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9.1 Introduction

The viscous dissipation effect, which is a local production of thermal energy
through the mechanism of viscous stresses, is a ubiquitous phenomenon and
it is encountered in both the viscous flow of clear fluids and the fluid flow
within porousmedia. When comparedwith other thermal influences on fluid
motion (i.e., by means of buoyancy forces induced by heated or cooled walls,
and by localized heat sources or sinks) the effect of the heat released by vis-
cous dissipation covers a wide range of magnitudes from being negligible to
being significant. Gebhart [1] discussed this range at length and stated that
“a significant viscous dissipation may occur in natural convection in vari-
ous devices which are subject to large decelerations or which operate at high
rotational speeds. In addition, important viscous dissipation effects may also
be present in stronger gravitational fields and in processes wherein the scale
of the process is very large, e.g., on larger planets, in large masses of gas
in space, and in geological processes in fluids internal to various bodies.”
In contrast to such situations, many free convection processes are not suffi-
ciently vigorous to result in a significant quantitative effect, although viscous
dissipation sometimes serves to alter the qualitative nature of the flow.
Although viscous dissipation is generally regarded as aweak effect, a prop-

erty it shares with relativistic and quantum mechanical effects in everyday
life, it too has played a seminal role in history of physics. It was precisely
this “weak” physical effect that allowed James Prescott Joule in 1843 to
determine the mechanical equivalent of heat using his celebrated paddle-
wheel experiments, and thereby to set in place one of the most important
milestones toward the formulation of the first principle of thermodynam-
ics. Curiously enough, the Royal Society declined to publish Joule’s work in
the famous Transactions (the Physical Review Letters of that time) and thus the
paper appeared only two years later in amore liberal journal, the Philosophical
Magazine. Today, papers on viscous dissipation frequently suffer a similar fate
as Joule’s first paper, and it is often neglected. One of the aims of the present
review is to assess the quantitative and qualitative changes brought about by
the presence of viscous dissipation.
From amathematical point of view the effect of viscous dissipation arises as

an additional term in the energy equation. It expresses the rate of volumetric
heat generation, q′′′, by internal friction in the presence of a fluid flow. For
a plane boundary-layer flow or a unidirectional flow, q′′′ takes the following
forms for clear fluids and for Darcy flow through a porous medium,

q′′′clear ≡ µ
(
∂u
∂y

)2

and q′′′Darcy ≡
µ

K
u2 (9.1a,b)

respectively, where µ is the dynamic viscosity and K is the permeability. It
would appear that the above expression for q′′′Darcy was deduced for the first
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time by Ene and Sanchez-Palencia [2] and Bejan [3] in independent works.
Other early applications of this “u2-model” for viscous dissipation in porous
media are those of Nakayama and Pop [4], which discusses the external free
convection from nonisothermal bodies, and of Ingham et al. [5], which deals
with the mixed convection problem between two vertical walls.
From a physical point of view, the difference between the two expressions

in Eqs. (9.1a) and (9.1b) originates from the fact that u denotes the actual
fluid velocity for a clear fluid flow, but denotes the fluid seepage velocity
(i.e., the bulk velocity divided by porosity) for a porous medium flow. At
microscopic levels within a porous medium, the fluid is “extruded” through
the pores of the solid matrix, and local flows are typically three dimensional
even though the overall macroscopic flow is uniform and unidirectional. This
microscopic process considerably enhances the rate of heat generation by
viscous dissipation. Thus, as can be seen immediately for uniform forced
convection flows in clear fluids (u = const. ≡ u∞), no heat is released by vis-
cous dissipation, at least by the agency of internal frictional forces. However,
in porous media the heat generation rate increases quadratically with u. In
the context of boundary-layer flows it has been shown recently [6] that this
fact has important consequences for far-field thermal boundary conditions
for both forced and mixed convection in extended porous media. For free
convection boundary-layer flows, expressions (9.1a) and (9.1b) are both com-
patible with the uniform asymptotic condition for the temperature, that is,
T(x, y→∞) = const. = T∞. This condition isusually imposedon the temper-
ature field since u→ 0 as y→∞. But in forced and mixed convection flows
in extended porous media, this asymptotic thermal condition contradicts
the corresponding energy equation because the term q′′′Darcy = (µ/K)u2∞ is
nonvanishingasy→∞.Accordingly, somerecent resultspertaining tomixed
convection flows in extended porous media [7,8] should be reconsidered (see
Magyari et al. [9] and responses by Tashtoush [10] and Nield [11]) by tak-
ing into account suitably modified boundary conditions on T in the far field
([6] and Sections 9.4 and 9.5).
Even if the quantitative effect of viscous dissipation is negligible in some

cases (see exceptions cited by Gebhart [1], Gebhart and Mollendorf [12], and
Nield [13], which include situations where high accelerations exist such as in
rapidly rotating systems) its qualitative effect may become significant. One
interesting effect of the presence of viscous dissipation, to be discussed in
more detail later, is the breaking of both the physical and mathematical equi-
valence that usually exists between a free convective boundary-layer flow
ascending from a hot plate (Tw > T∞) and its counterpart, descending from
a cold plate (Tw < T∞). For the latter case the resulting flow is strictly a
parallel boundary-layer flow of constant thickness, which has been named
the “asymptotic dissipation profile” orADP (seeMagyari and Keller [14] and
Section 9.3). A second qualitative difference arises when viscous dissipation
is included in a stability analysis of the Darcy–Benard problem — a porous
layer heated from below. For a Boussinesq fluid in a Darcian medium with
uniform steady temperatures on the boundaries, the basic no-flow state is
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first destabilized by two-dimensional roll patterns. The presence of viscous
dissipation causes a hexagonal pattern to appear at Rayleigh numbers close
to the critical value (see Rees et al. [15]).
This chapter begins with a presentation of the precise mathematical formu-

lae to be used formodeling viscous dissipation, with an emphasis on the very
recent debate on the correct form to use when the Brinkman terms are sig-
nificant in the momentum equations. This is followed by an overview of the
current state of the art in free, mixed, and forced convective boundary-layer
flows, and some first tentative steps toward the application of stability theory
to certain free convective flows.

9.2 Basic Thermal Energy Equations

The thermal energy equation for steady convection in a porous mediummay
be stated as:

ρcpv · ∇T = ∇ · (k∇T)+	 (9.2)

where ρ is the density of the saturating fluid, cp its specific heat, and k
the thermal conductivity of the saturated porous medium. In Eq. (9.2) it
is also assumed that the fluid and the porous material are in local thermal
equilibrium. The last term 	 in (9.2) is the viscous dissipation term, previ-
ously denoted by q′′′Darcy. The purpose of this section is to present the various
forms that this term may take when the momentum equations are modeled
in different ways.

9.2.1 Darcy Terms

When theflow in an isotropic porousmediumsatisfiesDarcy’s law, the appro-
priate heat-source term thatmodels viscous dissipation in the thermal energy
equation is given by (9.1), but only when the flow is undirectional, or when
it is predominantly in one direction, such as in a boundary-layer flow. More
generally, the full expression for 	 is

	 = µ

K
(u2 + v2 + w2) (9.3)

This form should be used for isotropic media and is independent of the ori-
entation of the coordinate axes. Nield [16] has stated that this form for 	 is
obtained by taking

	 = v · F (9.4)
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where F is the drag force on the porous medium. Thus, if Darcy’s law is valid
and the permeability is isotropic, then F = (µ/K)v. If the drag force argu-
ment is used in such circumstances where the porous medium is anisotropic
with permeability tensor, K , then (9.3) may be replaced by

	 = µv · K−1 · v (9.5)

9.2.2 Forchheimer Terms

When the microscopic Reynolds number is approximately greater than
unity, then the momentum equation is usually supplemented by a quadratic
nonlinear term corresponding to form dragwithin themedium, and the extra
term is known as the Forchheimer term. Initially it was thought that the pres-
ence of form drag does not affect viscous dissipation because the coefficient
of |v|v , which is cfpK−1/2, does not involve viscosity [17]. (Here, the value
cfp is a nondimensional parameter that is dependent on the geometry of the
porous medium.) Recently, Nield [16] used the drag force argument to state
that Eq. (9.3) should now read

	 = µ

K
v · v+ cfρ

K1/2 |v|v · v (9.6)

The apparent paradox that a term that is independent of the viscosity may

AQ: Please
clarify if the
term in eq.
(9.6) should
be cfp

contribute to the viscous dissipationwas resolved in an earlier paper byNield
[13]. Under such conditions, the advective inertia terms in the Navier–Stokes
equations are not negligible and therefore wake formation and boundary-
layer separation takes place at pore/particle length-scales. This, in turn,
means that microscopic velocities are altered and thereby the heat generated
by viscous dissipation is increased.
Other versions of the momentum equation exist that have cubic terms; see,

for example, Mei and Auriault [18] and Lage et al. [19]. To date such terms
have not been included in the expression for 	 using (9.4).

9.2.3 Brinkman Terms

While the form for 	 that is given by (9.6) is widely accepted for
Darcy–Forchheimer flow, the same cannot be said for flows where bound-
ary effects, as modeled by the Brinkman terms, are significant. Nield’s [16]
drag force formula yields the form

	 = µ

K
v · v− µ̃v · ∇2v (9.7)
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where µ̃ is an effective viscosity, while Al-Hadhrami et al. [20] use an
argument based on the work done by frictional forces to obtain,

	 = µ

K
(u2 + v2 + w2)+ µ̃

[
2

(
∂u
∂x

)2

+ 2
(
∂v
∂y

)2

+ 2
(
∂w
∂z

)2

+
(
∂u
∂y
+ ∂v
∂x

)2

+
(
∂u
∂z
+ ∂w
∂x

)2

+
(
∂v
∂z
+ ∂w
∂y

)2
]

(9.8)

Both formulae yield the correct form for 	 in the limit of small permeabil-
ity, but when the porosity increases toward unity then only the formula of
Al-Hadhrami et al. [20] matches that for a clear fluid. While Al-Hadhrami
et al. [20] argue further that Nield’s [13] formula can in some circumstances
yield negative values for 	, which is physically unacceptable, Nield [16] has
countered by questioning the use of the stress tensor in an identical manner
to the way it is used in clear fluids. Moreover, he also questions the often
indiscriminate use of the Brinkman term, even though it appears to give a
smooth transition between Darcy flow and the flow of a clear fluid. However,
both Al-Hadhrami et al. [20] and Nield [16] agree that further studies in this
area are essential to resolve the present conflict.

9.2.4 Order-of-Magnitude Estimates

Here, we repeat Nield’s [13] analysis of the situations in which one might
expect viscous dissipation to be significant. This is done by simply com-
paring the orders of magnitude of the dissipation terms with the thermal
diffusion terms in the thermal energy equation. We concentrate on the form
of 	 corresponding to Darcy’s law, as given in (9.3).
If the quantities, U,L, and 
T are used to denote representative values of

velocity, length, and temperature drop within a system, then the orders of
magnitude of the thermal diffusion and viscous dissipation terms in (9.3) are,
respectively,

k
T
L2

and
µU2

K
(9.9)

In mixed and forced convective flows there exists a given velocity scale, and
therefore viscous dissipation effects are negligible when

(
µU2

k
T

)
L2

K
= Br

Da
� 1 (9.10)
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Here Br and Da are the Brinkman and Darcy numbers where the Brinkman
number is the term in brackets in (9.10).
On the other hand, there is no natural length-scale in free convection, but

a simple scaling analysis (or even a full vertical thermal boundary-layer ana-
lysis along the lines of that undertaken by Cheng andMinkowycz [21]) yields
the velocity scale,

U ∝
(α
L

)
Ra1/2 (9.11)

where

Ra = ρgβKL
T
αµ

and α = k/ρcp (9.12)

are the Darcy–Rayleigh number and the thermal diffusivity of the medium,
respectively. Substitution of the above expression for U into (9.10) yields

Ge = gβL
cp
� 1 (9.13)

as the condition for viscous dissipation to be negligible. The quantity Ge is
the Gebhart number.
Given the forms of expressions (9.10) and (9.12) it is clear that viscous

dissipation is more likely to be significant when velocities are high and
length-scales are large. Thus vigorous flows or flows within geologically
sized regions are more likely to display significant viscous dissipative effects.
Nield [13] also quotes particle bed nuclear reactors as one other possible area
of application where viscous dissipation should not be neglected.

9.3 Free Convective Boundary Layers

9.3.1 Equations of Motion

In this subsection the basic equations (continuity, Darcy, and energy equation)
and boundary conditions are written down in the form they apply to the case
of free convection over a vertical semi-infinite plate of uniform temperature.
Later they are amended according to the physical requirements of forced and
mixed convection problems. On applying the boundary-layer approximation
(x � y) and the Boussinesq approximation, the basic equations are (e.g., see
Nield and Bejan [17]),

∂u
∂x
+ ∂v
∂y
= 0 (9.14)
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∂u
∂y
= −sg gβK

υ

∂T
∂y

(9.15)

u
∂T
∂x
+ v

∂T
∂y
= α ∂

2T
∂y2
+ υ

Kcp
u2 (9.16)

and the boundary conditions read

v = 0, T = const.=Tw on y = 0 (9.17a)

u→ 0, T → T∞ as y→∞ (9.17b)

Here x and y are the Cartesian coordinates along and normal to the heated
surface, respectively, while u and v are the respective velocity components.
T is the fluid temperature, K is the permeability of the porous medium, g
is the acceleration due to gravity, cp is the specific heat at constant pres-
sure, α, β, and υ = µ/ρ are the effective thermal diffusivity, thermal
expansion coefficient, and kinematic viscosity, respectively. The second
term on the right-hand side of Eq. (9.16) is proportional to the volumet-
ric heat generation rate 	 = µu2/K by viscous dissipation. The origin
of the coordinate system is placed on the definite edge of the plate and
the positive x-axis is directed along the plate toward its indefinite edge at
x = +∞.
For a vertical surface in the presence of viscous dissipation, four

physical situations must be distinguished, as depicted schematically in
Figure 9.1(a)–(d). The different situations correspond to surfaces that are
either upward or downward projecting and are either hot or cold. Mathemat-
ically these cases are specified by the signs sT and sgwhere sT = sgn(Tw−T∞)
and where sg denotes the projection on the positive x-axis of g/|g|. Thus
sg = +1 when the positive x-axis points in the direction of g (i.e., vertically
downwards) and sg = −1when itpoints in thedirectionopposite tog.Accord-
ing to the nomenclature introduced byGoldstein [22] only the “forward” (i.e.,
the usual) boundary-layer flows will be considered here. These correspond
to the cases in which the definite edge of the plate, x = 0, represents its
leading edge. Their “backward” counterparts, where the definite edge of the
plate is a trailing edge, are not considered here. In the case of free convection
this means that the backward boundary-layer flows arising in the situations
shown in Figure 9.1(b) and (c) will not be discussed in this chapter. Likewise,
in the case of forced andmixed convection, itwill be assumed that theuniform
stream of velocity U∞ always comes from x = −∞. Thus, in the presence of
viscous dissipation, both “aiding” and “opposing” mixed flow regimes can
be distinguished. They correspond to Figure 9.1(a) and (d) and 9.1(b) and (c),
respectively.
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Tw> T∞
(Hot plate)

0 0

(a) (b)

(c) (d)

+x –x

y

0
y

y

T∞

T∞ T∞

T∞

0
y

+x +x

↓g

↓g

sg = –1

sg = +1 sg = +1

sg = –1

sT = +1 sT = –1

↑↑↑↑↑↑↑↑↑ U∞ ↑↑↑↑↑↑↑↑↑ U∞

↓↓↓↓↓↓↓↓↓ U∞ ↓↓↓↓↓↓↓↓↓ U∞

Tw > T∞
(Hot plate)

sT = +1

Tw <T∞
(Cold plate)

sT = –1

Tw <T∞
(Cold plate)

FIGURE 9.1
Representations of the four different mixed convection situations involving either heated or
cooled surfaces, and either forward or backward boundary layers. In the absence of viscous
dissipation situations (a) and (d) are mathematically identical as are (b) and (c). In the presence
of viscous dissipation, the four situations (a), (b), (c), and (d) become physically distinct

9.3.2 Breaking the Upflow/Downflow Equivalence

In the case of free convection, Eqs. (9.15) and (9.17b) yield

u = −sg gβK
υ
(T − T∞) (9.18)

After the substitution of,

T = T∞ + sT |Tw − T∞| · θ (9.19)

Equations (9.18), (9.16), and (9.17) become

u = −sgsT gβK|Tw − T∞|
υ

θ (9.20)

u
∂θ

∂x
+ v

∂θ

∂y
= α ∂

2θ

∂y2
+ sTυ

Kcp|Tw − T∞|u
2 (9.21)
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v = 0, θ = 1 on y = 0 (9.22a)

u→ 0, θ → 0 as y→∞ (9.22b)

As mentioned in Section 9.3.1, the forward (or usual) free convection
boundary-layer flows, which we are interested in, correspond to the situ-
ations shown in Figure 9.1(a) and (d). In both of these cases sgsT = −1, which,
according to Eq. (9.20), implies the same relationship between u and θ . The
boundary conditions (9.22), on the other hand, are independent of the signs
sg and sT . Now, if the viscous dissipation is neglected, Eq. (9.21) also becomes
independent of sT and thus we immediately recover the well-known text-
book result concerning the physical equivalence of the free convection flow
over an upward projecting hot plate (sT = +1, Figure 9.1[a]) and over its
downward projecting cold counterpart (sT = −1, Figure 9.1[d]). If, however,
in Eq. (9.21) the viscous dissipation is taken into account, then due to the
sign sT = ±1 in front of u2 this physical equivalence gets broken. This means
that the free convection flow over the upward projecting hot plate (“upflow,”
Figure 9.1[a]) and over its downward projecting cold counterpart (“down-
flow,” Figure 9.1[d]) becomes physically distinct. As reported recently [14,
23] one of the dramatic consequences of this broken equivalence is the exist-
ence of a strictly parallel free convection flow, the so called ADP, which can
only occur over the downward projecting cold plate of Figure 9.1(d) but not
over its upward projecting hot counterpart of Figure 9.1(a).

9.3.3 The Asymptotic Dissipation Profile

Introducing the stream function ψ by the usual definition u= ∂ψ/∂y,
v = −∂ψ/∂x and the dimensionless quantities ξ ,Y, and � according to the
definitions

x = Lξ , y = LR−1/2Y, ψ = αR+1/2� (9.23)

where the reference length L and theDarcy–Rayleigh numberR are defined as

L = cp
gβ

, R = gβK|Tw − T∞|L
υα

(9.24)

we obtain the quantities θ ,u, and v in terms of � as follows

θ = −sgsT ∂�
∂Y

, u = α

L
R
∂�

∂Y
, v = −α

L
R1/2 ∂�

∂ξ
(9.25)

Here, for the forward boundary-layer flows of Figure 9.1(a) and (d) sgsT = −1
holds. Thus, we are left with a single unknown function,�, which satisfies
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the energy equation

∂�

∂Y
∂2�

∂Y∂ξ
− ∂�
∂ξ

∂2�

∂Y2 =
∂3�

∂Y3 − sg

(
∂�

∂Y

)2

(9.26)

along with the boundary conditions

∂�

∂ξ
= 0 and

∂�

∂Y
= −sgsT = +1 on Y = 0 (9.27a)

∂�

∂Y
→ 0 as Y→∞ (9.27b)

In these dimensionless variables the “broken equivalence” described above
becomesmanifest again. Indeed, in both the situations shown in Figure 9.1(a)
and (d) the boundary conditions (9.27) are the same but due to the presence
of sg in the basic Eq. (9.26) the upward/downward equivalence gets broken.
Our interest in this subsection is in the existence of a strictly parallel-flow

solution to the boundary-value problem (9.26), (9.27), that is, on a solution �
that depends only on the normal coordinate Y, � = �(Y). Such a solution, if
any, satisfies the equation

d3�
dY3 − sg

(
d�
dY

)2

= 0 (9.28)

along with the boundary conditions (9.28). As shown by Magyari and
Keller [14] these requirements can only be satisfied for sg = +1 (downflow,
Figure 9.1[d]), the corresponding solution being the ADP:

� = − 6

Y +√6 , θ = 6(
Y +√6

)2 , u = α

L
Rθ , v = 0 (9.29)

Therefore, the ADP is an algebraically decaying parallel-flow solution of
the basic Eq. (9.14) to (9.16) of the free convection over a (cold, downward
projecting) vertical plate. Its (dimensionless) surface heat flux is given by

Q0 = − ∂θ
∂Y

∣∣∣∣
Y=0
= +

√
2
3

(9.30)

and its 1% thickness (i.e., the value Yδ of Y for which θ(Yδ) = 0.01) is
Yδ = 9

√
6.

The existence of the ADP is quite surprising, since in the absence of vis-
cous dissipation the boundary-value problem (9.14) to (9.17) does not admit
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solutions with vanishing transversal component v = 0; compared with the
parallel component u, the transversal velocity component v is small but
always nonvanishing (e.g., see the classical Cheng–Minkowycz solution [21]).
The existence of the ADP, however, shows that the (small) buoyancy forces
due to heat release by viscous dissipation are able to cancel the (small) trans-
versal component v of the free convection velocity field, thus giving rise to
a strictly parallel flow. Such “self-parallelization” of the velocity field in the
presence of viscous dissipation can only happen in a free convection flow that
descends over a cold plate (downflow), but never in its ascending counterpart
over a hot plate (upflow). The reason is that in the latter case, the buoyancy
forces due to heat release by viscous dissipation assist the “main” buoyancy
forces sustained by the wall temperature gradient, while in the former case
of the cold plate, they oppose them.

9.3.4 Flow Development Toward the ADP

The main concern of this section is to discuss the question of whether the
ADP solution (9.16) of the boundary-value problem (9.14) to (9.17) represents
a physically realizable state of the descending free convection flowor not. The
answer, which has been given recently byRees et al. [23], is that it is realizable.
The starting point of the proof given by Rees et al. [23] is the following simple
physical reasoning.
In the neighborhood of the leading edge, where the effect of viscous

dissipation is negligible, the steady flow has the character of the classical
Cheng–Minkowycz boundary-layer solution [21] whose thickness increases
with the wall coordinate as x1/2. Thus, if the viscous dissipation term in
the energy equation is neglected, the boundary-layer thickness grows indef-
initely according to the Cheng–Minkowycz similarity solution. This holds
both for an ascending free convection flow from a hot plate as well as one
descending from a cold plate. But the heat released by viscous dissipa-
tion warms up the moving fluid. This in turn accelerates the growth of
the ascending boundary layer but decelerates that of the descending one.
It is therefore expected that far enough from the leading edge, the thick-
ness of the cold boundary layer will be limited by the warming effect of
viscous dissipation to a constant asymptotic value. The limiting state of
this boundary-layer flow, which is approached at some distance x∗ from
the leading edge, should be precisely the ADP which is described by
Eq. (9.29).
The numerical experiment of Rees et al. [23] proceeded by first introdu-

cing theusualCheng–Minkowycz similarity variable for boundary-layer flow
from a uniform temperature surface in order to describe the beginning stages
of the evolution of the flow. Then Eq. (9.26), with sg = +1, were used further
downstream. Therefore, the following transformations

η = ξ−1/2Y, � = ξ+1/2f (η, ξ), θ = θ(η, ξ) (9.31)
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were substituted into Eq. (9.26) to obtain,

f ′′′ + 1
2
ff ′′ − ξ f ′2 = ξ

(
f ′ ∂f

′

∂ξ
− f ′′ ∂f

∂ξ

)
, θ = f ′ (9.32)

where the primes denote differentiation with respect to η. In this form of the
basic equations it may be seen explicitly that the viscous dissipation term,
ξ f ′2, disappears at the origin, where ξ = 0.
In numerical simulation, Eq. (9.32) is solved in the range 0 ≤ ξ ≤ 1, and

Eq. (9.26) in the range ξ ≥ 1. This means that the developing boundary-layer
flow is well approximated near the leading edge, but that the approach to
the constant thickness ADP arises naturally within the context of Eq. (9.26).
When ξ ≤ 1, Eq. (9.32) is solved subject to the boundary conditions

η = 0: f = 0, f ′ = 1; η→∞: f ′ → 0 (9.33)

but when ξ > 1, Eq. (9.26) is solved subject to

Y = 0: � = 0,
∂�

∂Y
= 1; Y→∞:

∂�

∂Y
→ 0 (9.34)

The respective pairs of equations were solved by a straightforward applica-
tion of the well-known Keller box method. The solution at the leading edge
(ξ = 0) is readily seen to satisfy a pair of ordinary differential equations, and
the solutions there are the same as those presented by Cheng andMinkowycz
[21]. The leading edge profiles were then marched forward in ξ . The accur-
acy of our numerical scheme is such that the steady value of Q0 is 0.816454,
which has a relative error of 0.00005 on comparison with Eq. (9.30).
Figure 9.2 shows the surface rate of heat transfer in two forms as functions

of ξ . More specifically the figure depicts

Q1 = −ξ−1/2 ∂θ
∂η

∣∣∣∣
η=0

for ξ ≤ 1, Q1 = − ∂θ
∂Y

∣∣∣∣
Y=0

for ξ ≥ 1 (9.35)

and

Q2 = −∂θ
∂η

∣∣∣∣
η=0

for ξ ≤ 1, Q2 = −ξ+1/2 ∂θ
∂Y

∣∣∣∣
Y=0

for ξ ≥ 1 (9.36)

The value Q1 shows how the surface rate of heat transfer evolves compared
with that of the uniform thickness ADP to which the flow tends as ξ → ∞.
Near the leading edge the heat transfer is large simply because the boundary
layer is thin relative to theADP.On the other hand,Q2 represents a rate of heat
transfer that is scaled in the same way as for free convection in the absence of
viscous dissipation. In this context, the rate of heat transfer increases because
the boundary layer becomes relatively thin as ξ increases.
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FIGURE 9.2
Variation with ξ of the rate of the heat transfer as represented by Q1 and Q2, as defined
in Eqs. (9.35) and (9.36), respectively. The Cheng–Minkowycz value of Q2 is 0.44376 which
corresponds to ξ = 0. Also shown as a dashed line is the value (9.30) of Q0 corresponding to
the ADP

From the data from which Figure 9.2 was generated, the curve Q1 is found
to be within 1% of theADP value ofQ0 = +√2/3 = 0.816496, when x = 1.79,
and therefore this value may be chosen as being the appropriate value for x∗.
In dimensional terms, this is equivalent to

x ≡ x∗ = 1.79L = 1.79
cp
gβ

(9.37)

which is the distance from the leading edge beyond which the uniform
thickness ADP solution applies. The dependence of this “self-parallelization
length” of the flow on the parameters β and cp corresponds to physical
expectation. Indeed, the stronger the buoyancy forces, which are proportional
to ρgβ
T, the stronger the self-parallelization effect and accordingly the
shorter must be the distance x∗. This explains why both β and g appear
in the denominator of Eq. (9.37). Furthermore, the smaller the heat capa-
city cp, the larger is the temperature increase due to the heat being released
by viscous dissipation, which again shortens the distance x∗ at which the
growth of the cold boundary-layer ends. This explains the place of cp in the
numerator of Eq. (9.37). It should be underlined here that in usual applic-
ations the order of magnitude of x∗ amounts to several kilometers so that
self-parallelization of free convection flows due to dissipative effects is likely
to occur only in geologically sized applications.
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9.3.5 Other Free Convective Flows

We now discuss briefly other works on free convection boundary-layer flows
where viscous dissipation has been included in the thermal energy equation.
A rather early paper by Nakayama and Pop [4] discusses free convection

induced by a heated surface of arbitrary shape, of which a flat plate and
a horizontal cylinder are but two special cases. Their analysis proceeds by
expanding the governing nonsimilar boundary-layer equations as a series
solution in εx, where ε is the Gebhart number, and solving the resulting
systems of ordinary differential equations using the Karman–Pohlhausen
integral technique. It was found that the presence of viscous dissipation
reduces the heat flux from the heated surface, in general. They also obtained
similarity solutions for certain special variations in the surface temperature
when the heated surface is vertical.
Murthy and Singh [24] and Murthy [25] also used a small-ε expansion in

their study of Darcy–Forchheimer convection from a vertical surface. In addi-
tion these authors used a velocity-dependent thermal diffusivity. Once more
it was found that the surface rate of heat transfer decreases as the Gebhart
number increases from zero.
The vertical plate was also considered by Takhar et al. [26] using the

Darcy–Brinkmanmodel for themomentum equations. However, the formula
for viscous dissipation which was used by those authors corresponds to that
for a clear fluid, rather than one of the forms given byEqs. (9.7) or (9.8). Unfor-
tunately, a similar use of the clear fluid model may be found in the papers by
Kumari and Nath [27], Yih [28], El-Amin [29], and Israel-Cookey et al. [30],
who study boundary-layer flows in the presence of a magnetic field, and in
the mixed convection paper by Kumari et al. [31].
Sections 9.3.3 and 9.3.4 reported the situation for Darcy flow over a down-

ward projecting cold plate. When the plate is upward and hot (i.e., it
corresponds to Figure 9.1[a]), then the flow may be computed by solving
Eq. (9.32) but with the viscous dissipation term having the opposite sign.
Preliminary studies by the authors show that the boundary layer becomes
exponentially thin as ξ increases, and the temperature becomes exponentially
large due to the positive feedback between buoyancy and viscous dissipation;
this will be reported in due course.

9.4 Forced Convection with Examples

9.4.1 Boundary-Layer Analysis

In this section, we consider a uniform forced convection flow of an incom-
pressible fluid with imposed velocity v = (u, 0, 0), where u = const. ≡ U∞
within a porous medium extending to x ≥ 0, y ≥ 0, as shown in Figure 9.1(a).
Thus fluid enters the porous domain at x = 0. The only governing
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equation is the energy equation (9.16) which in this case reduces to

U∞
∂T
∂x
= α ∂

2T
∂y2
+ υ

Kcp
U2∞ (9.38)

where it has been assumed that streamwise diffusion is negligible (i.e., that
the boundary-layer approximation applies). The temperature of the porous
boundaryatx = 0 (termed theentranceboundary) coincideswith the constant
temperature T∞ of the entering fluid,

T(0, y ≥ 0) = T∞ (9.39)

and the temperature of the impermeable plane surface y = 0 adjacent to the
porous medium (termed the adjacent surface) is now a given function of the
coordinate x,

T(x ≤ 0, 0) = T∞, T(x > 0, 0) = Tw(x) (9.40)

The general physical requirement that no heat “disappears” at infinity reads:

∂T
∂y
(x ≥ 0,∞) = 0 (9.41)

Now, it is immediately seen that in such a forced convection problem the
“usual” far-field condition, namely, T(x > 0,∞) = const. = T∞ is inconsis-
tent with the energy equation (9.38); since it implies that U∞ = 0, which is
contrary to the assumption. Instead, Eqs. (9.38) and (9.41) imply in this case

∂T
∂x
(x ≥ 0,∞) = υU∞

Kcp
(9.42)

which further yields

AQ: Please
check the
insertion of
zero in eq.
(9.42). Is it
ok?

T(x ≥ 0,∞) = T∞ + υU∞Kcp
x (9.43)

Hence the only far-field condition which is consistent with the energy
equation is given by Eq. (9.43). It specifies an asymptotic temperature that
is not a constant, but a linear function of the wall coordinate x. This condition
applies both for the forced and the mixed convection problems in extended
porous media when the effect of viscous dissipation is taken into account [6].
We may conclude, then, that it is not possible to set a far-field temperat-

ure profile when considering mixed or forced convection in the presence of
viscous dissipation. This result is in full agreement with physical expecta-
tion. Indeed, in contrast to free convection where the flow velocity goes to
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zero as y → ∞, in the forced and mixed convection boundary-layer flows
where U∞ = const. �= 0, the mechanical power needed to extrude the fluid
through the pores continues to generate frictional heat in the asymptotic
region y → ∞. Practically, the correct numerical solutions may be obtained
by applying either Eq. (9.41) or Eq. (9.43) as y→∞. It may also be seen that
Eq. (9.38) is mathematically equivalent to Fourier’s equation for heat con-
duction in a semi-infinite homogeneous solid with uniform volumetric heat
generation (where x is regarded as the time variable). Thus, after an infinitely
long time (i.e., as x → ∞), the whole solid must become infinitely hot in
accordance with Eq. (9.43).
For more transparency, it is convenient to introduce a reference length L,

a reference temperature Tref > T∞, and define the Eckert, Prandtl, Darcy, and
Péclet numbers in terms of these quantities as follows:

Ec = U2∞
cp(Tref − T∞)

, Pr = µ

ρα
, Da = K

L2
, Pe = U∞L

α
(9.44)

Thus, the asymptotic condition (9.43) becomes

T(x ≥ 0,∞) = T∞ + (Tref − T∞)Ẽc
x
L

(9.45)

where Ẽc is a “modified Eckert number” defined as

Ẽc = Ec · Pr
Da · Pe =

µU∞L
Kρcp(Tref − T∞)

(9.46)

Alternatively, it is convenient to use the “local” counterparts of these quant-
ities, which can be obtained by substituting L inDa and Pe simply by x. Thus
the “local modified Eckert number” Ẽcx, the counterpart of Ẽc, is

Ẽcx = Ec · Pr
Dax · Pex = Ẽc

x
L

(9.47)

Now, the analytical solution of Eq. (9.38) for some realistic temperature
distributions Tw = Tw(x) of the adjacent surface y = 0 will be given. To this
end, we first make the change of variables

T(x, y) = T∞ + (Tref − T∞)
U∞ · Ẽc

L
τ + θ(τ , y), τ = x

U∞
(9.48)

and Eq. (9.38) becomes:

∂θ

∂τ
= α ∂

2θ

∂y2
(9.49)
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on taking into account that

T(x, y) = T∞ + (Tref − T∞)Ẽc
x
L

(9.50)

represents the exact solution of Eq. (9.38) corresponding to α = 0. Equation
(9.48) implies that the quantity θ

(
τ , y

)
describes precisely the contribution of

heat diffusion in the y-direction to the temperature field T(x, y) in addition to
the effect of viscous dissipation and convection. Accordingly, Eq. (9.49) coin-
cides formally with Fourier’s equation of heat conduction in a homogeneous
solid of thermal diffusivity α, where the role of time variable is played by
τ = x/U∞ andwhere now the above-mentioned uniform heat generation has
been removed by transformation (9.48). In this way, our forced convection
heat transfer problem reduces to one of a transient heat conduction problem
in a semi-infinite solid occupying the region y > 0 and subject to the initial
condition,

θ(0, y ≥ 0) = 0 (9.51)

As a consequence of Eqs. (9.48) and (9.40) the temperature at the boundary at
y = 0 is given by

θ(τ > 0, 0) = Tw(x)− T∞ − (Tref − T∞)
U∞ · Ẽc

L
τ ≡ θw(τ ) (9.52)

The solution of the heat conduction problem (9.49), (9.51), (9.52) is well
known (e.g., see Carslaw and Jaeger [32], section 9.2.5) and reads:

θ(τ , y) = 2√
π

∫ ∞
η

θw

(
τ − y2

4αξ2

)
e−ξ2dξ (9.53)

where

η = √Pe y

2
√
Lx
=

√
Pex

y
2x

(9.54)

In this way, the temperature profiles θ = θ(τ , y) of the solid at different
“instants” τ = x/U∞ determine the temperature profiles of the uniformly
moving fluid in our porous body at different distances x from the entrance
boundary x= 0. This analogy allows us to transcribe easily the exact solu-
tion of several well-known heat conduction problems listed, for example, in
Carslaw and Jaeger [32] for the case of the present forced convection problem.
A part of the integrations in (9.53) with θw(τ ) given by Eq. (9.52) can be

performed without the need to specify the surface temperature distribution
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Tw(x) explicitly. Thus we obtain the following general expression for the
temperature field:

T(x, y)− Tref
Tref − T∞

= Ẽcx(1− 4i2erf cη)− erf η

− 1
Tref − T∞

(
Treferf cη − 2√

π

∫ ∞
η

Tw

(
x − xη2

ξ2

)
e−ξ2dξ

)

(9.55)

Here, erf η and erf cη= 1 − erf η denote the error and complementary error
functions respectively, where inerf cη stands for the nth repeated integrals of
the error function (see Carslaw and Jaeger [32], appendix II).
The remainder of this section is devoted to two explicit examples. The

quantities of physical interest will be the temperature field T(x, y) and the
wall heat flux

qw(x) = −k ∂T
∂y
(x, 0) = −k ∂θ

∂y
(τ , 0) (9.56)

corresponding to a prescribed temperature distribution Tw(x) of the adjacent
plane surface y = 0. The local Nusselt number related to (9.33) will be defined
in this chapter as follows

Nux = qw(x) · x
k(Tref − T∞)

(9.57)

Note that in the denominator the same temperature difference has been
included as in the definition (9.44) of the Eckert number.

Example 1. The most simple mathematical example is obtained for θw(τ ) ≡ 0
when the integral (9.53) is vanishing and thus θ(τ , y) ≡ 0. According to
Eq. (9.52), this case corresponds to the temperature distribution

Tw(x) = T∞ + (Tref − T∞)Ẽcx (9.58)

of the adjacent surface, which as θ(τ , y) ≡ 0, becomes identical with the solu-

AQ: Please
check if the
edits have
retained the
intended
sense of the
sentence
‘This case...’

tion (9.48) for the problem, Tw(x) = T(x, y). This coincides further with the
temperature field (9.50) found in the purely convective case (α = 0). Accord-
ingly, the linear heating law (9.58) of the adjacent surface has the consequence
that (a) thewall heat flow is identically vanishing, qw(x) ≡ 0, and (b) nowhere
in the bulk of the fluid does heat diffusion occur.

Example 2. As a second simple example, we consider the case θw(x) =
const. ≡ Tref−T∞ ≡ T0−T∞ > 0, which corresponds to thewall temperature
distribution

Tw(x) = T0 + (T0 − T∞)Ẽcx (9.59)
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In this case, the integral (9.53) yields θ(τ , y) = (T0 − T∞)erf cη and the
solution (9.48) becomes

T(x, y) = T0 + (T0 − T∞)(Ẽcx − erf η) (9.60)

When y → ∞, we easily recover the far-field relationship (9.45). For µ = 0,
that is, in the absence of viscous dissipation, Eq. (9.59) reduces to Tw(x) = T0
and in Eq. (9.60) we immediately recover Bejan’s classical result [3,17]:

T(x, y) = T0 − (T0 − T∞)erf η (9.61)

The wall heat flux and the local Nusselt number corresponding to the
temperature field (9.60) are given by

qw(x) = k(T0 − T∞)
x

√
Pex
π

(9.62)

Nux =
√
Pex
π

(9.63)

Note that Bejan’s solution (9.61) for the forced convection flow over the adja-
cent plane surface of constant temperatureT0 without viscousdissipation also
leads to the same expressions (9.62) and (9.63) that have been obtained from
the present result (9.60). In the present case, however the surface temperature
is not a constant but a linear function of x, being given by Eq. (9.59). Hence,
compared to the constant surface temperature without viscous dissipation,
the linear increase of Tw(x) according to Eq. (9.59) represents the surface tem-
perature distribution that exactly removes the effect of the viscous dissipation
on the surface heat flow.
Finally, it is worth underlining again that for a consistent description of

the forced and mixed convection problems in fluid saturated porous media
in the presence of viscous dissipation the usual far-field condition must be
substituted by

T(x ≥ 0,∞) = T∞ + (Tref − T∞)Ẽc
x
L
= T∞ + (Tref − T∞)Ẽcx (9.64)

As a consequence, several recent publications concerning the mixed convec-
tion problems in the presence of viscous dissipationmust basically be revised
(for more details see the next section).

9.4.2 Channel Flows

Till date only two papers exist that deal with forced convective flows in chan-
nels in the presence of viscous dissipation. The papers by Nield et al. [33]
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and Kuznetsov et al. [34] are two in a series of papers by the same authors
that consider porousmedium versions of the classical Graetz problem. In this
problem fully developed flow exists in a uniform channel that points in the
x-direction where the boundary temperature is set at T0 when x < 0, and
where the temperature of one or both surfaces (or the surface in the case
of a circular pipe) is raised to T1 when x > 0. The strength of the flow is
measured in terms of the Péclet number, Pe, and the classical Graetz prob-
lem analyses the thin thermal boundary layer that exists downstream of x−0
when the Péclet number is large. The strength of the viscous dissipation effect
is measured by the size of the Brinkman number, Br.
In the above-quoted papers these authors study cases where Pe is not large

using a series expansion method. Nield et al. [33] consider a plane channel
while Kuznetsov et al. [34] apply the same methodology to a circular pipe
flow. In both cases, the authors found that variations in the value of Br affect
the surface rates of heat transfer very considerably. The authors also invest-
igated the differences in the results obtained by each of the three models of
viscous dissipation given by Eqs. (9.3), (9.7), and (9.8). It was found that the
corresponding far downstream values of the Nusselt number differ appre-
ciably only when the Darcy number is of magnitude unity or higher, that is,
in cases where the porous medium is very highly porous.

9.5 Mixed Convection

9.5.1 The Darcy–Forchheimer Flow

In this section and in Sections 9.5.2 and 9.5.3, we consider the mixed con-
vection case of a Darcy–Forchheimer steady-boundary-layer flow over an
isothermal vertical flat plate in the physical situations depicted in Figure
9.1(a)–(d). Following Murthy [8] and the notation used in Eqs. (9.1) to (9.3),
wewrite themass, momentum, and energy balance equations (subject to both
the boundary layer and Boussinesq approximations) in the form

∂u
∂x
+ ∂v
∂y
= 0 (9.65)

∂

∂y

(
u+ C

√
K

υ
u2

)
= −sg Kgβ

υ

∂

∂y
(T − T∞) (9.66)

u
∂T
∂x
+ v

∂T
∂y
= α ∂

2T
∂y2
+ υ

Kcp
u ·

(
u+ C

√
K

υ
u2

)
(9.67)

and the corresponding boundary conditions in the form [8]

y = 0: v = 0, T = const. ≡ Tw (9.68a,b)
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y→∞: u→ U∞, T → T∞ (9.69a,b)

where C denotes the Forchheimer form drag coefficient.
Now, it is immediately seen that the thermal far-field condition (9.69b)

is not suitable since, as discussed in Section 9.4, it is inconsistent with the
energy equation. Indeed, having in mind Eq. (9.41), the energy equation
(9.67) requires

lim
y→∞

∂T
∂x
= υU∞

Kcp
(1+ Re) (9.70)

where

Re = CU∞
√
K

υ
(9.71)

denotes themodified Reynolds number. Thus, integrating Eq. (9.70) once and
taking into account condition (9.39) at the entrance boundary we obtain

T(x,∞) = T∞ + υU∞Kcp
(1+ Re)x (9.72)

Therefore, a consistent description of the present mixed convection prob-
lem requires us to replace the (unsuitable) boundary condition (9.69b) by the
condition (9.72), that is

y→∞: u→ U∞,T → T∞ + υU∞Kcp
(1+ Re)x (9.73a,b)

With the aid of the pseudo-similarity transformation [8]

η = y
x

√
Pex

ψ = α
√
Pex · f (x, η)

T = T∞ + sT · |Tw − T∞|θ(x, η), sT = sgn(Tw − T∞)

(9.74)

and the usual definition of the stream function, u = ∂ψ/∂y and v = −∂ψ/∂x,
we transform Eqs. (9.66) and (9.67) in

f ′′ + 2Re · f ′ · f ′′ = −sgsT Rx
Pex

θ ′ (9.75)

θ ′′ + 1
2
fθ ′ + sT

Pex
Rx
εf ′2(1+ Re · f ′) = ε

(
f ′ ∂θ
∂ε
− θ ′ ∂f

∂ε

)
(9.76)
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and the boundary conditions (9.68) and (9.73) in

η = 0: f (x, 0)+ 2x
∂f
∂x
(x, 0) = 0, θ(x, 0) = 1 (9.77a,b)

η→∞: f ′(x,∞) = 1, θ(x,∞) = sT
Pex
Rx
(1+ Re)ε (9.78a,b)

where the prime denotes derivatives with respect to the similarity variable
η. The local Darcy–Rayleigh number Rx that occurs in the above equations
is obtained by substituting in Eq. (9.24) the reference length L by the wall
coordinate x while ε stands for the local Gebhart number

Gex = βgx
cp
≡ ε (9.79)

Thus, the ratio Pex/Rx is in fact independent of x. Now, integrating Eq. (9.75)
once and determining the (ε-dependent) integration constant by taking into
account the boundary condition (9.78) we obtain

f ′ · (1+ Re · f ′) = (1+ Re)(1+ sgε)− sgsT
Rx
Pex

θ (9.80)

which when substituted in Eq. (9.76) results in

θ ′′ + 1
2
fθ ′ − εf ′

[
sgθ − sT

Pex
Rx
(1+ Re)(1+ sgε)

]
= ε

(
f ′ ∂θ
∂ε
− θ ′ ∂f

∂ε

)
(9.81)

We note that the boundary condition (9.77a) can be reduced to f (x, 0) = 0 by
assuming that f (0, 0) = 0. Indeed, a formal integration of Eq. (9.77a) yields
f (x, 0) = const. · x−1/2, which results precisely in f (x, 0) = 0 if one assumes
f (0, 0) = 0. Hence, for a consistent solution of the present mixed convection
problem we must consider Eq. (9.81) and Eq. (9.75), or the first integral of
Eq. (9.75) given by Eq. (9.80), along with the boundary conditions

η = 0: f (x, 0) = 0, θ(x, 0) = 1 (9.82a,b)

η→∞: f ′(x,∞) = 1, θ(x,∞) = sT
Pex
Rx
(1+ Re)ε (9.83a,b)

In this way, the main difference compared with the work of earlier
authors are (a) of the boundary condition (9.83b), instead of θ(x,∞)= 0
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and (b) of the second term occurring in the square bracket of
Eq. (9.81).

9.5.2 Perturbation Approach for Small Gebhart Number

For small valuesof the localGebhartnumber ε = gβx/cp, theaboveboundary-
value problem can be solved by a perturbation approach based on the series
expansions [8].

f (x, η) =
∞∑
m=0

(−1)mεmfm(η)

θ(x, η) =
∞∑
m=0

(−1)mεmtm(η)
(9.84)

with which we proceed here up to order ε2, that is,

f (x, η) = f0(η)− εf1(η)+ ε2f2(η)
θ(x, η) = t0(η)− εt1(η)+ ε2t2(η)

(9.85)

Thus, after some algebra we obtain, to orders 0, 1, and 2 in ε, the following
systems of ordinary differential equations and boundary conditions.

To order ε0:

f ′0 + Re f ′20 + sgsT
Rx
Pex

t0 = 1+ Re

t′′0 +
1
2
f0t′0 = 0

f0(0) = 0, f ′0(∞) = 1, t0(0) = 1, t0(∞) = 0

(9.86)

To order ε1:

f ′1 + 2Re f ′0f
′
1 + sgsT

Rx
Pex

t1 = −sg(1+ Re)

t′′1 +
1
2
( f0t′1 + t′0f1)+ sgf ′0t0 + f1t′0 − f ′0t1 = sT

Pex
Rx
(1+ Re)f ′0

f1(0) = 0, f ′1(∞) = 0, t1(0) = 0, t1(∞) = −sT PexRx
(1+ Re)

(9.87)
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To order ε2:

f ′2 + Re
(
2f ′0f
′
2 + f ′21

)
+ sgsT

Rx
Pex

t2 = 0

t′′2 +
1
2

(
f0t′2 + f1t′1 + t′0f2

)+ sg
(
f ′0t1 + f ′1t0

)+ f1t′1 − f ′1t1 + 2
(
t′0f2 − f ′0t2

)
= sT

Pex
Rx
(1+ Re)

(
f ′1 − sgf ′0

)
f2(0) = 0, f ′2(∞) = 0, t2(0) = 0, t2(∞) = 0

(9.88)

On comparing these system of equations with the corresponding equations
of earlier authors, one sees that the essential difference between the present
analysis and others comes from the nonvanishing right-hand sides of the
equations for t in (9.87) and (9.88) and in the asymptotic condition in (9.87)
for t1(∞).

9.5.3 The Aiding Up- and Downflows

In order to be more specific we restrict the discussion to the Darcy mixed
convection flows (Re= 0) for the two “aiding” cases corresponding to the
physical situations shown in Figure 9.1(a) (upward projecting hot plate in
assisting stream) and 9.1(d) (downward projecting cold plate in assisting
stream), respectively. In both of these cases we have sT · sg = −1. In addition,
we chose Rx/Pex = 1.
For these parameter values the following simple relationships hold:

f ′(x, η) = 1+ sgε + θ(x, η), f ′(x, 0) = 2+ sgε (9.89a)

f ′0(η) = 1+ t0(η), f ′0(0) = 2 (9.89b)

f ′1(η) = −sg + t1(η), f ′1(0) = −sg (9.89c)

f ′2(η) = t2(η), f ′2(0) = 0 (9.89d)

f ′′(x, η) = θ ′(x, η) (9.90)

Equation (9.89a) represents a modified form of the Reynolds analogy known
from the viscous flow of clear fluids.
We first solved the boundary-value problems (9.86) to (9.88) corresponding

to the case of the hot plate (Figure 9.1[a], sT = +1, sg = −1) with the aid of
the familiar shooting method, obtaining for the missing “initial values” the
numerical results,

t′0(0) = −0.7205853
t′1(0) = −2.41893785
t′2(0) = −0.794596877

(hot plate, sT = +1, sg = −1) (9.91)
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It is worth mentioning that the numerical calculations becomes more and
more sensitive with increasing order of the approximation.
Owing to some simple symmetry considerations, the case of the cold plate

(Figure 9.1[d], sT = −1, sg = +1) does not require new numerical effort.
Indeed, all our basic equations and boundary conditions (9.80) to (9.83) are
invariant under the sign-change transformation (sT , sg, ε) → (−sT ,−sg,−ε).
As a consequence, all the perturbation equations and boundary condi-
tions (9.86) to (9.88) are invariant under the transformation

(sT , sg, f1, t1)→ (−sT ,−sg,−f1,−t1) (9.92)

This means that in the case of the cold plate (Figure 9.1[d], sT = −1, sg = +1)
themissing “initial values” can be obtained fromEqs. (9.91) by only changing
the sign of t′1(0):

t′0(0) = −0.7205853
t′1(0) = +2.41893785
t′2(0) = −0.794596877

(cold plate, sT = −1, sg = +1) (9.93)

The local Nusselt number, defined according to Eq. (9.57) with Tref ≡ Tw, can
thus be calculated to order ε2 as

Nux√
Pex
= −θ ′(x, 0) = sT ·

[
−t′0(0)+ εt′1(0)− ε2t′2(0)

]
(9.94)

In Figure 9.3, Nux/
√
Pex is plotted for the two mixed convection flows as

a function Gebhart number ε. The difference 
 of the absolute values of
the amount of heat transferred in these two cases as given by


 =
∣∣∣∣ Nux√

Pex

∣∣∣∣ (cold plate)−
∣∣∣∣ Nux√

Pex

∣∣∣∣ (hot plate) (9.95)

is also shown in Figure 9.3.
As expected, in the case of the cold plate the heat transfer coefficient is

negative, that is, heat is always transferred from the fluid to the wall. This
amount of heat increases with increasing value of the local Gebhart number
ε (from 0.72058 if the viscous dissipation is neglected, ε = 0, to 2.128703 for
ε = 0.5). In the case of thehot plate, the heat transfer coefficient is positive (i.e.,
heat is transferred from the wall to the fluid) as long as the effect of viscous
dissipation is weak enough which means ε < 0.3346898. When ε exceeds this
critical value εc = 0.3346898 the heat released by viscous dissipation over-
comes the effect of the hot wall and the wall heat flux becomes reversed. For
ε = εc the wall becomes adiabatic. As the thin curve of Figure 9.3 shows, for
the same value of ε, the amount of heat transferred to the cold plate always
exceeds the amount of heat transferred from, as well as, to the hot plate.
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FIGURE 9.3
Heat-transfer coefficients (9.94) for two types of aided mixed convection flows along an upward
projecting hot plate (Figure 9.1[a]) and a downward projecting cold plate (Figure 9.1[d]). The thin
curve represents the difference
 between the absolute values of the amount of heat transferred
in these two cases, as given by Eq. (9.95)
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FIGURE 9.4
Dimensionless temperature profiles sT · θhot = +θhot and sT · θcold = −θcold corresponding to
the two cases of aided Darcy mixed convection flow (Figures 9.1[a] and [d], respectively). The
critical value εc = 0.3346898 corresponds to the adiabatic case of the hot plate

In Figure 9.4 the dimensionless temperature profiles sT · θ = (T − T∞)/
|Tw − T∞| are shown for sT = +1 and −1 and a couple of values of ε. The
change fromthedirect to reversedwall heatfluxat the criticalGebhart number
εc = 0.3346898 in the case of the hot plate is immediately seen in this figure.
It is also clearly seen that, according to the boundary condition (9.83b), both
the dimensionless temperature profiles sT ·θhot = +θhot and sT ·θcold = −θcold
approach the same asymptotic value sT · θ(x,∞) = ε as η → ∞. This is in
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FIGURE 9.5
Dimensionless downstream velocity profiles corresponding to two cases of aided Darcy
mixed convection flow (Figures 9.1[a] and [d], respectively)

whole agreement with the special case {Re = 0,Rx/Pex = 1} of the boundary
condition (9.73b).
Finally in Figure 9.5 the dimensionless downstream velocity profiles f ′(x, η)

are shown for ε = 0.5. Figure 9.4 and Figure 9.5 are related to each other by
Eq. (9.89a), which may be checked easily.

9.5.4 Channel Flows

Inghamet al. [5] andAl-Hadhrami et al. [35] have both consideredmixed con-
vection in a vertical porous channel in the presence of viscous dissipation. In
both cases the bounding surfaces have a temperature that is a linear decreas-
ing function of height, that is, the channel is unstably stratified, and there is
a fixed local temperature difference across the channel. Ingham et al. [5] used
the Darcy flowmodel and determined the basic flow and temperature fields.
In the absence of viscous dissipation the governing equations yield singular
solutions when the Rayleigh number, Ra, is such that Ra1/2 is an oddmultiple
of π . When viscous dissipation is included, then the singularity disappears,
and is replaced by a pair of solutions, one of which corresponds to the limit as
Ra tends upward toward a critical value, and the other asRa tends downward
toward the same value. Al-Hadhrami et al. [35] extended the analysis to cases
where the Darcy–Brinkmanmodel apply. The same qualitative results appear
here too, but they also show that multiple solutions arise in general.

9.6 Stability Considerations

The study of viscous dissipation in porous media cannot yet be considered
to be a mature realm of science for a variety of reasons, not the least of which
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is the uncertainty as to how it should be modeled when the Brinkman terms
are significant in the momentum equations. It might therefore seem a little
premature to considerwhether or not theflowsdiscussedherein are realizable
inpractice, should they suffer small perturbations. Given that there appears to
be general agreement in thepublished literature over the form that the viscous
dissipation terms take when the flow obeys Darcy’s law, it is important that
some studies are undertaken to assess the stability characteristics of some
flows. At present only two such studies have been undertaken. Rees et al.
[35] analyzed the linear stability of the ADP from an inclined surface, while
Rees et al. [15] reworked the standardweaklynonlinear analysis for the case of
Darcy–Benard convection given in Rees [36]. This section briefly summarizes
the chief features of these analyses because the details are beyond the space
available.
When a cold downward-projected surface is rotated so that it is inclined

away from the vertical, and in such a way that the normal vector to the cold
surface has a downward component, then theADP analysis described earlier
still applies but the parallel-flow boundary layer is thicker because buoyancy
is less effective. The expression for θ is given by Eq. (9.29), butwithY replaced
by Y cosα, where α is the inclination of the surface from the vertical. In such
situations it is possible to introduce disturbances of the form of streamwise
vortices. A straightforward linearized stability theory yields a curve relating
the Rayleigh number to the wavelength of the disturbance, and this has the
same shape as theDarcy–Benardproblem, namely that it has onewell-defined
minimum and that Ra tends to infinity as the wavelength of the vortex tends
either to zero or to infinity; for details see Rees et al. [37]. The critical Rayleigh
number and wavenumber are given by

Ra1/2 tan α = 16.8469 kc = 0.5166 (9.96)

From this we see that the critical Rayleigh number becomes infinite as the
surface approaches the vertical, and therefore we conclude that theADP con-
ditions described in Section 9.3 are also realizable in practice from the point
of view of stability. Some fully nonlinear computations are also presented in
Rees et al. [37].
A very detailed analysis of the weakly nonlinear convection in a

Darcy–Benard problem is given in Rees et al. [15]. When viscous dissipation
is absent then convection arises when the Darcy–Rayleigh number exceeds
4π2. Initially, convection sets in as a set of parallel rolls when the layer is of
infinite horizontal extent. When viscous dissipation is present the temper-
ature profile within the layer loses its up/down symmetry when convection
occurs, and this causes hexagonal cells to arise. This is because the lackof sym-
metry allows two rolls, whose axes are at 60◦ to one another, to interact and
reinforce a roll at 60◦ to each of them, thus providing the hexagonal pattern.
Hexagonal convection is subcritical and appears at Rayleigh numbers below
4π2. However, when Ra is sufficiently above 4π2, the rolls are re-established
as the preferred pattern of convection.When Forchheimer terms are included,
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then the range of Rayleigh numbers over which hexagons exist and are stable
decreases, and they are eventually extinguished. A similar qualitative result
has been shown when the layer is tilted at increasing angles from the hori-
zontal, although there are two main orientations of hexagonal solutions in
this case. The rolls that formwhen hexagons are destabilized are longitudinal
rolls and may be regarded as streamwise vortices like those considered in
Rees et al. [37].

9.7 Research Opportunities

We close this chapter with some proposals for research opportunities.

• While the form of the viscous dissipation term for Darcy and
Darcy–Forchheimer flows are well established, there remain some
differences over the correct form when boundary effects are signifi-
cant. Till date there exists no REV model of viscous dissipation, nor
are there anydetailed computations inperiodically structuredporous
media at small length-scales.

• As far as we are aware, free, forced, and mixed convective backward
boundary-layer flows, where the edge (x = 0) of the semi-infinite
vertical plate is (not a leading edge but) a trailing edge, has not yet
been investigated in the literature.

• Numerical (perturbation) solutions to themixed convection problem
for small values of the Gebhart number have only been discussed
here for the two “aiding” cases of Darcy flow. The discussion of
the Darcy–Forchheimer case is still open. In addition, the investig-
ation of the two “opposing cases,” and for both the Darcy and the
Darcy–Forchheimer cases, is also an open problem.

• Currently no published studies on strongly nonlinear free convection
in cavities and in the presence of viscous dissipation exist. Given
our observations, here, regarding the manner in which up/down
symmetry is broken, it is very likely thatnovel qualitativephenomena
arise in cavities with heating from below or from sidewall.

Nomenclature

ADP asymptotic dissipation profile
Br Brinkman number
cfp coefficient of Forchheimer term
C Forchheimer coefficient
cp specific heat
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Da Darcy number
Ec Eckert number
f reduced streamfunction
F drag force
g gravity
Ge Gebhart number
k thermal conductivity of the porous medium
K permeability
L representative length
Nu Nusselt number
K permeability tensor
Pe Péclet number
Pr Prandtl number
q′′′ volumetric rate of heat production
Q dimensionless heat flux
Ra, R Darcy–Rayleigh number
Re Reynolds number
REV representative elementary volume
sg projection of g/|g| on the x-axis
sT sgn(Tw − T∞)
T temperature
u, v,w velocities in the x-, y-, and z-directions, respectively
U representative velocity
x, y, z Cartesian coordinates
Y dimensionless y-coordinate

Greek letters

α thermal diffusivity/inclination angle
β thermal expansion coefficient

T representative temperature difference
ε local Gebhart number
η similarity variable
θ scaled temperature
µ dynamic viscosity
µ̃ effective viscosity
ν kinematic viscosity
ξ dimensionless x-coordinate
ρ fluid density
τ scaled x-coordinate
	 heat source term
ψ streamfunction

Subscripts

clear clear fluid
Darcy porous medium
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ref reference conditions
w wall or surface condition
x local quantity
∞ ambient conditions
δ boundary-layer thickness
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