the literature
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are the following: (i) the maximum value of Θ , (ii) the rate of heat transfer at the
surface, (iii) a thermal energy content integral, 〈Θ〉, and (iv) an ‘energy’ integral
similar to that given in (23). In all cases the chosen measure is evaluated at each
timestep and the times at which time-derivative is zero are noted together with the
wavenumber, k.

The evolution of E = 〈Θ〉 (measure (iii)) for a set of wavenumbers, k, is shown
in Fig. 1. These curves are typical of the other measures of the amplitude of the
disturbance, which show only quantitative differences. The initial disturbance pro-
file is Θ = ηe−3η and it was introduced at τ = 1, which is well before the critical
time. It is clear that the disturbance decays substantially at first, followed by growth.
At later times, the disturbance eventually decays once more, indicating that there is
only a finite interval during which growth may take place.

After a suitable number of simulations, a neutral curve may be constructed show-
ing how the onset time varies with wavenumber. This is illustrated in Fig. 2, which
displays the neutral curves obtained by Selim and Rees (2007a) corresponding to

AQ2

the first three of the above measures, and to the quasi-static theory. Of the various
measures displayed there, the one with the lowest critical time is the thermal energy
content measure, which, given that it is an integral, is a global quantity, rather than a
local one as represented by the surface rate of heat transfer. This minimum is given
in Table 1 and is denoted as case AT1.

The aforementioned chapter by Caltagirone (1980) also presents the results of
a full unsteady simulation, the critical values for which are given in Table 1 and
denoted by AT2. Apart from the numerical method used, the only difference be-
tween his simulation and that of Rees and Selim (2007a) is that his critical values
are based on the evolution of Θ̄ = 〈Θ2〉1/2. Despite this difference, the agreement
is very good indeed.

Ennis-King et al. (2005) apply Caltagirone’s method to both the finite thickness
and deep-pool systems, using different sets of basis functions in each case. These
result are respectively denoted as case AT3a and AT3b in Table 1 (the AT3b re-
sults were not explicitly given in the chapter, but are provided here for comparison).
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Fig. 1 Variation of ln E against τ for different values of k
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Fig. 2 Neutral curves: The continuous curve represents quasi-static theory. The symbol � repre-
sents the thermal energy content. The symbols • and + represent the surface heat flux criterion in
terms of η and y respectively. The symbol � represents the maximum temperature criterion

Again for AT3a there is an extrapolation of the finite depth results to the deep-pool
limit, which causes some loss of precision. The AT3b deep-pool results are only
weakly dependent on the initial conditions as long as the starting disturbance is
within the diffusion layer. The difference between the results in AT3a and AT3b
appears to originate from the choice of basis functions and the form of the initial
disturbance in each case.

On the other hand, Riaz et al. (2006) used a different set of Galerkin expansion
functions in η to obtain a critical time and wavenumber (case AT4) which are quite
close to the QS1 case of Selim and Rees (2007a). The analysis of Xu et al. (2006),
denoted as case AT5, follows the methodology of Ennis-King et al. (2005) and is an
extrapolation of finite thickness results. Thus AT3a and AT5 agree, and give results
that are very similar to case AT1 of Selim and Rees (2007a).

The work of Hassanzadeh et al. (2006) (case AT6) uses the same methodology
as Ennis-King et al. (2005) and Xu et al. (2006) for the finite thickness case, but
varies the type of initial conditions (white noise, or one of two Fourier modes)
and the boundary conditions. The lower bound given for the instability corresponds
to the zero time derivative condition. The value for tc is somewhat lower than the
corresponding AT3a and AT5 results using a similar approach—the difference may
relate to the variation of initial conditions.

5.4.1 Comment on Stability Criteria

Caltagirone (1980), together with many later authors including Kim and Kim (2005)
and Kim et al. (2002) who look at slightly different impulsive problems, presents
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two different stability criteria using amplification theory. One of these is the zero
time derivative criterion, dΘ̄/dt = 0, while the other is the time taken for the
disturbance to achieve its original value of Θ̄ . Kim et al. (2003) go further and
say that experimental considerations should be heeded to determine the level of
amplification required for marginal stability to be declared. Although Fig. 1 shows
the variation of 〈Θ〉, it is clear that the latter criterion will yield greatly different
critical times depending on when the disturbance is seeded into the boundary layer.
Therefore we regard the former criterion as being more intuitive.

5.4.2 Comment on the Choice of Initial Disturbance Profile

The manner in which the initial perturbation profile for the numerical simulations
is chosen has been questioned by Kim et al. (2002) who state, quite reasonably,
that it is arbitrary. Indeed, it was this fact that motivated the general analysis of
Green (1990) who developed a method involving a series expansion about the crit-
ical time, where the mode calculated was the result of minimising the critical time
over mode shapes (using a Fourier expansion) and the wavenumber, and is such
that the growth rate is zero. His method was applied to a problem of ramp heat-
ing, and to date it is unknown how good it is for the problem being discussed in
this section. However, one of the important conclusions of the work of Selim and
Rees (2007a) is that the profile of the initial disturbance generally has very little
effect on the critical time whenever the time at which it is introduced into the system
is sufficiently early. In other words, all disturbances appear to be attracted towards
a common evolutionary path, as shown in Fig. 3, and if the introduction time is
sufficiently early, then this process is essentially complete by the time marginal
instability occurs.
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Fig. 3 Variation of ln E against τ for disturbances introduced at various values of τ , for k = 0.085.
(a) Computed ln E curves; (b) Normalised ln E curves



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

January 31, 2008 Time: 10:45pm t1-v1.3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

98 D.A.S. Rees et al.

5.5 Discussion

What is to be made of the widely differing values of the critical times quoted in
Table 1? Energy methods are generally held in high esteem, especially for problems
where the basic state whose stability characteristics are being sought is steady. Here
we have two sets of results which are very different from one another, and without
considering the results obtained by other methods, we are not in a position to decide
between them. Both the local Rayleigh number and the quasi-static theories are very
definitely approximate, the former more so than the latter. It is certainly possible to
calibrate the local Rayleigh number method a posteriori to get an exact match with
almost any result we wish, but ideally we need to obtain good results independently
of such calibration. The amplitude theory results should be excellent in the sense
that the exact linearised equations are being solved. But one also has to consider
which is the best way to measure the amplitude of the evolving disturbance—Fig. 2
depicts the different neutral curves corresponding to four such measures, and no
doubt the use of Θ̄ , defined in (23), would provide a fifth. The numerical results of
Ennis-King et al. (2005) for amplitude theory and finite thickness use between 8 and
16 terms in the Galerkin expansion to the full profile of the evolving disturbances,
and the comparable results of Xu et al. (2006) have similar accuracy; both are close
to those of Caltagirone (1980) and Selim and Rees (2007a). The amplitude results
of Ennis-King et al. (2005) for the semi-infinite case, using at least 10 terms in a
Galerkin expansion, are close to Selim and Rees (2007a) for kc but give a larger
value for tc, while the one-term approximation of Riaz et al. (2006) gives a still
higher value of tc.

We would tentatively suggest, therefore, that Caltagirone (1980) and Selim and
Rees (2007a) presently give the benchmark critical values for situations where the
evolution of disturbances is undertaken. We await confirmation of a further study
using energy methods in order to decide between the quoted results of Caltagirone
(1980) and Ennis-King et al. (2005). Although we think it likely that such an analy-
sis will provide an earlier critical time than does amplitude theory, it is our belief that
the critical profile will not be one that is on the attracting solution path mentioned
earlier.

Finally, if we consider the shape of the various neutral curves in Fig. 2, it is
worthy of note that each one is quite flat near its minimum, and therefore it is
perhaps not surprising that the various methods have yielded quite different critical
wavenumbers.

6 Isolated Small-Amplitude Disturbances

In all of the above considerations it has been assumed that the disturbances have
been characterised by a single wavenumber in the x-direction and are therefore
monochromatic. Should a spatially non-periodic initial disturbance need to be
considered, then it is possible to Fourier-transform the disturbance, compute as
many single-wavenumber solutions as is required, then apply the inverse Fourier
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Transform formula to obtain the resulting evolution of the time-dependent system.
Thus it would appear that little else needs to be said about the linear stability
problem.

However, there is much interest in the published literature on how localised dis-
turbances evolve. Despite the above statement that a sufficiently early introduction
of a disturbance causes the stability criterion to be independent of the disturbance
profile, this is true only in terms of its profile in the η-direction. When the distur-
bance is localised in the x-direction, then it takes time for the disturbance to diffuse
horizontally and generate new cells either side of itself.

This process is illustrated in Fig. 4. A full two-dimensional finite difference
scheme was used to investigate the evolution of a narrow isolated disturbance placed
at x = 0. Suitable symmetry conditions were applied at x = 0 to mimic correctly the
solution in x < 0. The Figure shows the boundaries between the thermal cells, i.e. it
indicates where there is zero rate of heat transfer. As each boundary is crossed, the
sign of the rate of heat transfer changes. The Figure does not indicate the variation
of the amplitude of the disturbance, but successive maxima and minima reduce in
size as x increases for any chosen τ .

The chief interest here lies in the fact that the wavelength of cells is not uniform.
Each new cell that is generated tends to have a larger width than the cell immedi-
ately next to it, and each cell tends to grow in width as τ increases. This behaviour
is different from that obtained in the analogous situation in Darcy-Bénard convec-
tion where unpublished computations undertaken by one of the authors show that
cells remain of constant wavelength as they spread into the external undisturbed
regions. In the present case, the fastest growing disturbance at any point in time

Fig. 4 Depicting the evolution and spread of thermal cell boundaries as τ increases
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has a wavenumber which decreases as time progresses. Therefore we think that
the increase in the wavelength is very likely to be related to the fact that smaller
wavenumbers grow faster.

7 Other Linear Systems

We now give a quick overview of similar systems considered by various authors. In
all cases they will have used one or more of the methods discussed above.

7.1 Anisotropy

Ennis-King et al. (2005) have extended the standard case to include anisotropy in
the permeability. The permeability tensor remains diagonal, and so the principle
axes remain in the coordinate directions. These authors consider both finite layers
and semi-infinite deep-pool systems, employing different nondimensionalisations
for the two cases. For the finite layer two different boundary conditions are con-
sidered on the unsalted boundary. Energy stability theory and amplitude theory are
presented. The change in the isotropic results which are obtained when anisotropy is
introduced are much as expected, and are qualitatively identical to the isotropic case.
Of most interest is the fact that their results are substantially different from those of
Caltagirone (1980) when the porous medium is isotropic, as discussed above.

7.2 Ramped Heating

Kim and Kim (2005) considered a finite layer which is at a uniform temperature
initially, but where the temperature of the lower boundary increases linearly with
time. They use a Galerkin-based amplitude theory, monitoring the rate of growth of
disturbances using Θ̄ . Neutral curves are presented which correspond to the criteria
Θ̄t = 0 and Θ = 1 (where Θ = 1 is set at the time the disturbance is introduced).
The former they call the ‘intrinsic’ stability criterion, while the latter is termed the
‘marginal’ stability criterion. The general tenor of other chapters, and the view of the
present authors, is that the former should be called the marginal stability criterion,
while the latter is irrelevant, as discussed earlier. The authors state that disturbances
grow superexponentially after the ‘marginal’ stability time; Fig. 1 shows that this is
not true for the present standard problem and quite obviously so for values of k close
to 0.1 where there is only a small interval of growth before decay is re-established.

Hassanzadeh et al. (2006) also consider a case in which the solute concentration
at the boundary decreases linearly with time. This is relevant to underground storage
of carbon dioxide, where the pressure in the gas phase may decline and thus reduce
the concentration of dissolved carbon dioxide in the two-phase region (although in
practice this reduction would not be linear in the pressure at typical conditions of
interest). It is shown that for layers of finite thickness and small Rayleigh numbers,
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a fast enough decrease at the boundary may prevent a perturbation from growing
and eliminate convection, whereas in the deep pool limit (large Rayleigh numbers)
the instability criterion is unaffected.

7.3 Internal Heat Sources

Kim et al. (2002) also considered a finite layer at a uniform temperature initially. At
t = 0 a uniform internal heat generation is turned on, which forms an unstably strat-
ified boundary layer at the cold upper surface. This configuration eventually tends
to a steady state. Therefore all interest is focussed on the onset times for those cases
where the Rayleigh number is above the critical value for the steady state situation.
The authors use a propagation/quasi-static theory to determine the onset times—this
is performed in terms of the η-variable—and use a quasi-static theory in the Carte-
sian variables (termed a frozen-time theory). The results obtained by means of these
theories differ from one another, but are much closer to one another than are those
given by QS1 and QS2 in Table 1.

7.4 Local Thermal Nonequilibrium

Nouri-Borujerdi et al. (2007) modified the standard problem by dropping the as-
sumption that the fluid and solid phases are in local thermal equilibrium. The great
majority of chapters reporting convection in porous media assume that the temper-
atures of the phases are identical locally, that is, they assume that the heat transfer
which takes place between the phases either happens so quickly, or else, the flow
rate is sufficiently slow, that, to a good approximation, the two-phase system may
be described by a single energy equation. But there are situations when such an
assumption is not accurate, and then the temperature fields of the two phases have
to be modelled by separate, but coupled, equations. The coupling takes the form
of source/sink terms that are proportional to the local difference in temperature
between the phases, and which allow the flow of heat between the phases.

These authors followed the methodology of Selim and Rees (2007a) by applying
a quasi-static theory and an amplitude theory based on E = 〈Θ〉. Generally it was
found that the critical time decreases as the degree of local thermal nonequilibrium
increases. This may be attributed to the fact that the convecting fluid does not have
to impart heat to the solid phase, and therefore it experiences less of what might be
termed a thermal drag.

8 Nonlinear Studies

Once an evolving disturbance becomes sufficiently strong, it will interact with itself
via the nonlinear terms in the governing equations. This will serve to modify the
further development of the disturbance in a wide variety of ways. Moreover, the
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effect of having multiple disturbances (which are distinguished by having different
wavenumbers) complicates the situation substantially in terms of their nonlinear
interaction.

The earliest nonlinear simulations were undertaken by Elder (1967, 1968). He
employed a two-dimensional fully numerical scheme to determine the convection in
a finite thickness layer subjected to an instantaneous rise in the temperature of the
lower surface. In these simulations, the nondimensional lower boundary temperature
was set to θ = 1 + ε ′(x), where ε ′ is a random variable with zero mean. This
type of boundary condition provides an alternative means of disturbing the evolving
thermal boundary layer. His simulations showed the formation of a highly irregular
series of cells within the boundary layer. These interact in a complex manner with
cell-merging taking place. Eventually the evolving basic state tends towards a steady
linear profile, and there follows a long period of adjustment of the cells. He also
considered convection in a fully infinite domain where the initial condition for the
basic state is that θ = 0 in y > 0 and θ = 1 in y < 0.

Caltagirone (1980) also employed a nonlinear finite difference model, but this
was used to provide confirmation of his energy theory results.

Selim and Rees (2007b) solved the full two-dimensional equations for the distur-
bances, but used a horizontal Fourier decomposition together with a vertical finite
difference method. Thus the following substitutions were made in (11) where ε = 1
was chosen:

ψ(x, η, τ ) =
N∑

n=1

ψn(η, τ ) sin nkx, (25a)

θ (x, η, τ ) = 1
2θ0(η, τ ) +

N∑

n=1

θn(η, τ ) cos nkx, (25b)

where N = 5 was generally found to provide excellent accuracy. The resulting
unsteady equations were solved using a variant of the Keller box method, and the
initial disturbance took the form,

θ1 = A1ηe−3η, (26)

with all other terms in (25) set to zero. The chief qualitative result of this chapter is
that strongly nonlinear disturbances suffer from premature stabilisation. The linear
stability curves displayed in Fig. 2 indicate that small-amplitude disturbances have
only a finite interval of time over which they can grow. The computations of Selim
and Rees (2007b) show that restabilisation often takes place earlier than would be
expected from the data represented in Fig. 2. Figure 5 shows the evolution of the
surface rate of heat transfer of the primary mode,

q1 = �θ1

�η

∣
∣
∣
η=0
, (27)
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Fig. 5 The variation with τ of q1 for k = 0.04, the disturbance initiation time, τ = 8, and for the
amplitudes A1 = 10−1, 10−2, . . . , 10−20. The curve on the extreme left corresponds to A1 = 10−1

(Selim and Rees 2007b)

for k = 0.04 and for a variety of initial amplitudes, A1. Various features stand out
from this Figure. The first is that the time at which restabilisation occurs (defined
now as being when q1 begins to decrease) depends very strongly on the value of A1.
For very small amplitudes the restabilisation time is consistent with linear theory
based on a heat transfer criterion. For large amplitudes restabilisation occurs very
early indeed. The second feature is that the maximum response does not correspond
to the largest initial disturbance amplitude. For this wavenumber, the maximum re-
sponse occurs when A1 � 10−12.

A third feature is that all disturbances, even in the nonlinear regime, eventually
decay towards zero. This is surprising from the point of view that the Rayleigh num-
ber based upon the basic boundary layer thickness continues to increase, thereby
rendering the boundary layer increasingly unstable. Therefore the solutions shown
in Fig. 5 must become unstable to other disturbances. Given that the boundary layer
thickens with time, and that convection cells usually tend to a roughly square cross-
section, it seems reasonable to attempt to destabilise solutions such as those shown
in Fig. 5 using longer wavelength/smaller wavenumber perturbations.

It is this observation which motivated the work contained in Selim and Rees
(2007c), who consider subharmonic destabilisations. These authors also used (25),
but, for a 2:1 subharmonic case, the primary mode is now taken to correspond to
n = 2, while the subharmonic corresponds to n = 1. In addition, a much larger
value of N is taken than for the simulations reported in Selim and Rees (2007b).
Typically the magnitude of A1 is much less than that of A2, so that the primary
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Fig. 6 Variation with τ of the surface rates of heat transfer, qn , corresponding to the modes, n =
0, 1, 2, · · · . These simulations correspond to k = 0.035 and A2 = 10−1. The disturbance was
introduced at τ = 8 (from Selim and Rees 2007c)

mode may evolve in almost exactly the same way as before, but, soon after the
primary begins to decay, the subharmonic begins to grow and eventually takes over
as the dominant pattern.

Figure 6 shows the manner in which the surface rates of heat transfer of each
mode vary in time where the primary mode has wavenumber 0.07 and A2 = 0.1.
The datum case with no subharmonic disturbance corresponds to A1 = 0, and this
exhibits a moderate amount of growth prior to eventual decay. Of particular interest
in the other subfigures are the times at which the subharmonic, shown by the q1

curves, takes over as the dominant pattern. As might be expected, the larger the
initial value of A1, the earlier this happens. Once more, it is interesting to note that
the largest magnitude in the mean rate of heat transfer, q0, for the cases we present,
is obtained for the smallest value of A1, rather than for the largest.

Contours of the temperature disturbance field at various times are shown in Fig. 7
to illustrate the manner in which the subharmonic destabilisation takes place. At
τ = 10 an apparently uniform set of cells is present. For convenience we shall label
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τ = 10 τ = 35 τ = 45 τ = 50
η = 0

η = 5

τ = 100τ = 70τ = 60τ = 55

Fig. 7 Contours of the perturbation temperature field at chosen times for the subharmonic
instability corresponding to k = 0.035, A1 = 10−2 and A2 = 10−1, where the disturbance was
introduced at τ = 8 (from Selim and Rees 2007c)

these cells 0 through to 4 from left to right, noting that cells 0 and 4 are identi-
cal. The subharmonic instability now manifests itself by causing (i) even numbered
cells to become stronger and occupy more space in the η-direction than do the odd
numbered cells, and (ii) cells 0 and 4 become stronger than cell 2. Once τ = 55
is reached, cells 0 and 4 are now dominant, with the remains of cells 1, 2 and 3
occupying a triangular-shaped region corresponding to the contour Θ = 0. After
this point, cells 1 and 3 merge, destroying cell 2 in the process. Thereafter the fully
developed nonlinear subharmonic convection is fully established. We note that the
final subfigure, which corresponds to τ = 100, has the following features: (i) the
middle cell is pushed close to the heated surface due to a strong inflow towards
the surface and (ii) the outer cells have expanded substantially due to the fact that
the flow is away from the surface.

A full categorisation of the roles played by the sizes of A1 and A2 is quite a
large task, especially as such a systematic set of computations would need to take
place over a set of wavenumbers. Moreover, other subharmonic disturbances may
also be considered, such as 1:3, 2:3 and 3:4, where cases of the form M:M + 1 may
be regarded as being very much like the well-known Eckhaus instability.
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Fig. 8 Contours of concentration showing the change in the wavelength of plumes with time. For
unit vertical depth and Ra = 4000 : (a) t = 1, (b) t = 1.8, (c) t = 2.3 and (d) t = 3.8 (Riaz
et al. 2006)

Given that Fig. 6 also shows that the subharmonic itself decays after a certain
time, it suggests the possibility of a further subharmonic destabilisation. However,
it is important to realise that the use of a horizontal Fourier expansion by Selim
and Rees (2007b, c) is a very strong constraint on the overall behaviour of the sys-
tem. Various chapters have appeared which use finite difference methods to solve
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systems such as the present one, but with large horizontal physical domains, and
whilst the fact that a finite domain is also a constraint, it is nevertheless a very much
weaker one. These chapters suggest that the true physical behaviour is one where the
flow becomes chaotic. The first hint of this is in the FLUENT computations of Tan
et al. (2003) who solve the full two-dimensional equations of motion in Cartesian
coordinates in a fairly small region. No mention is made of how disturbances are
introduced into the system, but waves of uniform wavelength appear. However, one
of these is stronger than the others and begins to grow preferentially, which bypasses
the subharmonic cascade of Selim and Rees (2007c). A similar scenario was found
by Riaz et al. (2006) who considered a system with a very much larger aspect ratio.

The work of Riaz et al. (2006) concentrates to a large extent on the postcritical
dynamics when the instabilities have become strongly nonlinear. There is too much
detailed information in their chapter for it to be summarised briefly here, and we
restrict attention to the flow shown in Fig. 8. These authors consider convection due
to the sudden introduction of a solute at the upper surface of a layer of finite depth.
The simulation shown used Ra = 4000 and the snapshots shown are at times which
are sufficiently early that the lower surface has not affected the development of the
instability. Figure 8 shows an essentially chaotic system where the observed wave-
length clearly increases with time. Presumably this is not a continuous increase, but
rather it comes about by the nonlinear interactions of embryonic plumes especially
the merging of neighbouring plumes. In this regard, the subharmonic cascade of
Selim and Rees (2007c) could be regarded as providing part of the explanation of
this. But equally well, the merging of two plumes could also be regarded as a form
of Coandă effect (where a jet of fluid is deflected towards a neighbouring surface).
Here, by analogy, the lack of availability of fluid to entrain from one side of a plume
causes the deflection of the plume in that direction, and therefore it is natural for
two plumes to move toward one another and to coalesce.

Other features arise if the suddenly heated/salted surface is semi-infinite, as
the leading edge of the surface then plays a strong role, at least initially. Although
the primary aim of the chapter by Rees and Bassom (1993) is the description of the
instability of a steady thermal boundary layer generated by a semi-infinite heated
surface, these authors also presented a computation of the immediate aftermath of
the sudden rise of the surface temperature. One snapshot of this process is shown in
Fig. 9 where multiple cells have been generated, but which have also been ejected
from the developing boundary layer. Therefore a plume is caused which eventually
rises away from the boundary layer and, in this case, is advected to the right by the
overall flow field generated by the hot surface. A very similar situation is shown
in Fig. 10 where a snapshot of a simulation by Wooding et al. (1997) is given.
Their situation is a model of an evaporating solar pond where there is a high solute
concentration on the left hand two-thirds of the upper surface, and where evapora-
tion causes fluid to leave the system to form a suction surface. The systems studied
by Rees and Bassom (1993) and Wooding et al. (1997) would have been mathe-
matically identical without the suction surface. Wooding et al. (1997) attribute this
starting plume to a strong perturbation caused by high horizontal density gradients
near the leading edge.
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Fig. 9 Depicting the complex plume generated near the leading edge of a suddenly heated
semi-infinite surface (Rees and Bassom 1993)

Fig. 10 Depicting the complex plume generated near the leading edge of a suddenly salted
semi-infinite surface with suction (Wooding et al. 1997)

9 Conclusion

The study of the instability of unsteady boundary layers is an active topic. Much
is known about the behaviour of the small-amplitude disturbances and the results
obtained by Caltagirone (1980) and Selim and Rees (2007a) should be regarded as
being the definitive instability criterion, at least for amplitude theory. There remain
issues to resolve for the application of energy stability theory. No doubt it is possible
to extend the linearised theory presented here to more complicated situations, such
as systems with (i) discrete horizontal layers, (ii) non-Newtonian fluids and (iii) both
heat and salt as diffusing species. It is likely that there could be some qualitative
differences as compared with our standard problem. We think that it is possible
to contrive layered situations where the neutral stability curve takes more exotic
shapes, such as having two turning points—in such situations some disturbances
could have two intervals of growth and three intervals of decay. Double diffusive
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convection offers parameter ranges where the primary mode at onset for the Darcy–
Bénard problem is unsteady; similar ranges might make the development of an onset
criterion for unsteady boundary layers somewhat problematical. Likewise viscoelas-
tic fluids can admit highly oscillatory flows.

Of course many of these situations could be extended to the nonlinear domain,
but we feel it would also be of some considerable interest to determine the nonlinear
development of isolated disturbances.

However, of perhaps more importance is the fact that the basic state that we
have studied does not have a linear profile because, in the Darcy–Bénard con-
text, it is well-known that three dimensional convection often ensues in these sit-
uations. Therefore we think it highly likely that the preferred nonlinear flow will
be three dimensional and possibly chaotic. The next step should therefore be the
development of codes which are capable of producing computations such as those
of Riaz et al. (2006) in three dimensions.

Finally, there already exist many studies where unsteady boundary layers are
formed by boundary conditions which oscillate in time. Space has proved insuffi-
cient to give a review of this highly interesting topic.
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