
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 50 (2007) 3244–3249
Technical Note

The effect of local thermal non-equilibrium on impulsive
conduction in porous media

Ali Nouri-Borujerdi a,*, Amin R. Noghrehabadi a,b, D. Andrew S. Rees b

a School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
b Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Received 13 July 2006
Available online 27 March 2007
Abstract

We examine the effect of local thermal non-equilibrium on the evolution of the stagnant temperature field in a semi-infinite porous
medium. When local thermal equilibrium pertains, the temperature field which is induced by a step change in the temperature of a plane
boundary is given by the classical conduction solution involving the complementary error function. When thermal local equilibrium does
not apply, then conduction takes place more rapidly in one phase than in the other, although local thermal equilibrium is always
approached as time increases. This note examines the evolution of the temperature field in each phase in detail using numerical methods,
and the numerical solutions are supplemented by asymptotic solutions valid for both small and large times.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

An excellent review of conductive effects in a stagnant
porous medium may be found in Cheng and Hsu [1]; in
their chapter these authors consider periodic media and
their aim is to determine the effective thermal conductivity
of the combined medium in terms of the conductivities of
the constituent phases. Therefore Cheng and Hsu provide
important information for those wishing to use a single
temperature field to model a two-phase saturated porous
medium, or equivalently a composite solid consisting of
two different constituents. However, there are situations
where it is essential that the phases of a porous medium
are modelled separately, and therefore the adoption of a
two-temperature model has now become quite common-
place for convecting flows in porous media. Situations
where two temperature fields are required are known either
as LTNE (local thermal non-equilibrium) or, in the more
linguistically pleasing form as LaLoThEq (lack of local
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thermal equilibrium). Schumann [2] was the first author
to consider LTNE in porous media, although thermal dif-
fusion was neglected in the model equations. The numerical
study by Combarnous [3] predated by a couple of decades
further work on fully nonlinear convection using this
model. A recent review by Rees and Pop [4] summarises
much of the present knowledge, including the various mod-
els used for LTNE and their application to free, mixed and
forced convective flows and stability analyses; the reader is
referred to this chapter for an overview of the topic.

Despite the now large volume of published works on
convection using the two-temperature model, little is
known about unsteady conduction in such systems. Car-
slaw and Jaeger [5] present the classic complementary error
function solution for the conduction field which ensues
after the temperature of a plane boundary of an isotropic
conducting solid is raised suddenly to a new uniform level.
However, when the conducting region consists of two
phases, then conduction will usually occur more rapidly
in one phase than in the other. For example, should the
composite medium consist of alternating (i.e. striped)
phases where the planar interfaces between the phases are
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Nomenclature

c specific heat
h inter-phase heat transfer coefficient
H non-dimensional inter-phase heat transfer coeffi-

cient
k thermal conductivity
L length scale
q surface rate of heat transfer in terms of g
T f ; T s fluid and solid temperatures, respectively
T0 ambient temperature
T1 surface temperature
v velocity vector
y vertical coordinate

Greek symbols

a diffusivity ratio
af ; as thermal diffusivity of the fluid and solid phases
c porosity-scaled conductivity ratio

� porosity
f reseated similarity variable
g similarity variable
h non-dimensional fluid temperature
q density
s scaled time
/ non-dimensional solid temperature
x non-dimensional diffusivity

Subscripts and superscripts
f fluid
s solid
^ dimensional
g derivative with respect to g
0,1,2 terms in power series
� alternative scaling
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aligned to be perpendicular to the heated surface, then heat
will spread into the bulk of the medium more rapidly in the
phase with the larger thermal diffusivity. Should one now
consider these layers as being microscopic compared with
the macroscopic lengthscales, then the macroscopic aver-
age temperature of each phase (as one would obtain on
integrating over a representative elementary volume) will
be different from the other. The present paper assumes that
such a two-temperature model for conduction applies, and
we consider how the complementary error function solu-
tion for the single phase system is altered by adopting the
two-temperature model.

2. Governing equations

Nield and Bejan [6] quote the following equations as the
simplest way in which LTNE may be modelled:

�ðqcÞf
oT f

ôt
þ ðqcÞf v � rT f ¼ �r � ðkfrT fÞ þ hðT s � T fÞ; ð1Þ

ð1� �ÞðqcÞs
oT s

ôt
¼ ð1� �Þr � ðksrT sÞ þ hðT f � T sÞ: ð2Þ

In these equations the various terms take their usual mean-
ings with the subscripts, f and s, denoting fluid and solid,
respectively. Thus Tf and Ts are intrinsic averages of the
temperature fields, and this allows us to set T f ¼ T s ¼ T 1

on the boundary. The quantity � is the porosity of the med-
ium. We shall assume that there is no fluid flow, and hence
the fluid velocity v is set to zero. Therefore the physical sit-
uation corresponds either to a porous medium where the
bounding surface is horizontal (i.e. so that there is no in-
duced flow), or to a composite medium consisting of two
solids. Finally, the value h is a heat transfer coefficient
which models the detailed microscopic transmission of heat
between the phases.
The medium, which occupies the region ŷ P 0, is held at
the temperature T0 until t̂ ¼ 0 whereupon the temperature
at the ŷ ¼ 0 boundary is raised suddenly to T ¼ T 1. We
may now non-dimensionalise Eqs. (1) and (2) using the fol-
lowing substitutions:

t̂ ¼ L2

af

t; ðx̂; ŷÞ ¼ Lðx; yÞ; T f ¼ T 0 þ ðT 1 � T 0Þh;

T s ¼ T 0 þ ðT 1 � T 0Þ/; ð3Þ

where af ¼ kf=ðqcÞf is the thermal diffusivity of the fluid
phase, and L is a macroscopic lengthscale, details of which
are expanded upon below. Therefore Eqs. (1) and (2) re-
duce to

ht ¼ hxx þ hyy þ Hð/� hÞ; ð4Þ
a/t ¼ /xx þ /yy þ Hcðh� /Þ: ð5Þ

In Eqs. (4) and (5) the non-dimensional parameters, a, H

and c are defined according to

a ¼ af

as

; H ¼ hL2

�kf

; c ¼ �kf

ð1� �Þks

: ð6a; b; cÞ

These quantities are a diffusivity ratio, a scaled inter-
phase heat transfer coefficient and a porosity-modified con-
ductivity ratio. It is worth noting that it is also possible to
remove H from this list of parameters since there is no nat-
ural lengthscale in such a ‘deep pool’ system, and therefore
we could set H = 1 in (6b) to define the lengthscale
L ¼

ffiffiffiffiffiffiffiffiffiffiffi
�kf=h

p
. An alternative means of removing H from

the equations is by the use of the following transforma-
tions, which allow us to use the natural coordinate, g, as
suggested by the classical conduction solution of Carslaw
and Jaeger [5]:



3246 A. Nouri-Borujerdi et al. / International Journal of Heat and Mass Transfer 50 (2007) 3244–3249
g ¼ y

2
ffiffi
t
p ; s ¼ H

ffiffi
t
p
: ð7a; bÞ

In addition we may set all x-derivatives to zero as conduc-
tion takes place solely in the y-direction. Hence Eqs. (4)
and (5) reduce to

4shs ¼ hgg þ 2ghg þ 4sð/� hÞ; ð8Þ
4as/s ¼ /gg þ 2ag/g þ 4csðh� /Þ: ð9Þ

The boundary conditions are simply that h ¼ / ¼ 1 on
g = 0 and that h;/! 0 as g!1. These equations have
the property that the initial conditions are given uniquely
by the ordinary differential equations which are obtained
by setting s = 0 into Eqs. (8) and (9).

It is important to note that should the bounding surface
ŷ ¼ 0 corresponds to a horizontal surface, then the thermal
front we compute below will develop solely in the vertical
direction, and therefore the absence of buoyancy forces
on the macroscopic scale leads naturally to no flow. When
the bounding surface is inclined, then the induced velocity
along the surface may be shown to be proportional to the
h-profile when Darcy’s law applies, but this induced flow
does not affect the developing temperature profiles.
3. Solutions at early times

At early times it is possible to determine a power series
solution of Eqs. (8) and (9) as follows:

h

/

� �
¼

h0ðgÞ
/0ðgÞ

� �
þ s

h1ðgÞ
/1ðgÞ

� �
þ s2

h2ðgÞ
/2ðgÞ

� �
þ � � �

ð10Þ

At O(1) the solutions are

h0 ¼ erfcðgÞ; /0 ¼ erfcða0:5gÞ; ð11a; bÞ

and therefore the relative thickness of the thermal field in
the two phases depends only on the diffusivity ratio. Thus,
if the fluid phase has a higher thermal diffusivity, then
a > 1, and the thermal field of the fluid phase is more
extensive. At this stage, then, it is only the value of a that
determines the relative thicknesses of the two thermal
boundary layers.

At O(s) it is again possible to proceed easily analytically,
and the temperatures are given by

h1 ¼
2ag2 þ 1

a� 1
erfcðgÞ � erfc

ffiffiffi
a
p

g
� �

þ 2
ffiffiffi
a
pffiffiffi

p
p
ða� 1Þ ge�ag2 �

ffiffiffi
a
p

ge�g2
h i

; ð12Þ

/1 ¼ c
2g2 þ 1

a� 1
erfcðgÞ � erfc

ffiffiffi
a
p

g
� �

þ 2cffiffiffi
p
p ffiffiffi

a
p
ða� 1Þ ge�ag2 �

ffiffiffi
a
p

ge�g2
h i

: ð13Þ

We note that both of these expressions become zero as
a! 1 since, in that limit, the porous medium consists of
two phases with identical properties, and the solutions
given in (10) form the exact solution of Eqs. (8) and (9).

Analytical solutions for higher order terms are consider-
ably more complicated and we reverted to a numerical
solution for the Oðs2Þ equations using a highly accurate
fourth order Runge–Kutta scheme. Comparisons of these
solutions with the numerical simulations of the full para-
bolic partial differential system, (8) and (9), are presented
later.
4. Solutions at late times

As time progresses the expansion of the thermal field
slows. As we expect the thermal boundary layer thickness
in terms of y to be proportional to t1/2 the speed of the
developing thermal front is proportional to t�1/2, which
allows an increasing amount of time for the phases to reach
a state of thermal equilibrium. Therefore we expect LTE to
be achieved at late times. Mathematically we may appeal to
Eqs. (8) and (9) by first setting s to be asymptotically large
and then by using a straightforward order-of-magnitude
analysis to show that the final terms in these equations
must dominate their respective equations, and hence that
h ¼ / to leading order. More specifically, we may set

h

/

� �
¼

h0ðgÞ
/0ðgÞ

� �
þ s�1

h1ðgÞ
/1ðgÞ

� �
þ s�2

h2ðgÞ;
/2ðgÞ

� �
þ � � �

ð14Þ

into Eqs. (8) and (9) where h0 and /0 are equal. At leading
order we obtain

h000 þ 2gh00 þ 4ð/1 � h1Þ ¼ 0; ð15Þ
/000 þ 2ag/00 þ 4cðh1 � /1Þ ¼ 0: ð16Þ

The terms in h1 and /1 may be removed by multiplying Eq.
(15) by c and then adding Eq. (16). The resulting equation
for h0 (or /0) then has solution

h0 ¼ /0 ¼ erfc
cþ 1

cþ a

� �0:5

g ¼ erfcf; ð17Þ

where

f ¼ g=x; ð18Þ

and where

x2 ¼ cþ 1

cþ a
¼ ½�kf þ ð1� �Þks�=kf

½�ðqCÞf þ ð1� �ÞðqCÞs�=ðqCÞf
: ð19Þ

At the next order it is possible to show that

h001 þ 2gh01 þ 4h1 þ 4ð/2 � h2Þ ¼ 0; ð20Þ
/001 þ 2ag/01 þ 4a/1 þ 4cðh2 � /2Þ ¼ 0: ð21Þ

Eq. (15) shows that

/1 ¼ h1 �
1

4
½h000 þ 2gh00� ¼ h1 þ

1

4
ðx2 � 1Þh000; ð22Þ
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Fig. 1. Comparison between the numerical asymptotic variations of the
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which may be used in (20) and (21) when eliminating h2 and
/2 between those equations, to yield the following equation
for h1:

x2h001 þ 2gh01 þ 4h1 ¼
ðx2 � 1Þðax2 � 1Þ

4ðaþ cÞ h
0000

0 : ð23Þ

This equation has the analytical solution

h1 ¼ �
ðx2 � 1Þðax2 � 1Þ

4ðaþ cÞ
4ffiffiffi
p
p f3e�f2 þ Cfe�f2

; ð24Þ

where C is an arbitrary constant, and where, for conve-
nience, the solution has been written out in terms of f,
rather than g. The term multiplying C is a complementary
function which satisfies all the appropriate homogeneous
boundary conditions, and therefore its amplitude is inde-
terminate. This means that it is not possible to present a
second term in the large-s expansion, unless its value is esti-
mated by comparison with the fully numerical solution pre-
sented below.
surface rates of heat transfer, qf and qs as a function of log10s for a = 2 and
c = 1. The fully numerical solutions are depicted as continuous curves, the
small-time asymptotic solutions as long dashes and the long-time
asymptotic solution as short dashes. One, two and three terms of the
short-time asymptotic solution are shown.
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Fig. 2. Evolution with log10s of qf (continuous curves) and qs (dashed
curves) for c = 1, and for a ¼ 0:1; 0:25; 0:5; 1; 2; 4 and 10.
5. Numerical solutions

For intermediate values of s the system given by (8) and
(9) was solved using the Keller box method, a new well-
known implicit scheme which is closely related to the
Crank Nicholson method, except that the governing equa-
tions are reduced to a first order form in g, rather than kept
in second order form. In the present paper we used 100
equally spaced intervals between g = 0 and g = 10. Central
differences in s were employed. Grid refinement tests indi-
cated that our solutions are accurate to at least three signif-
icant figures.

Fig. 1 displays an example comparison between the
numerical solution for the case a = 2 and c = 1 and the
asymptotic solutions for both small and large values of s.
This comparison uses the surface rates of heat transfer
(i.e. qf ¼ �h0ðg ¼ 0Þ and qs ¼ �/0ðg ¼ 0Þ) as the measures
of the evolving temperature profiles of the two phases.

At early times it is clear to see that the leading terms
given in (11) are highly accurate when s < 0:01 but that
the temperatures of the individual phases begin to affect
one another after that time. Also shown are the corre-
sponding early time curves using both two and three terms.
These graphs show that there is little to be gained by
including a third term, and that the adoption of a two-term
expansion yields solutions which are highly accurate until
s = 0.1. Thereafter one must rely on the fully numerical
simulation.

At late times, which, for the present parameter set means
s > 100, the temperatures of the different phases are no
longer distinguishable graphically and that the late-time
asymptotic solution given in (16) now applies with a high
degree of accuracy.

Fig. 2 displays the variation of the surface rates of heat
transfer with s for c = 1 for a set of values of a. The contin-
uous lines depict the fluid phase while the broken lines
depict the solid phase. At early times all the fluid phase
curves are coincident, which is consistent with (11), while
the solid phase curves correspond to a rate of heat transfer
which is proportional to

ffiffiffi
a
p

, which is again consistent with
(11). Once more, at large times, the respective fluid and solid
phase curves for any chosen parameter set become coinci-
dent (i.e. LTE is achieved) as s increases, although the time
at which this happens increases with increasing a. We note
that when a = 1 the phases have identical temperatures at
all times and they are given by h ¼ / ¼ erfcðgÞ.
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Fig. 4. Evolution with log10s of qf (continuous curves) and qs (dashed
curves) for a = 2, and for c ¼ 0:01; 0:1; 1; 10 and 100.
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Figs. 3 and 4 correspond to a = 0.5 and a = 2, respec-
tively, each for a choice of values of c varying from 0.01
to 100. In both cases, when c = 100 the large-time asymp-
totic solution is very nearly erfc (g), which is the small-time
leading order solution, and therefore the rate of heat trans-
fer within the fluid phase hardly changes with time. In like
fashion, when c ¼ 0:01, the heat transfer within the solid
phase changes little since Eqs. (17) and (11b) are almost
identical.

At this point it is important to note that the non-dimen-
sionalisation used for time in Eq. (3) was based upon the
diffusivity of the fluid, and it does not represent the usual
way in which non-dimensionalisation is carried out when
the single energy equation model is used. If we replace
the scaling for t̂ used in (3) by

t̂ ¼ L2

x2af

~t; ð25Þ

where x is given by (19) and

~s ¼ H
ffiffi
~t
p

ð26Þ
(c.f. Eq. (7b)), then Eqs. (8) and (9) become

4~s
cþ 1

cþ a

� �
h~s ¼ hgg þ 2g

cþ 1

cþ a

� �
hg þ 4~sð/� hÞ; ð27Þ

4a~s
cþ 1

cþ a

� �
/~s ¼ /gg þ 2a

cþ 1

cþ a

� �
g/g þ 4c~sðh� /Þ: ð28Þ

Eqs. (27) and (28) may be shown to have the following
symmetry properties,

hðg;~s; c; aÞ ¼ /ðg;~sc�1; c�1; a�1Þ; ð29aÞ
/ðg;~s; c; aÞ ¼ /ðg;~sc�1; c�1; a�1Þ; ð29bÞ

although this symmetry is lost in the presence of fluid flow.
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Fig. 3. Evolution with log10s of qf (continuous curves) and qs (dashed
curves) for a = 0.5, and for c ¼ 0:01; 0:1; 1; 10 and 100.
In this alternative reseating both phases tend towards
erfc(g) for large values of ~s. This is seen clearly in Fig. 5
where c = 1 and a small selection of values of a are repre-
sented. The leading order small-time solutions are now
given by

h � erfc
cþ 1

cþ a

� �0:5

g

" #
¼ erfcðxgÞ; ð30aÞ

/ � erfc a
cþ 1

kþ a

� �0:5

g

" #
¼ erfcð

ffiffiffi
a
p

xgÞ: ð30bÞ
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Fig. 5. Evolution with log10~s of qf (continuous curves) and qs (dashed
curves) for c = 1, and for a ¼ 0:1; 0:25; 0:5 and 1. The qf and qs curves are
identical when c = 1.



A. Nouri-Borujerdi et al. / International Journal of Heat and Mass Transfer 50 (2007) 3244–3249 3249
The corresponding curves for a > 1 are virtually identi-
cal to those given in Fig. 5 except that the roles of the
phases axe interchanged and that the a values represented
in Fig. 5 become their respective reciprocals.

Finally, we note that the chief effect of this rescaling of
time is to shift the q-curves both vertically and horizontally
as compared with those given in Figs. 2–4 and therefore,
for the sake of brevity, we omit the presentation of further
curves.

6. Conclusions

In this note we have considered the evolution of the
temperature field in a stagnant porous medium which is
suddenly heated from below and where local thermal
non-equilibrium effects are significant. At early times the
classical complementary error function for a uniform sin-
gle-phase medium applies in each phase, but the thermal
boundary layer thicknesses depend on the value of a, the
diffusivity ratio. At later times, as the progress of the ther-
mal front slows down, the temperatures of the phases are
found to tend towards the same profile as one another; this
is when local thermal equilibrium is achieved. The time at
which LTE is achieved clearly depends on the value of H

given the definition of s in Eq. (7) However it also depends
on the values of c and a. LTE is achieved relatively early
for larger values of c, but the value of s at which this hap-
pens varies over many orders of magnitude as c is varied.

It is now our intention to examine the solutions pre-
sented above for their stability characteristics. When
heated from below the present system has the potential
for thermo-convective instability since relatively heavy
fluid overlies relatively light fluid. In related studies using
a single energy equation (i.e. where LTE has been
assumed), Selim and Rees [7–9] have studied various linear
and nonlinear stability characteristics of the evolving tem-
perature field. We shall determine how this scenario is
altered in the presence of LTNE.
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