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The Stability of a Developing
Thermal Front in a Porous Medium.

II Nonlinear Evolution
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ABSTRACT

We consider the instability of the unsteady thermal boundary that is
caused by suddenly raising the temperature of the lower boundary of an
otherwise cold saturated porous medium. In particular, we focus attention
on strongly nonlinear two-dimensional convection. A comprehensive set of
results is presented which shows the effects of varying the amplitude of
the disturbance, its wave number, and the time at which the disturbance
is introduced into the developing thermal boundary layer. We indicate,
in detail, how the evolution of the instabilities with time is affected by
nonlinearity and how the characteristics of that evolution are changed
from those that arise in linearized theory. We also determine when
linearized theory is inadequate to describe the global features of the
evolution, such as the restabilisation of convection.
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18 Selim and Rees

NOMENCLATURE

A amplitude of disturbance

g gravity Greek characters
k wavenumber of disturbance

K permeability α thermal diffusivity

L natural length scale β coefficient of thermal expansion

n summation index ∆T temperature difference

n1, n2 summation indices η similarity variable

N number of Fourier modes θ nondimensional temperature

p, P pressure µ dynamic viscosity

q surface rate of heat transfer ρ density

t time τ =
√

t

T dimensional temperature ψ streamfunction

Tw lower surface temperature

T∞ ambient temperature Superscripts and subscripts
u horizontal velocity

v vertical velocity dimensional

x horizontal coordinate 0 initial disturbance

y vertical coordinate nl nonlinear stability criterion

INTRODUCTION

In Selim and Rees (2007), herein referred to as Part I,

we studied the linear instability of the developing con-

duction profile, which is induced by the sudden rise

in temperature of the horizontal lower boundary of an

otherwise unbounded porous medium that is saturated

and uniformly cold. The developing thermal field is

given by the complementary error function, and there

is no flow. As the lower boundary is relatively hot,

light fluid lies below relatively heavy fluid, and there

is the potential for thermoconvective instability. It was

pointed out in Part I that a Darcy-Rayleigh number

based on the thickness of this developing thermal

front always rises, and therefore, it is to be expected

that the developing thermal front will eventually be-

come unstable.

In Part I, attention was focused on how different

wave numbers, initiation times, and initial profiles of

the disturbance affect the evolution of the disturbance.

Particular attention was paid to determining stability

criteria based on various measures of the strength of

the disturbance, and on how these stability criteria

compare to approximate quasi-steady theory.

A few papers exist that deal with the instability

of a time-dependent boundary layer in porous media.

Kaviany (1984) considered internal heat generation in

a finite thickness layer as an unsteady problem. On

employing the Forchheimer-Brinkman-extended Darcy

model for the momentum equation, he allowed the

upper boundary temperature to decrease linearly with

time, and obtained stability criteria using approximate

methods. A different type of unsteady problem with

Electronic Data Center, http://edata-center.com Downloaded 2007-4-25 from IP 84.70.46.66 by Andrew Rees



II Nonlinear Evolution 19

heat generation was considered by Kim et al. (2002),

who used a suddenly imposed internal heat generation

as the unsteady feature, and the basic thermal state

then varied from a uniformly cold temperature. Later,

Kim et al. (2003) considered a very similar problem

to the one considered here, except that, as shown in

Part I, their momentum boundary conditions allow

for zero tangential velocity rather than a zero normal

velocity at the lower boundary. In a recent paper,

Kim and Kim (2005) have undertaken a study of a

ramp heating case, where the temperature of the lower

surface increases linearly with time in a layer of finite

depth. But in the first three of the papers quoted in

this paragraph approximate linearized theories were

employed to generate stability criteria.

In this paper, we extend the analysis of Part I into

the nonlinear regime in order to determine how fi-

nite amplitude disturbances evolve. We use a method

that is a mixed finite difference and Fourier series

expansion, and the resulting system of equations is

solved using a slightly modified form of the Keller-

box method (Keller and Cebeci, 1971). We have

available three main parameters to vary, namely, the

wave number of the primary mode, its amplitude, and

its initiation time. We present a fairly comprehensive

account of how the subsequent evolution of the distur-

bance depends on these parameters. Our general aim

is to find the similarities and differences between the

linear and nonlinear characteristics and to determine

when nonlinear effects are significant.

GOVERNING EQUATIONS AND BASIC
SOLUTION

Consider the free convective flow above a horizon-

tal impermeable surface embedded in a fluid-saturated

porous medium, where the medium is considered to

be isotropic and homogeneous and where the fluid and

the porous matrix are in local thermal equilibrium.

Non-Darcy effects, as modeled by the Brinkman and

Forchheimer terms, are neglected for now. The porous

medium is considered to be quiescent initially and

uniformly cold. At the timet = 0, the temperature of

the bounding horizontal surface is raised suddenly to

a new constant level at which it remains for allt > 0.

The governing equations are taken to be Darcy’s law

modified by the presence of buoyancy and subject to

the Boussinesq approximation, the equation of conti-

nuity and the thermal energy equation:

∂u

∂x
+

∂v

∂y
= 0 (1a)

u = −K

µ

∂P

∂x
(1b)

v = −K

µ

∂P

∂y
+

ρgβK

µ
(T − T∞) (1c)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

(∂2T

∂x2 +
∂2T

∂y2

)
(1d)

In these equations,x is the coordinate in the hor-

izontal direction whiley is vertically upward. The

corresponding velocities areu andv, respectively. All

the other terms have their usual meaning for porous

medium convection:K is the permeability,µ is the

dynamic viscosity, andρ is the density of the fluid

at the ambient temperature,T = T∞. The heated hor-

izontal surface is held at the temperatureTw, where

Tw > T∞. Finally, the quantitiesg, β, and α are

gravity, the coefficient of cubical expansion, and the

thermal diffusivity of the saturated medium, respec-

tively.

Equations (1a)–(1d) may now be nondimension-

alised using the following transformations:

t =
L2

α
t, (x, y) = L(x, y)

(u, v) =
α

L
(u, v)

P =
αµ

K
p, T = T∞ + ∆T θ (3)

to yield

∂u

∂x
+

∂v

∂y
= 0 (2a)

u = −∂p

∂x
(2b)

v = −∂p

∂y
+ θ (2c)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

∂2θ

∂x2
+

∂2θ

∂y2
(2d)
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20 Selim and Rees

The appropriate boundary conditions are

y = 0 : v = 0, θ = 1 and

y →∞ : v, θ → 0 (2e)

while θ = 0 everywhere fort < 0. We note that there

is no Darcy-Rayleigh number present in Eqs. (2). As

discussed in Part 1, the reason is simply that there

is no external length scale present in a semi-infinite

medium, and therefore, setting the Darcy-Rayleigh

number, Ra = ρgβKL(Tw − T∞)/µα, to be equal

to unity is equivalent to defining a lengthscale,L, in

terms of the properties of the porous medium and the

saturating fluid.

After eliminating the pressurep between Eqs. (3b)

and (3c), and on introducing the streamfunctionψ,

defined according to

u = −∂ψ

∂y
and v =

∂ψ

∂x
(3)

then the continuity equation is satisfied, and

Eqs. (3b)–(3d) reduce to the pair,

∂2ψ

∂x2
+

∂2ψ

∂y2
=

∂θ

∂x
(4a)

∂θ

∂t
+

∂ψ

∂x

∂θ

∂y
− ∂ψ

∂y

∂θ

∂x
=

∂2θ

∂x2
+

∂2θ

∂y2
(4b)

where ψ is the streamfunction, which is defined ac-

cording to u = −∂ψ
∂y and v = ∂ψ

∂x , and where the

appropriate boundary conditions are

y = 0 : ψ = 0, θ = 1 and

y →∞ : ψ, θ → 0 (4c)

The initial state is

ψ = θ = 0 for t ≤ 0 (4d)

The basic state whose nonlinear stability is being

considered is one of pure conduction with no flow,

and this is given by,

ψ = 0, θ = erfc(η) =
2√
π

∫ ∞

η

e−ξ2
dξ (5)

whereη is the similarity variable defined as

η =
y

2
√

t
(6)

Equations (4a) and (4b) may now be transformed

into the coordinate system(η, τ), whereτ =
√

t; we

obtain

4τ2 ∂2ψ

∂x2
+

∂2ψ

∂η2
= 4τ2 ∂θ

∂x
(7a)

2τ
∂θ

∂τ
+ 2τ

(∂ψ

∂x

∂θ

∂η
− ∂ψ

∂η

∂θ

∂x

)

= 4τ2 ∂2θ

∂x2
+

∂2θ

∂η2
+ 2η

∂θ

∂η
(7b)

As in Part I, we note that the coefficient of∂θ/∂x

on the right-hand side of (7a) may be regarded as

a ‘‘local’’ Darcy-Rayleigh number, and therefore, the

system becomes increasingly thermoconvectively un-

stable with time.

NUMERICAL METHOD

The full linearized disturbance equations were solved

numerically in Part I using a parabolic solver to de-

termine stability criteria. These results were compared

with an approximate theory obtained by neglecting

the time derivative and nonlinear terms in (7b) and

regardingτ as an eigenvalue, which is itself a func-

tion of k, the wave number. We are now interested

in investigating, numerically how the evolution of the

disturbance changes when nonlinearity is significant.

To this end, a truncated spanwise Fourier expansion of

the form

ψ(x, η, τ) =
N∑

n=1

ψn(η, τ) sin nkx (8a)

θ(x, η, τ) = erfc(η) +
1
2
θ0(η, τ)

+
N∑

n=1

θn(η, τ) cos nkx (8b)

is substituted into Eqs. (7a) and (7b). We refer to

ψ1 and θ1 as the primary mode, as these terms

correspond to the disturbances studied in Part I. The

term 1
2θ0 yields the mean change to the basic state

due to the presence of convective cells. In general, the

pair (ψn, θn) is referred to as moden.
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The detailed equations corresponding to each pair,

(ψn, θn), are quite lengthy, especially ifN , the num-

ber of modes chosen, is large, and therefore, they

are omitted here. Indeed, it was not even necessary

to write down the detailed expansions for the nonlin-

ear terms, for our implementation of the Keller-box

code was able to account for these nonlinear inter-

actions automatically. For example, the expression,

(n1kψn1 cosn1kx)(θn2,η cosn2kx), arises as one of

the products resulting from the first nonlinear term

in (7b), wheren1 and n2 are arbitrary values of the

summation indices in (7a) and (7b), respectively. This

term may be written in the form

n1k ψn1

∂θn2

∂η
cos(n1kx) cos(n2kx)

=
1
2
n1k

{
cos

[
(n1 + n2)kx

]

+cos
[
(n1 − n2)kx

]}
ψn1

∂θn2

∂η
(9)

If a double loop is written where bothn1 andn2 run

from 1 to N ; then the coefficient ofcos(n1 + n2)kx

in (9) is added to the accumulating sum of terms

that need to be included in the equation forθn1+n2 ,

should n1 + n2 ≤ N ; otherwise, they are ignored.

Likewise, the full coefficient ofcos(n1 − n2)kx is

added to the accumulating sum of terms for the

equation forθ|n1−n2|.
In the numerical simulations, the truncation level

was chosen to beN = 5, which was sufficent for the

present purpose, for the magnitude ofθ5 was always

very small compared with unity. After the substitution

of Eqs. (8) into Eqs. (7), the final system consists

of 2N + 1 second-order partial differential equations

in τ and η, which forms a parabolic system. This

system is solved by a slightly modified Keller-box

method. The standard Keller-box methodology first

reduces the whole system to one involving equations,

which are of first order inη. Then a central difference

in time based half way between the time steps is

used. Finally, the resulting nonlinear difference equa-

tions are solved iteratively using a multidimensional

Newton-Raphson scheme. For the present problem,

with N = 5, this would mean that a nonlinear system

of 22 difference equations would need to be solved.

We chose to modify the Keller-box methodology in

two ways: (i) the partial differential equations were

kept in second-order form inη and (ii) backward

differences in time were adopted. The first modifi-

cation means that there are now only11 difference

equations, which results in a much faster computation.

It also means that the iteration matrix retains block

tridiagonal form, and therefore, the modification to

standard Keller-box code is very straightforward. The

second modification means that numerical stability is

increased with no possibility of pointwise oscillations,

while still requiring only straightforward changes to a

standard Keller-box code. In addition to these mod-

ifications, the numerical differentiation methodology

used by Lewis et al. (1997) was also implemented to

evaluate the iteration matrix, which would otherwise

be extremely lengthy to encode explicitly.

A rectangular domain inη and τ was used in

the whole simulation whereη ranges from 0 to 10

with the uniform step of 0.05, and a steplength of

0.1 was used in theτ direction. As in Part I, a

thermal disturbance is introduced atτ = τ0, the

initiation time, and the Keller-box method is then

used to march the disturbance forward in time. In the

linearized theory of Part I, the evolving disturbance is

a function solely ofk and τ0, but here the evolution

also depends on the magnitude of the disturbance.

In this paper, we introduce disturbances in the form

θ1 = Aηe−3η, where A is the amplitude of the

disturbance. This profile was taken as the datum

profile in Part I, and it was shown there that the

time at which disturbances begin to grow is generally

independent of the profile shape and the initiation

time if the disturbance is introduced beforeτ ' 5.

We reproduce the neutral stability curve of Part I

in Fig. 1; this was the result of solving the quasi-

steady ordinary differential eigenvalue problem for

the critical time and is shown here as the context

into which to set the present nonlinear computations.

Disturbances decay that correspond to locations below

the curve, to the right of the right-hand branch and to
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Figure 1. Neutral stability curve displaying the critical

time τc against the wave number,k

the left of the left-hand branch; otherwise, they grow

(i.e., are unstable). Part I also showed that a thermal

energy-based criterion for monitoring the growth of

the disturbance results in a larger region of instability

than is indicated in Fig. 1.

NUMERICAL RESULTS

In this section, we discuss, in detail, how the nonlin-

ear evolution of disturbances is affected by changes

in the wave numberk, the amplitudeA, of the dis-

turbance, and the initiation timeτ0. However, it is

necessary to show first some of the general features

of how a disturbance evolves when in the nonlin-

ear regime, emphasizing, in particular, those ways in

which the evolution is different from that of linear

theory, which is based on infinitesimal disturbances.

The most frequently used measure of the strength of

the disturbance is the surface rate of heat transfer, and

therefore, we define

qn =
∂θn

∂η

∣∣
η=0

(10)

to be the rate of heat transfer for moden. The

variation with τ of q1 determines how the primary

mode is evolving, whereas12q0 shows the evolution

of the mean rate of heat transfer per spanwise wave-

length. The value of12q0 should be compared with

−2/
√

π = −1.1284, which is the rate of heat transfer

of the basic temperature profile given in Eq. (5).

A typical case

Figure 2 represents the variation ofqn with τ for

n = 0, 1, . . . , 5 for a disturbance that is introduced

at τ0 = 8, with the wave numberk = 0.05 and the

amplitude A = 10−1. First, it is essential to point

out that the choice of the truncation level,N = 5,

in Eqs. (8), is justified by the curves shown in this

figure, where then = 4 curve can only just be

distinguished from theτ-axis.

At first, the value ofq1 decays in accordance with

linear theory sinceτ0 lies well below the neutral

curve for this wave number. Whenτ ' 20, the value

of q1 begins to grow, which is again in agreement

with linear theory. However, the results of Part I indi-

cate that the amplitude of such a growing mode will

increase through many orders of magnitude asτ in-

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 2 0 0

- 4

- 3

- 2

- 1

0

1

2

�

��

� � �

� � �

� � �

Figure 2. Variation with τ of the surface rates of

heat transfer,qn, corresponding to the Fourier modes,

n = 0, 1, 2, .... We have takenτ0 = 8, k = 0.05 and

A = 10−1

Electronic Data Center, http://edata-center.com Downloaded 2007-4-25 from IP 84.70.46.66 by Andrew Rees
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creases. In the present case, nonlinear self-interactions

of the growing disturbance induces flow correspond-

ing to then = 0 and n = 2 modes, and then further

interactions cascade through the higher modes. This

is seen clearly in Fig. 2, where there are rapid in-

creases inq1 and q2 up to τ ' 40. At the same

time, the mean rate of heat transferq0 attains quite a

large negative value. At its maximum magnitude, the

value of 1
2q0 is such that the mean heat transfer has

increased to a value that is more than twice that of

the basic state. After this maximum has been reached,

all the modes begin to decay slowly, suggesting that

the flow is restabilizing. This conclusion, while clearly

consistent with the curves shown in Fig. 2, is at vari-

ance with the linear stability theory, as displayed in

Fig. 1, which indicates that ak = 0.05 disturbance

should continue to grow until well afterτ = 160.

Therefore, we must have a situation where the evolv-

ing cells display a nonlinear saturation. An alternative

way of looking at this is based on the fact that the

mean temperature profile has changed from erfc(η)
to erfc(η) + 1

2θ0. Therefore, it is to be expected that

linear theory, which is based on disturbances to the

basic profile, cannot apply in such a highly nonlinear

situation where the mean state is now very different.

An different view of the development of the dis-

turbance is shown in Fig. 3, which displays isotherms

and streamlines of the evolving disturbance at various

values ofτ for the wave numberk = 0.05. Each sub-

frame of Fig. 3 shows one period in thex direction.

The middle cell of each subframe of Fig. 3a cor-

responds to a negative temperature disturbance, and

there is fluid flow directed toward the heated surface.

Thus, the streamlines placed midway between the ver-

tical borders of each subframe of Fig. 3b correspond

to inflow. The outer cells, on the other hand, are

positive perturbations and the vertical borders of the

streamline plots represent outflow streamlines.

For τ ≤ 30, the disturbance gradually becomes

narrower in terms ofη as it develops, just as distur-

bances do within the linear regime. This effect is seen

more clearly in the streamlines, where the exponen-

tional decay ofΨ may be shown to be proportional

to exp(−2kτ η), and therefore, the e–folding distance

decreases withτ. However, at later times, nonlinear

effects become significant. The first sign of nonlin-

earity is that neighbouring thermal cells no longer

resemble one another, as seen in Fig. 3a whenτ = 40.

As the edges of the subframes are the streamlines

corresponding to outflow, where the fluid is warmer

than the basic state, we see the centers of the ther-

mal disturbances becoming displaced further away

from the heated surface. Conversely, the central cell

is being pushed toward the heated surface due to the

strength of the inflow midway between the two out-

flow streamlines. The central cell now begins to adopt

a triangular shape because its neighbouring cells have

risen up from the heated surface, and the increased

density of the isotherms together with the spreading

of the cell near the surface indicates why there is

a large increase in the magnitude of the mean rate

of heat transfer at this time. At later times, such as

τ = 100, the magnitude of the primary cell has de-

creased to such an extent that the isotherms are almost

dominated by the mean disturbanceθ0, which is still

large but is now decaying, as seen in Fig. 2. The

streamlines also occupy a decreasingly sized region in

terms ofη asτ continues to grow.

Effect of varying the wave number

In this section, we concentrate on the effect of vary-

ing the wave number on the evolution of disturbances

within the nonlinear regime. Figure 4 shows howq1

varies withτ for a selection of wave numbers between

0.04 and 0.09, inclusive, for bothA = 10−1 and

A = 10−4. The disturbance was initiated atτ0 = 8.

All the disturbances decay immediately on introduc-

tion, but then begin to grow again at a value ofτ,

which is broadly in line with linear theory. Of the

curves shown in Fig. 4a, forA = 10−1, only those

corresponding tok = 0.08 and k = 0.09 have the

property that the disturbance restabilizes at a value

of τ that is roughly the same as given by the up-

per branch of Fig. 1. The reason is simply that the
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Figure 3. Cross section of the convection cells corresponding toa) the perturbation temperature profiles andb) the

streamlines, for various values ofτ usingτ0 = 8, k = 0.05, andA = 10−1

interval of time over which the disturbances grow is

sufficiently short that nonlinearities do not become

significant, and therefore, linearized theory applies

fairly accurately. For the other wave numbers, restabi-

lization is predicted to take place at increasing values

of τ, as shown by Fig. 1, but, for the choice ofτ0 and

A used here, restabilization is confined to the range

40 < τ < 45 almost independently of the value of

k. Again, premature restabilization is due to nonlin-

ear saturation and a highly modified mean flow and

temperature field.

Figure 4b shows the situation that applies when

the disturbance amplitude is reduced to10−4. The

detailed numerical data again show that onset occurs

at a time broadly in line with Fig. 1, but now a

substantially longer period of time is required before

the disturbance attains an O(1) magnitude. Apart from

the k ≥ 0.07 cases, which are essentially linear, a

rapid growth to a maximum response is followed

by an almost equally rapid decay, and the time of

maximum response is again roughly constant for the

smaller wave numbers.

The isolines of the rate of surface heat transfer

corresponding to the different wave numbers consid-

ered in Fig. 4a are shown in Fig. 5. These isolines

are equally spaced between±max|q1|, and two whole
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Figure 4. Variation in the surface rate of heat transfer,q1, due to the primary cell for various wave numbers and forτ0 = 8:

a) A = 10−1, b) A = 10−4

periods in the spanwise direction are shown for in-

creased clarity. Fork = 0.09, the near linearity of the

response to the disturbance may be guaged by seeing

how similar the isolines of surface heat transfer of

neighbouring thermal cells are to each other. Neigh-

bouring cells are more dissimilar fork = 0.08, but

this dissimilarity is still fairly weak, given that the

time of restabilization is still close to that given by

linear theory. For the remaining three cases, nonlinear

effects are very strong. The presence of the central

cells is hidden whenτ > 40, for these cells are the

ones that rise away from the surface due to outflow.
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Figure 5. Isolines of the surface rate of heat transfer in (τ, x)-space for various values of the vortex wave numberk, using

τ0 = 8 and A = 10−1. The horizontal coordinate varies betweenx = 0 and x = 4π/k, i.e., two horizontal periods are

displayed

The strong sets of contours that remain correspond

to those cells that are pressed against the surface by

inflow and have triangular cross section.

Varying the disturbance amplitude

Although we may compare Figs. 4a and 4b, a more

comprehensive approach to finding the effects of vary-

ing the disturbance amplitude is presented here. It

is to be expected that different disturbance ampli-

tudes will result in quite different consequences once

the evolving disturbance is strong enough to generate

harmonics. The degree to which this happens is the

subject of this section and demonstrated in Figs. 6 and

7.

Figure 6 gives a comprehensive account of the

detailed response to variations in the amplitude of

the disturbanceA for a selection of wave numbers.

In particular, the evolution withτ of both q1 and

q0 are shown, and the disturbance amplitudes chosen

vary in inverse integer powers of10 from A = 10−1

down to A = 10−20. We note, in passing, that the

convergence criterion for each value ofτ in our

numerical simulation is a relative criterion, rather than

an absolute criterion, i.e., convergence is deemed to

have taken place when the maximum change between

successive iterates divided by the maximum value of

the iterate is< 10−8. Therefore, we have roughly

eight significant figures, even when the disturbances

are extremely small.

A brief glance at the behaviour of bothq1 and

q0 is sufficient to note that nonlinear saturation de-

pends very strongly on the disturbance amplitude, and,

not surprisingly, the time at which saturation occurs

becomes later as the value ofA decreases. What

is surprising, however, is that the largest disturbance

amplitudes do not yield the largest response. Taking

the casek = 0.04, for example,A = 10−12 yields

the largest response inq1, whereas, fork = 0.05,

the largest response is obtained whenA = 10−4. For

larger wave numbers, the time available for the distur-

bance to grow is limited by the upper branch of the

neutral curve, and it is not possible for the disturbance

to become particularly large before it begins to decay

again. This effect may be seen clearly when compar-

ing the times of restabilization of theA = 10−8 and

A = 10−9 cases fork = 0.06, and theA = 10−4

and 10−5 cases fork = 0.07. For these larger wave

numbers, the largest response is obtained from the

largest disturbance amplitudes. Whenk = 0.08 and
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Figure 6. Variation with τ of q1 (left-hand subfigures) andq0 (right-hand subfigures) for various wave numbers between

k = 0.04 and k = 0.09 and for the amplitudesA = 10−1, 10−2, ..., 10−20. The valueτ0 = 8 was used. The curve on the

extreme left corresponds toA = 10−1 in each case
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Figure 6. Cont’d

k = 0.09, the disturbance hardly enters the nonlinear

regime, even whenA = 10−1.

A summary of the stability information contained in

Fig. 6 is presented in Fig. 7. The abscissa of Fig. 7

is n, where the disturbance amplitude isA = 10−n.

This figure shows the variation withn of what we

shall call the nonlinear neutral points, denoted byτnl,

and defined as being those values ofτ where the

variation of q1 with τ takes either a maximum and

minimum value, i.e., where∂q1
∂τ = 0. The lowest line
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Figure 7. Variation in the values of the nonlinear neutral

points, τnl, with n = − log10 A for different vortex wave

numbers. The lines placed near toτnl = 13 correspond

to the onset of instability; the others correspond to the

beginning of decay

in Fig. 7 appears to be a fairly thick line, but it is

composed of all those lines corresponding to the onset

of growth for each of the wave numbers considered.

They form a fairly densely packed group because the

onset times, as shown in Fig. 1, vary only slightly

with k for these wave numbers. The remaining lines

correspond to the times when restabilization occurs,

i.e., to where the disturbance begins to decay again, as

measured byq1. Near ton = 20, which corresponds

to A = 10−20, the values ofτnl do not vary with

n because the disturbance always stays within the

linear regime, and such horizontal lines correspond

to the restabilization time for linear theory. However,

the sloping lines show the times where nonlinear

saturation causes premature restabilization. The case

k = 0.05 is particularly severe, for disturbances as

small asA = 10−16 become highly nonlinear before

the restabilization time for linear theory. The value

of n at which the nonlinear restabilisation criterion

gives way to the linear criterion and, in particular, its

variation withk, can be seen easily in Fig. 7.

Effect of varying the initiation time

The nature of the evolving disturbance also depends

on when the disturbance is introduced. Part I showed

how the onset time depends on the initiation time

while in the linear regime, but this conclusion is

also true for nonlinear convection. Figure 8 shows

the detailed evolution ofq1 with τ of an A = 10−1

disturbance; the detailed values ofq1 show that the

onset time increases withτ0. A close-up view of

the k = 0.06 case is shown in Fig. 9, where the

onset times for smaller values ofτ0 are marked using

filled circles, and where they may be seen clearly to

increase with with increasingτ0. Returning to Fig. 8,

the essential linearity of thek = 0.09 case is quite

evident even thoughA = 10−1 is rather large. When

τ0 is small, the disturbance decays at first, and the

onset time is a function ofτ0 since the shape of

the disturbance changes with time; see the discussion

in Part I. However, the time available for growth is

limited and the restabilization time is clearly almost

independent ofτ0. For the smaller wave numbers,

however, both the onset and restabilization times are

strong functions ofτ0, and there is a favoured value

of τ0 that maximizes the response in terms ofq1.

A summary of the stability properties of the solu-

tions displayed in Fig. 8 is presented in Fig. 10. The

wave numbers chosen correspond exactly to those in

Fig. 8. In each subframe, the lower horizontal lines

correspond to the onset criterion for linear theory,

whereas the upper horizontal lines correspond to the

restabilization time from linear theory. The diagonal

line represents the initiation timeτ0, while the sym-

bols indicate the calculated onset and restabilisation

time for eachτ0 value.

When k = 0.09, we have the typical behaviour for

linear theory that the onset time is roughly the larger

of the onset time due to linear theory andτ0, while

restabilization takes place close to that time predicted

by linear theory. The only exception is when the ini-

tiation time is later than the restabilization time, in

which case the disturbance always decays. The curves

for k = 0.08 show a slightly premature restabilization
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Figure 8. Variation of q1 with τ for various values ofτ0 for different wave numbers betweenk = 0.04 and k = 0.09. In

each caseA = 10−1 is the initial amplitude

when 2 ≤ τ0 ≤ 35. It is clear that some nonlinear

effects are present. For smaller wave numbers, resta-

bilization can happen very early compared with linear

theory, and, for large ranges ofτ0, it appears that

growth occurs over a roughly constant range of values

of τ. Whenk = 0.04, the onset/restabilization criteria

become a little more complicated. For example, when

τ0 = 20, q1 has two regions over which the distur-

bance grows. Preliminary extensions of the current

work to smaller values ofk suggest that the evolu-
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Figure 9. Close-up view of thek = 0.06 subfigure of

Fig. 8. The solid circles denote where the slope ofq1

againstτ is zero and mark the onset of instability

tion of disturbances becomes much more complicated

in these cases. There opens up the possibility that

mode 2, which is initiated as mode 1 grows and in-

teracts with itself, may grow faster than mode 1 itself

whenk is small, and then establish itself as the stable

mode — it is possible that the novel feature shown

for k = 0.04 is associated with this scenario and it is

intended to report on this aspect in due course.

Finally, we focus on one wave number,k = 0.06,

and vary both the amplitude and initiation time.

The results of extensive computations are shown in

Fig. 11. The variation ofτnl with τ0 is depicted for

the amplitudesA = 10−1, 10−3, 10−5, 10−7, and

10−9. Here, the onset time is independent ofA and

the lowest symbols for each value ofτ0 corresponds

to onset. Strongly nonlinear effects associated with

A = 10−1 reduce in effect asA decreases and resta-

bilization happens later. WhenA is as small as10−9,

we have returned to the linear regime once more.

CONCLUSIONS

We have investigated the nonlinear aspects of the evo-

lution of two-dimensional cellular instabilities in a de-

veloping thermal boundary layer in a porous medium.

This is an extension to the linearised stability analysis

presented in Part I. In general we have found that the

presence of nonlinearities serves to change the follow-

ing features of the evolving disturbance: (i) nonlinear

saturation causes the disturbance to begin to decay

much earlier than is predicted by linear theory; (ii) a

very strong change to the mean temperature profile is

developed; (iii) alternate cells are either compressed

toward the surface by inflow or are pushed away from

the surface by outflow. It was also found that the time

at which nonlinear saturation occurs depends quite

strongly on the initial amplitude and the initiation

time of the disturbance.

Although we have found premature decay of the

evolving disturbance when it is in the nonlinear

regime, the Darcy-Rayleigh number based on the

growing thickness (in terms ofy) of the basic tem-

perature profile continues to grow, and therefore, the

boundary layer continues to become increasingly un-

stable. It is therefore natural to ask how these two

facts might be reconciled. An analogous set of studies

by Rees (2001,2002,2003) on steady free convective

boundary layer instabilities sheds some light on this.

The first paper of these three considers linearized

theory for the onset of streamwise vortex convection

in a near-vertical free convective boundary layer. The

second considers the nonlinear evolution of these vor-

tices, while the third considers how these vortices

are themselves destabilized. The general argument in-

voked is based on the fact that the evolving boundary

layer appears to favour convection cells of aspect ratio

roughly equal to1. As the wave number and, hence,

the wavelength of the cells must remain constant, the

aspect ratio of the evolving cells continues to increase

with distance from the leading edge until they are sub-

stantially different from unity. At this point, a further

disturbance with a substantially lower wave number,

but which is such that its aspect ratio is close to unity

at this later time, will then begin to grow and take

over as the new primary mode. Such a situation may

be termed a subharmonic instability, as the new wave-
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Figure 10. Variation of τnl with τ0 for various values of the wave number,k. The amplitude of the initial disturbance

is A = 10−1. The horizontal lines depict the linear stability criteria given in Fig. 1, while the diagonal line shows where

τnl = τ0
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Figure 11. Effect of different disturbance amplitudes

A on the nonlinear stability criterion fork = 0.06. The

symbols, •, ◦, ∗, ×, and + refer to A = 10−1, 10−3,

10−5, 10−7, and10−9, respectively

length is likely to be double or triple the wavelength

of the original disturbance. We intend to report on this

aspect in future work.
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