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ABSTRACT

In this paper, we analyze the stability of the developing thermal boundary
layer that is induced by suddenly raising the temperature of the lower
horizontal boundary of a uniformly cold semi-infinite porous domain. A
full linear stability analysis is developed, and it is shown that disturbances
are governed by a parabolic system of equations. Numerical solutions
of this system are compared with the neutral stability curve obtained by
approximating the system as an ordinary differential eigenvalue problem.
Different criteria are used to mark the onset of convection of an evolving
disturbance, namely, the maximum disturbance temperature, the surface
rate of heat transfer, and the disturbance energy. It is found that these
different measures yield different neutral curves. We also show that
the disturbances have a favoured evolutionary path in the sense that
disturbances introduced at different times or with different initial profiles
eventually tend toward that common path.
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NOMENCLATURE

E energy of disturbance β expansion coefficient

g gravity δ amplitude of disturbance

i
√−1 η similarity variable

k wave number of disturbance θ nondimensional temperature

K permeability Θ disturbance temperature

L natural length scale µ dynamic viscosity

p pressure ρ density

t time τ scaled time

T dimensional temperature ψ streamfunction

u horizontal velocity Ψ disturbance streamfunction

v vertical velocity

x horizontal coordinate Superscripts and subscripts
y vertical coordinate

∞ ambient/initial conditions

Greek characters ¯ dimensional quantities

c neutral/critical conditions

α thermal diffusivity 0 initial disturbance

INTRODUCTION

Convective flows in porous media are of interest in

many varied situations, such as geothermal energy

resource and oil reservoir modeling. The study of

convection generated by heated horizontal surfaces

embedded in a saturated porous medium has attracted

extensive treatment in recent years. In the present

paper, we are concerned with determining when an

unsteady thermal boundary layer becomes unstable.

Given a semi-infinite saturated porous domain that

is uniformly cold, the lower surface has its temper-

ature raised suddenly and the temperature field then

evolves according to the standard complementary er-

ror function conduction solution, and there is no flow.

However, in this situation, heavy fluid lies over rela-

tively light fluid, and therefore, convective instabilities

may arise. As the onset criterion in other contexts is

given in terms of a Rayleigh number, which is itself

defined in terms of a length scale, it is clear that a

Rayleigh number that is based on the thickness of the

developing hot region increases as time progresses.

Therefore, one would expect to obtain a critical time

for the onset of convection. The questions we wish to

ask are (i) how do the wavelength, shape, and time of

introduction of a thermal disturbance affect the time

at which instability occurs, and (ii) can one define

instability unambiguously?
A closely related topic is the Darcy-Bénard layer,

which is composed of a horizontal layer of uniform

thickness porous material that is saturated with a fluid

and heated from below. Horton and Rogers (1945)
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and Lapwood (1948) were the first to provide linear

stability analyses in order to determine the onset crite-

rion for buoyancy-driven motion in such layers. Both

papers assumed Darcy’s law subject to the Boussinesq

approximation as the mathematical model, and this

simplifies the stability analysis. It is well known that

convection in such an idealized setting takes place

whenever the Darcy-Rayleigh number is above4π2 in

a horizontally unbounded layer and the corresponding

convection pattern at moderately supercritical Darcy-

Rayleigh numbers takes the form of two-dimensional

rolls with a square cross section. Of course, the sit-

uation is more complicated than this in reality, for

disturbances may not contain this preferred pattern

as a Fourier component. In addition, neither Darcy’s

law nor the Boussinesq approximation apply in all

circumstances, and this can affect not only the onset

criterion, but also the pattern of convection that is

observed. For further details, see the review chapter

by Rees (2000) and the lecture notes of Rees (2001a).

The present paper considers the stability of a ther-

mal boundary layer that varies in time but is uniform,

horizontally, rather than a steady one whose thick-

ness varies with distance from a leading edge. In the

porous medium context, many authors have consid-

ered the linearized stability properties of the latter

type of thermal boundary layer. Generally, the basic

convecting state is steady in time but nonuniform in

space. Most attention has been given to either hor-

izontal or generally inclined boundary layer flows.

Although the basic states are self-similar (see the

papers by Cheng and Chang, 1976, and Cheng and

Minkowycz, 1977), they are not spatially uniform.

Therefore, a full linearized stability analysis has to

follow one of the following options: (i) the equa-

tions remain elliptic, (ii) an ad hoc approximation is

made that reduces the elliptic equations to an ordinary

differential eigenvalue form, or (iii) the near-vertical

limit is taken, for which the elliptic equations may

approximated consistently by a parabolic system. To

date, only three papers have followed option (i) and

these are Rees and Bassom (1993), who showed that

two-dimensional instabilities become chaotic imme-

diately for the horizontal boundary layer, and Rees

(1993) and Lewis et al. (1995), who show that the ver-

tical boundary layer is always stable. Option (ii) has

been followed by a very large number of authors (see

the reviews by Rees, 1998 and 2002a, for details) who

have invoked a great variety of extensions to Darcy’s

law. As shown by Storesletten and Rees (1998), such

approximations are inherently self-defeating for the

boundary layer approximation (which assumes thatx,

the distance from the leading edge, is asymptotically

large) is employed to obtain the basic flow, whereas

the neutral distance is computed to be rather small,

and certainly, within a region where the boundary

layer approximation is poor. Finally, option (iii) is a

special case that is peculiar to porous medium bound-

ary layers, for the critical distance recedes from the

origin as the inclination of the heated surface nears

the vertical. Therefore, it has proved possible to get

very detailed and accurate solutions of the resulting

parabolic system of disturbance equations for both the

linearized and fully nonlinear cases, for the bound-

ary layer approximation applies consistently to the

disturbance equations; see Rees (2001b,2002b,2003).

In the present paper, the basic state is computed

exactly, unlike the boundary layer flows reviewed

above. However, all the papers published on this

topic have, to date, introduced approximations that

are similar to option (ii). The main aim here is

to determine the stability properties using a method

closely allied to both options (i) and (iii), and to

compare that to an option (ii) approximation. In other

words, we solve the full linearized stability equations,

which are elliptic in space and parabolic in time,

and compare those results to an approximate ordinary

differential system that corresponds to setting time

derivatives arbitrarily to zero in order to mimic neutral

stability.

The corresponding stability analysis for suddenly

heated clear fluid systems has also been investigated

to a large extent. The first theoretical analysis of a

time-dependent thermal instability problem in a clear
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fluid was by Morton (1957). In the case of rapid

heating from below in a layer of finite thickness,

the basic conduction solution is still time dependent

when buoyancy-driven convection sets in. The clas-

sical B́enard convection problem then corresponds to

when this basic temperature profile has become fully

developed. This kind of thermal instability in fluid

layers was also studied by Foster (1965) who treated

this time dependency as an initial value problem. His

method, called amplification theory, requires both the

initial conditions and an amplification factor to mark

the onset of convection. Another method, called prop-

agation theory, has been used by Hwang and Choi

(1996), Choi et al. (1998), and Kim et al. (1999)

for convection in clear fluids, and by Kim et al.

(2004) for the instability of the flow induced by an

impulsively started rotating cylinder. This theory em-

ploys the thermal penetration depth as a length scaling

factor and then the linearized stability equations are

transformed into self-similar form. This results in an

ordinary differential eigenvalue problem to solve for

the critical time on invoking the principle of the

exchange of stabilities. Bassom and Blennerhassett

(2002) studied impulsively generated convection in a

semi-infinite fluid layer above a heated flat plate con-

sidering both linear and nonlinear stability, where they

used the quasi-steady approximations to generate lin-

ear stability theory neutral curves. They presented the

linear theory results for the temperature profile, which

is generated by a step change in the plate temperature,

an asymptotic solution for strongly nonlinear roll-cell

convection is used for the case of an impulsively

applied heat flux at the plate.

Kaviany (1984) extended the amplification theory

into the porous medium context with the inclusion

of internal heat generation in a finite thickness layer.

Kim et al. (2002) also considered this internal heat

generation problem where the basic state was still

time dependent and employed amplification theory.

Later, Kim et al. (2003) considered what is essentially

the same problem as is investigated here, although

their application is to an oil-saturated medium with

gas diffusion from below. Recently Kim and Kim

(2005) have considered the onset of convection in a

porous layer where the temperature of the lower sur-

face increases linearly with time. Again, amplification

theory is applied.
Unlike the above-mentioned papers, we do not rely

on approximate theory to give a critical time for

the onset of convection in a porous region that is

suddenly heated from below. Rather, we solve the full

linearized disturbance equations numerically in order

to attempt to obtain a neutral curve relating the critical

time and the disturbance wave number. The critical

time is found to depend on a multitude of factors,

including the time, shape, and wave number of the

initiating disturbance and the manner in which one

attempts define instability. The resulting curves are

then compared with the results of approximate theory,

and conclusions are drawn. In general, we find that

convection occurs much earlier than is predicted by

the approximate theories.

GOVERNING EQUATIONS AND BASIC
SOLUTION

We are considering the instability of an initially quies-

cent semi-infinite region of saturated porous medium

at the uniform temperatureT∞, whose lower bound-

ary has its temperature raised suddenly to a new

uniform level Tw. The porous medium is considered

to be homogeneous and isotropic. We assume that the

flow is governed by Darcy’s law modified by the pres-

ence of buoyancy and subject to the Boussinesq ap-

proximation. The fluid and the porous matrix are also

assumed to be in local thermal equilibrium when con-

sidering the thermal energy equation. It is not neces-

sary to consider the fully three-dimensional equations

since the linearized disturbance equations may always

be Fourier decomposed into two-dimensional compo-

nents of the form we consider here. Thus, we begin

our analysis with a two-dimensional system. Thus, the

governing equations of motion and temperature field

for buoyancy-driven convection are expressed as

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0 (1a)
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ū = −K

µ

∂P̄

∂x̄
(1b)

v̄ = −K

µ

∂P̄

∂ȳ
+

ρgβK

µ
(T − T∞) (1c)

∂T

∂t̄
+ ū

∂T

∂x̄
+ v̄

∂T

∂ȳ
= α

(
∂2T

∂x̄2
+

∂2T

∂ȳ2

)
(1d)

In these equations,̄x is the coordinate in the hor-

izontal direction while ȳ is vertically upward. The

corresponding velocities arēu and v̄, respectively. All

the other terms have their usual meaning for porous

medium convection:K is the permeability,µ is the

dynamic viscosity, andρ is the density of the fluid

at the ambient temperatureT = T∞. The heated hor-

izontal surface is held at the temperatureTw, where

Tw > T∞. Finally, the quantitiesg, β, and α are

gravity, the coefficient of cubical expansion, and the

thermal diffusivity of the saturated medium, respec-

tively.
When nondimensionalizing the variables in Eq. (1),

it has been assumed that the porous medium Rayleigh

number,Ra = ρgβKL(Tw − T∞)/µα, has been set

equal to 1. Such an assumption is discussed in some

detail in the review by Rees (1998), and it is equiv-

alent to defining a natural length scale based on the

fluid and matrix properties; thus, a nondimensional

length of precisely 1 is equivalent to the dimensional

lengthL given by

L =
µα

ρgβK(Tw − T∞)
(2)

A rough idea of what this length scale might represent

in practice may be gained by employing the following

data representing water saturating soil at a mean

temperature of 25 K: µ = 8.91× 10−4 kg/ms, α =
1.44 × 10−7 m2/s, ρ = 997 kgm3, g = 9.81 m/s2,

β = 2.6×10−4/K, K = 10−12 m2, Tw−T∞ = 10 K;

this yields a length scale ofL ' 5 m.
Equations (1a)–(1d) may now be nondimension-

alised using the following transformations:

t̄ =
L2

α
t, (x̄, ȳ) = L(x, y), (ū, v̄) =

α

L
(u, v)

P̄ =
αµ

K
p, T = T∞ + ∆T θ (3)

to yield

∂u

∂x
+

∂v

∂y
= 0 (4a)

u = −∂p

∂x
(4b)

v = −∂p

∂y
+ θ (4c)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

∂2θ

∂x2
+

∂2θ

∂y2
(4d)

The appropriate boundary conditions are

y = 0 : v = 0, θ = 1 andy →∞ : v, θ → 0 (4e)

while θ = 0 everywhere fort < 0.

After eliminating the pressurep between Eqs. (4b)

and (4c) and on introducing the streamfunctionψ

defined according to

u = −∂ψ

∂y
and v =

∂ψ

∂x
(5)

then the continuity equation is satisfied, and

Eqs. (4b)–(4d) reduce to the pair

∂2ψ

∂x2
+

∂2ψ

∂y2
=

∂θ

∂x
(6a)

∂θ

∂t
+

∂ψ

∂x

∂θ

∂y
− ∂ψ

∂y

∂θ

∂x
=

∂2θ

∂x2
+

∂2θ

∂y2
(6b)

which are to be solved subject to the boundary condi-

tions,

y = 0 : ψ = 0, θ = 1 and y →∞ : ψ, θ → 0 (6c)

and the initial condition that

ψ = θ = 0 at t = 0 (6d)

Therefore, att = 0, the temperature of the lower

boundary of the semi-infinite region of porous

medium is raised suddenly from0 to 1, where it

remains for allt > 0.
For the basic profile, we note that the equations

may admit solutions that are uniform horizontally.

Given the form of Eq. (6a), anx-independent tem-

perature field yields a no-flow state. Therefore, the
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thermal energy equation of the purely conducting state

is

∂θ

∂t
=

∂2θ

∂y2
(7)

and the analytical solution is

θ = erfc(η) =
2√
π

∫ ∞

η

e−ξ2
dξ (8)

where

η =
y

2
√

t
(9)

In this paper, we choose to consider disturbances to

the basic profile given in (8) by first transforming the

governing equations into the coordinate system(η, τ),
where η is given above, andτ =

√
t. Eqs. (6a) and

(6b) become

4τ
∂2ψ

∂x2
+

1
τ

∂2ψ

∂η2
= 4τ

∂θ

∂x
(10a)

2τ
∂θ

∂τ
+ 2τ

(∂ψ

∂x

∂θ

∂η
− ∂ψ

∂η

∂θ

∂x

)
=

4τ2 ∂2θ

∂x2
+

∂2θ

∂η2
+ 2η

∂θ

∂η
(10b)

We note that the coefficient of∂θ/∂x on the right-

hand side of (10a) plays the role of a Rayleigh

number. The reason is that a Rayleigh number based

on the thickness of the developing thermal boundary

layer is exactly proportional toτ =
√

t. Therefore,

it is clear that the strength of the buoyancy forces

increases as time progresses since the thickness of the

region over which the temperature varies from1 on

the lower boundary to a nominal value, such as0.01,

also increases with time.

PERTURBATION ANALYSIS

We now perturb the basic solution given by (8) and by

ψ = 0 in order to assess the stability properties of the

developing thermal layer. The perturbation is assumed

to be small in magnitude, and therefore, we set

ψ(η, x, τ) = δ
[
iΨ(η, τ)eikx + c.c.

]
(11a)

θ(η, x, τ) = erfcη + δ
[
Θ(η, τ)eikx + c.c.

]
(11b)

where c.c. denotes complex conjugate. Here, the value

k is the horizontal wave number of the roll-like dis-

turbances and their amplitudeδ is assumed to be suf-

ficiently small that higher powers may be neglected.

The resulting linear equations forΨ andΘ are

Ψ′′ − 4τ2k2Ψ = 4τ2kΘ (12a)

2τΘτ=Θ′′+2ηΘ′−4τ2k2Θ− 4√
π

τke−η2
Ψ (12b)

where primes denote derivatives with respect toη.

The boundary conditions to be satisfied by these

disturbances are that

η = 0 : Ψ = Θ = 0 andη →∞ : Ψ, Θ → 0 (12c)

This system of equations is parabolic inτ; and thus an

exact linearized analysis must consist of determining

how disturbances evolve with time after a disturbance

has been initiated. Therefore, Eqs. (12) represent both

an option (i) method and an option (iii) method, as

defined in the Introduction, by being both parabolic

and exact.

It is possible to vary not only the wave numberk

of the disturbance, but also its profile and its initiation

time, denoted byτ0. On the other hand, approximate

theories usually involve neglecting the time derivative,

which results in an ordinary differential eigenvalue

problem for the critical time, as represented byτ

here. Although comparisons between the parabolic

system and the quasi-steady-state approximate system

are made later, it is important to note that the solu-

tions to the approximate steady-state system depend

on whether they or η coordinate is used. The rea-

son for the difference is that the2ηΘ′ term in (12b)

arises from theΘt term when changing coordinates

from y to η. Therefore, the steady-state assumption is

different in the two coordinatesystems.

NEUTRAL CURVES

As already mentioned, Eqs. (12a) and (12b) have

a single τ-derivative, which implies that the linear
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development of disturbances to the basic flow is gov-

erned by a parabolic system. Indeed, whileΘ varies

according to (12b), the streamfunctionΨ reacts in-

stantly to changes toΘ. Therefore, the appropriate

way of analyzing instability must be to introduce a

disturbance into the boundary layer at some point in

time and to monitor its evolution withτ. However, as

a guide to what to expect from such a simulation, we

will obtain a reference neutral curve by neglecting the

τ-derivative in (12b). Therefore, Eqs. (12a) and (12b)

reduce to an ordinary differential eigenvalue problem

for the scaled critical timeτ. This approximate system

is given by

Ψ′′ − 4τ2k2Ψ = 4τ2kΘ (13a)

Θ′′ + 2ηΘ′ − 4τ2k2Θ− 4√
π

τke−η2
Ψ = 0 (13b)

which is to be solved subject to the boundary condi-

tions given in (12c). However, since these boundary

conditions are homogeneous, it is essential to force

a nonzero solution by settingΘ′(0) = 1, for exam-

ple. This extra boundary condition requires an extra

equation given by

τ′ = 0 (14)

A suitably modified version of the Keller-box method

has been used to solve this eigensystem (see Lewis

et al. 1997, for details). Briefly, Eqs. (13) are dis-

cretized using central differences in order to form a

nonlinear set of algebraic equations for the eigenvalue

τ, in terms of the chosen value of the wave number

k. In our computations, we used a uniform grid of

201 points in the range0 ≤ η < 10. The results of

our computations yield the neutral curves, which are

shown in Figs. 1a and 1b.
Figure 1a shows the variation ofτ with τk and

also shows the standard single-minimum curve typical

of most thermoconvective instabilities. The horizontal

coordinate,τk, may be regarded as being a wave

number relative to the developing thickness of the

basic thermal boundary layer that is proportional to

τ. In a different computation, we have determined

that the critical time and its associated wave number,

which is the minimum point on the curve displayed in

Fig. 1a, are given by

τc = 12.944356, kc = 0.069623 (15)

These values were obtained to the given accuracy by

solving (13) augmented by the system obtained by

differentiating (13) with respect tok and by setting

0 2 4 6 8 1 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

0 2 4 6 8 1 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

� � ����

�� ����� ���

Figure 1. Neutral stability curve:a) τc againstτk; b) τc againstk
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∂τ
∂k = 0; in this case, we used a fourth-order Runge-

Kutta code together with a standard shooting method

for this two-point boundary value problem.
Given that k is fixed for any chosen disturbance,

the variation ofτ with k is shown in Fig. 1b. In this

figure, those points that are below and to the right

of the neutral curve correspond to stability, whereas

instability corresponds to points inside the curve. In

practice, of course, time increases and, therefore, this

curve shows that we expect all disturbances to decay

when τ < 12.944356; however, at later times some

disturbances will grow, but only ifk < 0.101053,

which corresponds to the turning point on the right-

hand side of the curve. This maximum value of

k was found using the same Runge-Kutta/shooting

method code, but with Eqs. (13) supplemented by a

system obtained by differentiating (13) with respect

to τ and by setting ∂k
∂τ = 0. It is also clear that

this approximate method predicts that all disturbances

decay whenk > 0.101053.
For this type of approximation, neutrality corre-

sponds to when the wholeθ profile achieves a min-

imum value as eitherτ or t increases. This is, of

course, an artificial constraint, and has the effect

of ‘stiffening’ the system of equations, thereby giv-

ing conservative estimates of the critical time. On

the other hand, a solution of the full parabolic sys-

tem allows the temperature profile to evolve freely

subject to no constraints other than the boundary con-

ditions. Therefore, it is ana priori expectation that

the parabolic simulation will yield instability at earlier

times, and will yield a larger region of instability.

PARABOLIC SIMULATIONS

The rest of the present paper is devoted to the pre-

sentation of solutions of the full linearized disturbance

Equations (12) and discussion of their significance.

Stability characteristics inferred from these solutions

will also be compared with the quasi-steady stability

analysis shown in Fig. 1.
Parabolic simulations of the system given by

Eqs. (12) were undertaken using the Keller-box

method, first introduced by Keller and Cebeci (1971).

However, we use a backward difference discretization

in τ, rather than a central difference approximation,

in order to maximize numerical stability. In the com-

putation, uniform grids in both theτ and η direc-

tions were used with 991 intervals specified in the

range 0 ≤ τ ≤ 100 and 201 intervals in the range

0 ≤ η ≤ 10. The general procedure we followed was

to introduce an initial disturbance profile for the tem-

perature field at a chosen initiation timeτ0 and with

a specified wave numberk. We note that the corre-

sponding initial Ψ profile is given uniquely by the

solution of Eq. (12a).

As our aim here is to study the stability character-

istics of the thermal boundary layer after introducing

thermal disturbances, we are interested in the manner

in which the cells evolve in time as a function of the

initiation time of the disturbance, its initial spanwise

profile, and its wave number. Our datum case is the

temperature profile,Θ = ηe−3η, which is introduced

at τ0 = 1, a time that is well before instability is ex-

pected to occur. In turn, we shall alter the profiles, the

wave numbers, and initiation times in order to gain

a comprehensive picture of the stability characteristics

of the developing thermal field.

The status of the evolving disturbances

(i.e., whether they are decaying or growing) was

monitored by the computation of the following quan-

tities: (i) the maximum temperature, (ii) the surface

rate of heat transfer, and (iii) the thermal energy of the

disturbance. For (i) the maximum temperature at each

scaled timeτ was obtained by locating the maximum

value over all grid points, fitting a parabolic curve to

that point and its two nearest neighbours and finding

the maximum value on that curve. For (ii), the surface

rate of heat transfer is measured in terms of bothΘy

andΘη at η = 0. Finally, for (iii), the thermal energy

of the disturbance is defined according to

E = 1
2

∫ ∞

0

Θ dy = τ

∫ ∞

0

Θ dη (16)

We note that all three of these measures yield iden-

tical results for spatially uniform, steady basic states,
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such as for the classical Bénard problem and its

analogous porous medium problem, the Darcy-Bénard

layer. But we will show that these measures give

different results for the present unsteady basic state.

Figure 2 shows the evolution withτ of the distur-

bance shapes,Θcos kx and Ψsin kx, for the datum

initial profile with k = 0.06 andτ0 = 10. Each frame

displays contours corresponding to 20 equally spaced

subintervals between their respective maximum and

minimum values. The isotherms and streamlines are

displayed in both(x, y)-space and(x, η)-space.

Figures (2a) and (2b) show the isotherms and

streamlines, respectively, in(x, y)-space. The heights

of the individual frames correspond to the full com-

putational and physical domain,0 ≤ η ≤ 5 in

this case (although the remainder of the paper uses

0 ≤ η ≤ 10), and the aspect ratios shown have unit

distances in each direction correspond to the same

distances within the figure. In theτ = 20 case, for ex-

ample, the horizontal scale isxmax = 2π/k ' 104.7
while ymax = 2ηmaxτ = 100, and the flow domain

has almost exactly a unit aspect ratio.

Figures (2a) and (2b) clearly show that the thick-

ness of both the temperature and velocity disturbances

increase in size as time progresses. This, perhaps, is

not surprising becous the thickness of the thermal

boundary layer increases with time and because the

fluid is not bounded above. However, when viewed

in (x, η)-space, it is clear that the disturbance tends

to compress slightly toward the heated surface asτ

increases. The compression may be understood in re-

lation to the fact that Eq. (12b) includes the term

−4τ2k2Θ. When τk is large, the magnitude of this

term must balance with the highest derivative term,

Θ′′. This means that the thickness of the developing

disturbance must be ofO(τ−1) in terms of theη co-

ordinate. In terms ofy, this means that the disturbance

tends toward a uniform thickness at very large times.

Figures 3a and 3b represent the evolution of the

disturbance energiesE for different values ofk sat-

isfying k ≤ 0.07 and k > 0.07, respectively. The

initiation time is againτ0 = 1. The critical values of

τ, which are the maxima and minima on each curve,

are also emphasized using filled circles in order to

indicate clearly howτc varies with k. For all wave

numbers, the disturbance energy decays at first in a

manner that is independent of the wave number. The

reason for this is that (12b) may be approximated by

2τΘτ = Θ′′ + 2ηΘ′ (17)

when τk is small, and therefore, the initial evolution

is not a function ofk. At later times, whenτk is no

longer small, the disturbance energy becomes highly

dependent on the value ofk.

Focusing now on the critical times, Fig. 3a shows

that the critical value ofτ, τc, is a decreasing function

of k when k is less than or equal to roughly0.07.

At higher wave numbers,τc increases ask increases,

which is seen in Fig. 3b. Very similar curves may

be drawn for the other measures of the strength of

the disturbance, and these are omitted for the sake

of brevity. However, the resulting data have been

used to construct neutral curves based on the various

measures. Figures 4a and 4b show such curves for

τ0 = 1 andτ0 = 10, respectively.

In Fig. 4a, it is clear that the different measures

yield different stability criteria. In all but one of the

four measures, the region of instability is larger than

that given by the approximate theory. As mentioned

earlier, the approximate theory relies on the whole

thermal profile reaching a minimum amplitude si-

multaneously, a strong restriction. The heat transfer

measures are local measures and may not necessarily

account fully for the global evolution of the distur-

bance with time, such as different internal variations

of the temperature profile. The thermal energy mea-

sure is a global measure, and this yields the largest

region of instability. Careful computations using much

smaller steps inτ and finely graded values ofk yield

the following minimum values:

τc = 8.9018, kc = 0.07807 (18)

These values should be compared with those given

in (15), which correspond to quasi-steady approxi-

mate theory. Although there is some difference in the

Electronic Data Center, http://edata-center.com Downloaded 2007-4-25 from IP 84.70.46.66 by Andrew Rees



10 Selim and Rees

� � �� �� �� �� �� ���

�	


��


� � �� �� �� �� �� ���

�	


��


� � �

� � 


� � �

� � 


Figure 2. Disturbance isotherms and streamlines corresponding to the wave numberk = 0.06 for various values ofτ with
τ0 = 10: a) isotherms in(x, y); b) streamlines in(x, y); c) isotherms in(x, η); andd) streamlines in(x, η)
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Figure 3. Variation of ln E againstτ for different values ofk. The symbol• denotes maximum and minimum values ofE:
a) k = 0.001, 0.005, 0.01, 0.02,...,0.07; b) k = 0.09, 0.10, 0.11,...,0.20

critical wave numbers, the neutral curves are fairly

flat near their minima, and therefore, the discrepancy

between the critical wave numbers is unlikely to be

of great significance. On the other hand, given that

t = τ2, the critical times obtained from (15) and (18)

are167.56 and78.24, respectively. Therefore, there is

a very large discrepancy between the approximate and

the exact theories in this regard.
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Figure 4. Neutral stability giving τc as a function ofk. The continuous curve represents the approximate theory as
displayed in Fig. 1b. The symbol¦ represents the thermal energy stability criterion. The symbols• and + represent the
surface heat flux criterion in terms ofη andy, respectively. The symbol̈ represents the maximum temperature criterion. The
disturbance is introduced ata) τ0 = 1 andb) τ0 = 10
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Figure 4b shows the modifications to the neutral

points brought about by changingτ0 from 1 to 10.

Once more, the energy measure yields the largest

region of instability, but the primary effect of a later

initiation time is that the instability is suppressed and

occurs later. This observation quite naturally leads to

the question of the role played by the initiation time,

and since the disturbance profile varies withτ, by the

initial profile shape.

Figure 5a shows the evolution of the disturbance

energy corresponding to the initiation times,τ0 =
1, 2, ..., 15 for the fixed wave numberk = 0.085. The

values ofτc are also depicted using filled circles. This

figure shows that each curve has its maximum value

at the same value ofτ whenever the disturbance is

introduced within the chosen range of initiation times,

but that the minima, which correspond to the onset

of convection, vary withτ0. A closer look at Fig. 5a

suggests that the onset time hardly varies withτ0

whenτ0 ≤ 5, which suggests that the disturbance now

has sufficient time to evolve into a common solution

trajectory by the onset time whenτ0 is sufficiently

small.

An alternative view of Fig. 5a is given in Fig. 5b,

where the energies are normalized to have the same

values atτ = 20; this is a valid process since lin-

earized theory takes no account of absolute magni-

tudes. This figure shows more clearly the effect of the

different initiation times, and the common trajectory,

which is taken once transients caused by the arbitrary

choice of initial condition have died out. Although we

do not show it, it is clear that an initiation time that

is later than the time corresponding to the maxima in

Figs. 5a and 5b results in a disturbance that decays.

Turning our attention to different disturbance

shapes, we now consider thermal disturbances in the

form ηe−(η−η0)
2

where η0 denotes the midpoint of

the disturbance. Therefore, we are able to define dis-

turbances that are centered in the region outside the

basic thermal boundary layer. These disturbances are

initiated atτ0 = 1 for k = 0.1. Figure 6 shows how

the evolving temperature profile varies withτ when

η0 = 6. This case, which is typical, shows that dis-

turbances that are detached from the heated surface

migrate quickly toward the surface. For the particular

case chosen, this process takes place in the very short

time interval1 < τ < 3. A similar behaviour ensues

for other choices ofη0.

Although the distubance migrates quickly toward

the hot surface, the shape of the disturbance takes
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Figure 5. Variation of ln E againstτ for disturbances introduced at various values ofτ0. The disturbance wave number is
k = 0.085: a) Computedln E curves;b) normalizedln E curves
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Figure 6. Contours in(x, η)-space of the thermal disturbance profile at different times. The initial disturbance takes the

form ηe−(η−6)2 , is introduced atτ0 = 1, and has wave numberk = 0.1

longer to attain than that of the common trajectory.

The approach to the common trajectory for different

values ofη0 is shown in Fig. 7 forη0 = 0, 2, 4, and6.

Figure 7a shows the computed thermal energies while

Fig. 7b shows the normalized energies. The decay

of transients is essentially complete, and the energy

curves are virtually identical just before the neutral

time at τ ' 10. It is important to note that there are

spurious maxima at small values ofτ shown in Fig. 7

for the casesη0 = 4, 6. These maxima should not be

interpreted as marking the transition from instability

to stability. Rather, given the form of thermal profiles

shown in Fig. 6, we see that the disturbance elongates

in the η direction as it moves toward the heated sur-

face, and this causes the apparent rise in the energy.

In this context, it is important to note that the corre-

sponding surface heat transfer curves would show a

much larger initial increase asτ increases fromτ0 be-

cause the initial large-η0 disturbances have negligible

surface heat transfer until the disturbance approaches

the surface. Therefore, the spurious instability will

appear to be much stronger when considering the sur-

face rate of heat transfer as the basis of a stability

criterion.
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Figure 7. Variation of ln E againstτ for initial disturbances of the formηe−(η−η0)2 for η0 = 0, 2, 4 and6: a) Computed
ln E curves;b) normalizedln E curves
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DISCUSSION AND CONCLUSIONS

In this paper, we have sought to understand the stabil-

ity characteristics of the conductive thermal boundary

layer, which arises above a suddenly heated horizon-

tal surface in a porous medium. To this end, we

have developed both an approximate theory and an

exact theory. In the latter case, various measures of

the amplitude of the evolving disturbance have been

proposed and used.

We have found that the approximate theory gives

a typically shaped neutral curve for which there is a

maximum wave number above which all disturbances

decay with time. The minimum time before which

disturbances may grow, under the constraints of the

approximate theory, is given in Eq. (15). However, we

cannot compare this result to that of Kim et al. (2003)

who undertook the study of what is essentially the

same mathematical problem, although the application

cited was one of mass diffusion, rather than thermal

diffusion. The minimum critical time computed by

Kim et al. (2003) and its associated wave number are

given by

τc = 7.2662, kc = 0.07426 (19)

where we have presented the data in our notation and

have recomputed their values in order to have more

significant figures. These values are quite different

from those given in (15), but the reason for this is

that Kim et al. (2003) used slightly different boundary

conditions. Although the temperature perturbation is

zero ony = 0, they invoke a ‘stress-free’ boundary

condition, ∂v/∂y = 0, which may be translated into

∂ψ/∂y = 0 in the present context. Thus their con-

figuration corresponds to a horizontal surface through

which the fluid disturbance may pass vertically, but

which has a zero disturbance temperature. It is dif-

ficult to see how this condition might be set up in

practice, but it does mean that their work and ours

cannot be compared directly.

In general, for the full parabolic simulations, we

have found that the initial shape and the initiation

time have no effect on the transition from stability to

instability, i.e. on the critical time, but only if the initi-

ation time is sufficiently early that the disturbance has

evolved to a common evolutionary trajectory. We have

also found that there is some degree of arbitrariness

in defining what is meant by instability in an evolving

context for different measures of the amplitude of the

disturbance give different neutral curves. Indeed, we

have shown that the thermal energy measure yields a

critical time which is much earlier than those obtained

using either quasi-static theory or other measures of

the strength of the evolving disturbance. In addition,

and perhaps more importantly, the energy criterion is

a global criterion and we would regard it as being

more well-suited as a measure of the overall evolution

of the disturbance. Therefore we would suggest that

the energy criterion should be used as the measure of

the amplitude of the evolving disturbance in unsteady

basic flows.

It is now possible to extend the present work to the

following situations: (i) Darcy-Brinkman convection,

(ii) cases where local thermal nonequilibrium applies

and (iii) double diffusive cases. The third situation

will be of the most interest, for in the Darcy-Bénard

context there are parameter regimes whether the most

unstable mode undergoes a Hopf bifurcation at on-

set. Thus there is the possibility of novel qualitative

effects.

However, our present aim is to extend the above

work into the nonlinear regime. The authors have

developed a nonlinear two-dimensional code to study

the evolution of large amplitude disturbances. That

analysis may be found in Selim & Rees (2007), but

work on three-dimensional instabilities is ongoing.
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