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Abstract

Numerical methods are used to solve the finite volume formulation of the two-dimensional mass, momentum and energy equations
for steady-state natural convection inside a square enclosure. The enclosure consists of adiabatic horizontal walls and differentially
heated vertical walls, but it also contains an adiabatic centrally-placed solid block. The aim of the study is to delineate the effect of such
a block on the flow and temperature fields. The parametric study covers the range 103

6 Ra 6 106 and is done at three Pr namely, 0.071,
0.71 and 7.1. In addition the effect of increasing the size (characterized by the solidity U) of the adiabatic block is ascertained. It is found
that the wall heat transfer increases, with increase in the U, until it reaches a critical value U = UOPT, where the wall heat transfer attains
its maximum. Further increases in the block size beyond UOPT, reduces the wall heat transfer, for as the block size becomes larger than
the conduction dominant core size it reduces the thermal mass of the convecting fluid. A steady-state heat transfer enhancement of 10% is
observed for certain Ra and Pr values. Useful correlations predicting this optimum block size and the corresponding maximum heat
transfer as a function of Ra and Pr are proposed; these predict within ±3%, the numerical results.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in side wall heated square cavities
has been studied widely for its various applications in engi-
neering and geo-physical systems [1–4]. Heat transfer in an
enclosure with a centered body also finds direct applica-
tions in the construction of buildings with natural cooling
flow. In such enclosure configurations there is a stagnant
core of the fluid that does not participate in the convection
heat transfer across the enclosure side walls [5]. In fact, the
presence of this stagnant core impedes the convective flow
inside the enclosure by its vertical heat conduction poten-
tial and it reduces the average steady-state wall heat trans-
fer crossing the enclosure side walls, which are kept at a
fixed temperature difference. If this vertical heat conduc-
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tion in the core is prevented completely, a corresponding
steady-state heat transfer enhancement may be observed
across the enclosure side walls kept at a fixed temperature
difference. For instance, the work reported in [5], deals with
the qualitative effects of a centered solid body of different
conductivities on the enclosure convection heat transfer.
However, the exact quantification of the resulting heat
transfer increase and the effect of different Prandtl numbers
were not studied in the work. Convection in enclosures
containing blocks has gained recent research significance
as a means of heat transfer enhancement [6], for delineating
porous medium behavior [7] and for analyzing enclosure
convection with finite size conducting blocks [8]. Steady
natural convection processes have been investigated in [9]
when a temperature difference exists across the enclosure
and, at the same time, a conducting body generates heat
within the enclosure. A comprehensive numerical study is
performed in [10] to investigate the transient heat transfer
and flow characteristics of the natural convection of three
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Nomenclature

A total area of the enclosure, m2

BMAX maximum length scale used to define the stag-
nant core in the X direction

cP specific heat of the fluid, J/kg-K
Case 1 results pertaining to when the adiabatic block is

absent
Case 2 results pertaining to when the adiabatic block is

present
H characteristic dimension of the square enclosure,

m
ks thermal conductivity of the solid, W/m-K
kf thermal conductivity of the fluid, W/m-K
K ratio of fluid to solid (block) thermal conductiv-

ity kf/ks, Table 2a and b
L characteristic dimension of the square adiabatic

block, m
Nu Nusselt number based on enclosure length scale,

Eq. (10)
p pressure, Pa
P dimensionless pressure, Eq. (5)
Pr Prandtl number, Eq. (6)
q00 heat flux crossing the enclosure side wall, W/m2

Q heat flux enhancement parameter, q001=q002
Ra Rayleigh number based on H, Eq. (6)
T temperature, K
u, v local velocities along x and y directions, m/s

U, V dimensionless fluid velocities, uH/a, vH/a
WMAX maximum length scale used to define the stag-

nant core in the Y direction
WMIN minimum length scale used to define the stag-

nant core in the Y direction
X, Y dimensionless Cartesian coordinates, x/H, y/H

Greek symbols

a diffusivity of the fluid, k/qcP, m2/s
d local hydrodynamic boundary layer thickness,

(�HPr1/2Ra�1/4, cf. [4] p. 224)
dT local thermal boundary layer thickness,

(�HRa�1/4, cf. [4] p. 223)
q density of the fluid, kg/m3

h dimensionless temperature
U solidity of the enclosure = Ab/A = L2, Fig. 1

Subscripts
1 Case 1, without adiabatic block
2 Case 2, with adiabatic block
b adiabatic block
bottom bottom face of the adiabatic block
c cold value
h hot value
top top face of the adiabatic block
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different fluids in a vertical square enclosure within which a
centered, square, heat-conducting body generates heat.
Heat transfer enhancement within enclosures has also been
addressed in [11,12] and in [13], without and with partitions
respectively.
Y

X

U=0, 
V=0, 
θ = θh

U=0, V=0, dθ/dY=0

U=0, 
V=0,
θ = θc

U=0, V=0, dθ/dY=0

U=0, V=0, dθ/dN=0

g
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H

Fig. 1. Schematic of the problem with the domain and boundary
conditions used (a) Case 1: square enclosure with top and bottom walls
horizontal and side walls differentially heated and (b) Case 2: the same
square enclosure with an adiabatic block placed at the centre.
In the present paper, we investigate the effect on the
steady-state natural convection heat transfer enhancement
of a centrally-placed adiabatic block within a differentially
heated square cavity with a fixed temperature drop between
the vertical walls.

2. Problem statement

The schematic of the problem is shown in Fig. 1. The
square enclosure with adiabatic top and bottom walls is
differentially heated from the sides, with the right hand wall
held at the uniform temperature of Tc which is lower than
Th, the temperature of the left hand wall. Two cases are
considered: Case 1, is the square enclosure of Fig. 1 minus
the block and filled completely only with the convection
fluid Case 2, shown in Fig. 1, is an enclosure with an adia-
batic block placed at the center and the remaining area
filled completely with the convecting fluid.

On defining a solidity parameter as the ratio of the area
of the adiabatic block and that of the total enclosure vol-
ume, / = Ab/A, the effect of different values of / on the
steady-state heat transfer enhancement Q ¼ q001=q002, is stud-
ied in detail for Ra lying between 103 and 106. This was
done for the following three values of the Prandtl numbers,
Pr = 0.071 (mercury), Pr = 0.71 (air) and Pr = 7.1 (water),
thereby covering all the three limits of the Prandtl number



Table 1
Validation of present Nu versus Ra results with published results for
Pr = 0.71

Ra Present
(100 · 100)

de Vahl
Davies [16]

House [5] Lage and
Merrikh [17]

104 1.111 1.118 1.118
105 2.24 2.243 2.254 2.244
106 4.502 4.519 4.561 4.536
107 8.85 8.8 8.923 8.86

Table 2a
Grid independence results for enclosure Nu (Eq. (9)) with a conducting
block in Fig. 1

Ra / K 80 · 80 100 · 100 120 · 120

106 0.5 0.2 4.648 4.645 4.643
106 0.5 5.0 4.341 4.338 4.337
107 0.9 0.2 2.321 2.326 2.325

Table 2b
Validation of the present Nu (Eq. (9)) results with a conducting block in
Fig. 1

Ra / K Present House [5] Lage and Merrikh [17]

106 0.5 0.2 4.645 4.624 4.605
106 0.5 5.0 4.338 4.324 4.28
107 0.9 0.2 2.326 2.402 2.352
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range (Pr < 1, �1 and >1). A suitable theory is also devel-
oped, to predict the heat transfer between the enclosure
side walls, in the presence of the adiabatic block.

3. Analysis

The governing two-dimensional mass, momentum and
energy conservation equations of the problem are defined
in non-dimensional form as follows:

oU
oX
þ oV

oY
¼ 0; ð1Þ

U
oU
oX
þ V

oU
oY
¼ � oP

oX
þ Pr

o2U

oX 2
þ o2U

oY 2

� �
; ð2Þ

U
oV
oX
þ V

oV
oY
¼ � oP

oY
þ Pr

o2V

oX 2
þ o2V

oY 2

� �
þ RaPrh; ð3Þ

U
oh
oY
þ V

oh
oY
¼ o2h

oX 2
þ o2h

oY 2

� �
; ð4Þ

where the non-dimensional variables used in Eqs. (1)–(4)
are defined as

U ¼ uH=a; V ¼ vH=a; X ¼ x=H ; Y ¼ y=H ;

P ¼ ðp � p1ÞH 2=qa2; h ¼ ðT � T cÞ=ðT h � T cÞ ð5Þ

and

Ra ¼ qgbH 3ðT max � T minÞ=la; Pr ¼ m=a: ð6Þ
Further, in writing the conservation equations (1)–(4),

the fluid properties are assumed to be constant except for
the Boussinesq correction for the density in Eq. (3), where
the gravity vector is assumed to act downward, as shown in
Fig. 1 and p1 in Eq. (5) is a reference pressure. The appro-
priate boundary conditions (also shown in Fig. 1) used to
solve Eq. (1)–(4) inside the enclosure are given as

X ¼ 0; U ¼ V ¼ 0; h ¼ 1;

X ¼ 1; U ¼ V ¼ 0; h ¼ 0;

Y ¼ 0; U ¼ V ¼ 0; oh=oY ¼ 0;

Y ¼ 1; U ¼ V ¼ 0; oh=oY ¼ 0:

ð7Þ

For the adiabatic block surface, the following generic
boundary condition is used

U ¼ V ¼ 0; and oh=oN ¼ 0; ð8Þ
where N is the direction normal to the surface of the adia-
batic block in Fig. 1.

The numerical code used here was validated by compar-
ing its results with benchmark solutions. More specifically
the rate of heat transfer across the walls of the enclosure
both with and without the adiabatic block in place was
quantified using a wall surface averaged Nusselt number
based on the enclosure length scale (H) which is defined as,

jNuhj ¼ Nuc ¼
Z 1 oh

oX
dY : ð9Þ
0

In addition the heat transfer enhancement caused by the
presence of the adiabatic block was characterized using the
ratio,

Q ¼ Nuh;case2=Nuh;case1 ¼ q002=q001 ð10Þ
where the variables are defined in the nomenclature.

4. Numerical procedure

The numerical solution of the governing Eq. (1)–(4) was
obtained by means of the control volume approach using
the SIMPLER algorithm [14] with the QUICK scheme
[15]. The results of the code used are first compared with
the benchmark solutions [5,16,17] for a fluid of Pr = 0.71
(air), and they were found to agree with an accuracy of
0.4%.

The comparison of the results, for both Case 1 and Case
2 is given in Table 1 and Table 2 (a and b), respectively.
The chosen grid size was decided by a grid independence
study for each Pr used. The results of such a test for
Pr = 0.71 is presented in Table 2a. From Table 2a it is
observed that the relative error in Nu (calculated using
Eq. (9)) has been reduced from 0.2% when going from a
80 · 80 grid to 100 · 100 grid to 0.04% while going from
100 · 100 to 120 · 120 grid. The final grid size used is a uni-
form 100 · 100 mesh, as shown in Fig. 2, using which all
the results were generated for all three values of the Prandtl
number. The grid is refined until the variation in the enclo-
sure energy balance (found using the change in the Nusselt



Fig. 2. Grid used for numerical simulations (a) Case 1 and (b) Case 2.
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number obtained using Eq. (9)) was under 0.1%. The final
convergence criterion between two successive iterations for
the residual variation was set to 10�6 for both the continu-
ity and momentum equations, and 10�8 for the energy
equation.

5. Results and discussion

In all the streamline and isotherm plots there are 10
intervals represented by isolines with the labels 1–9 corre-
sponding to tenths of the total variation between the
respective maximum and minimum values. Fig. 3 shows
the enclosure isotherms and streamlines when Pr = 7.1
for 103

6 Ra 6 106 in the absence of the adiabatic block
(Case1). The aim of this figure is to determine a definition
of the size of the core of the fluid. The streamline w =
0.9wmax in the centre of Fig. 3(b), (d), (f) and (h) indicates
roughly the extent of the core of the fluid which is not par-
ticipating in the convection of heat across the enclosure. In
other words, the corresponding local velocity value would
yield a local Peclet number (=uH/a) of the order of one,
suggesting in an order of magnitude sense, a conduction
dominant zone. This conduction dominant maximum fluid
core size is henceforth defined as a rectangular region
(requiring at the most, only two length scales to define
it), whose exterior boundary is the smallest one which con-
tains completely the isoline,

w ¼ 0:9wmax; ð11Þ
where wmax is the maximum value of the stream function in
the enclosure. Although this definition is arbitrary, it is
clear from the isotherm plots shown in Fig. 3(a), (c), (e)
and (g) that heat conduction takes place vertically within
this region and does not contribute to the steady-state
wall-to-wall convection heat transfer. Therefore the effect
of this conduction dominant core is to subtract a portion
of the longitudinal wall to wall heat transfer by vertical
cross conduction of heat (inferred from the horizontal nat-
ure of the isotherms in (a), (c), (e) and (g) in Fig. 3), hence
reducing the net heat flux that can be transferred across the
vertical walls, maintained at a fixed temperature difference.

Further, as the Ra increases (compare (a) and (b) with
(c) and (d), for instance), the size of the stagnant core is
observed to increase in size, especially in the horizontal
direction. This is to be expected because it is known that,
for Pr > 1, the boundary layer thickness d near the isother-
mal vertical walls decreases with increasing values of Ra

according to d � HPr1/2Ra�1/4 ([4] p. 224). The boundary
layers coating the top and bottom adiabatic walls are not
under the direct influence of a buoyancy force and exhibit
only a weak ‘growth’ due to the increased flow rate for
increasing Ra. In light of the above explanation, two length
scales marked as BMAX and WMAX respectively are used in
Fig. 3 to delineate the size of the core defined by w =
0.9wmax. However, it is worth noting that for Ra = 105

and 106, the w = 0.9wmax curve is no longer of simple con-
cave shape and it requires at least another length scale
marked WMIN in Fig. 3(e) through (h). Obviously, as seen
from all the isotherms of Fig. 3, the magnitude of vertical
heat conduction effect is governed more by WMAX than
by WMIN.

Fig. 4 shows the effect of different values of Pr on the
core size and shape when Ra = 106. Using the local veloc-
ities at w = 0.9.wmax, Eq. (11), from the simulation results
for the case of Pr = 0.071 and Ra = 106, it was observed
that the local Pe value is 2.4, clearly demarcating a conduc-
tion dominant core and also justifying the criterion defined
in Eq. (11) to predict the same. It may also be observed that
the core shape for Pr = 0.071, ((b) in Fig. 4) requires only
two length scales, BMAX and WMAX respectively, while the
cases for Pr = 0.71 and 7.1 ((d) and (f) respectively in
Fig. 4) require the third value, WMIN, to express their spa-
tial extent. By comparing the cores for the all the three Pr
values it is evident that the core size for Pr = 0.71 is less
than that for Pr = 7.1. The core corresponding to Pr =
7.1 is the most stretched with BMAX, WMAX and WMIN tak-
ing different values, while the core for the Pr = 0.071 value



Fig. 3. Isotherms and streamlines respectively for Case 1 with Pr = 7.1 (a) and (b) Ra = 103, (c) and (d) = 104, (e) and (f) = 105, (g) and (h) = 106

respectively.

P. Bhave et al. / International Journal of Heat and Mass Transfer 49 (2006) 3807–3818 3811



Fig. 4. The effect of different Prandtl numbers on the isotherms and streamlines for Case 1 with Ra = 106 (a) and (b) Pr = 0.071, (c) and (d) = 0.71, (e) and
(f) = 7.1, respectively.

Table 3
Values of BMAX, WMAX, and WMIN for several Ra and Pr

Ra Pr = 0.071 Pr = 0.71 Pr = 7.1

BMAX WMAX WMIN BMAX WMAX WMIN BMAX WMAX WMIN

104 0.296 0.284 0.284 0.334 0.252 0.252 0.34 0.248 0.248
105 0.586 0.574 0.308 0.63 0.452 0.236 0.618 0.31 0.236
106 0.737 0.746 0.389 0.804 0.656 0.298 0.792 0.464 0.276
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Fig. 5. Isotherms and streamlines respectively for Ra = 104 and Pr = 0.71: Case 1 in (a) and (b); Case 2 in (c) and (d) with U (%) = 0.16, (e) and (f)
U = 0.9216, (g) and (h) = 1.8, (i) and (j) U = 5, (k) and (l) U = 10, respectively.
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Fig. 5 (continued)

Fig. 6. Variation of the heat flux enhancement parameter, Q, with the
adiabatic block size (U) for Ra = 104, and Pr = 0.71.
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exhibits BMAX �WMAX, and is roughly square. This is also
supported from the actual numerical values of these three
length scales shown in Table 3, obtained from the numeri-
cal simulations for several Ra and Pr values.

It is worth keeping in mind that the length scale BMAX

of the cores shown in Fig. 4 may also be estimated in an
order-of-magnitude sense using the length scales for the
hydrodynamic and thermal boundary layers for the various
values of Pr. For instance, when Pr P 1, BMAX � (H � 2d)
and when Pr < 1, BMAX � (H � 2dT). The BMAX values
given in Table 3 are consistent with these estimates.

The shape of the cores in Fig. 4, in particular for
Pr = 0.071, suggests that one should use an adiabatic block
of square shape in order to prevent the vertical heat con-
duction effect within convecting enclosures. Fig. 5 displays
the isotherms and streamlines for Ra = 104 and Pr = 0.71
for an enclosure without the adiabatic block (Case 1) and
with the adiabatic block (Case 2) for a variety of block
sizes. The vertical heat conduction across the conduction
dominant core seen in (a) and (b) is hardly altered by the
presence of a block which is much smaller than the core,
as shown in Fig. 5(c) and (d). For a larger block, but one
which remains smaller than the size of the core, Fig. 5(e)
and (f) show that the presence of the adiabatic block tends
to ‘‘pull’’ the isotherms together thus preventing vertical
heat conduction across the conduction dominant core.
The vertical heat conduction across the square block of
length L can be estimated as Qcond � kf[Ttop � Tbottom]. It
is clear that the effect of the increase in block size (L) is
to cause Ttop! TH and Tbottom! TC (as seen in Fig. 5a)
thus increasing the wall heat transfer, as the lateral heat
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transfer ‘‘prevented’’ by the block has to leave the enclo-
sure across the side walls. However this happens only until
L �WMAX (Fig. 5(i) and (j)) and beyond this as L >
WMAX (Fig. 5(k) and (l)), the adiabatic block continues
to prevent a larger contribution of lateral conduction from
top to bottom. Nevertheless, it also removes a portion of
the convecting fluid itself, resulting in the loss of a wall-
to-wall convection enthalpy of greater magnitude than
the vertical heat conduction that is prevented from Case
1. The net effect is thus a decrease in the wall heat transfer.
The variation of the rate of heat transfer with U for the
above situation is summarized in Fig. 6, where the ordinate
is defined using Eq. (10) while the abscissa is U, (=L2). The
maximum heat transfer enhancement QMAX occurs when U
UOPT. This optimum corresponds to a block size, L, where
U = L2, which is such that L �WMAX; this result appears
to be independent of values of Ra and Pr.

The effect of an optimum block size on the isotherms
and streamlines is shown in Fig. 7 for Pr = 0.071 and
Ra = 106. As the conduction dominant core of Pr =
Fig. 7. Isotherms and streamlines respectively for Ra = 106 and P
0.071 is governed by a single length scale (since
BMAX �WMAX), the vertical heat conduction effect is
minimized in Fig. 7(b) by using a square block of size
LOPT �WMAX. Observe in this situation of BMAX �
WMAX, the square block of LOPT does not invade and
replace the originally convecting fluid in Case 1 ((a) and
(c) in Fig. 7). However, the isotherms are seen easily to
be more compressed when the block is present than when
it is absent.

The requirement of a single length scale to delineate the
core, as is the case above when Pr = 0.071, is not true when
Pr = 7.1, as shown in Fig. 8, where the core is governed at
least by two length scales (BMAX > WMAX) and is clearly
rectangular. A square block of single length scale L would
invade and replace the originally convecting fluid in the
transverse direction (core governed by WMAX), before it
can replace the conduction dominant core in the longitudi-
nal direction (core governed by BMAX). A better block
shape for this situation to prevent vertical heat conduction
could be of rectangular cross section. However, for
r = 0.071: Case 1 in (a), (c) and Case 2 with UOPT in (b), (d).



Fig. 9. Variation of heat flux enhancement parameter, Q, with adiabatic
block size, U, for different values of Ra for Pr = 0.071.

Fig. 8. Isotherms and streamlines respectively for Ra = 106 and Pr = 7.1 Case 1 in (a) and (c); Case 2 for UOPT in (b) and (d).
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completeness and clarity we restrict ourselves to using
blocks with square cross section. Strong vertical heat con-
duction effects can be seen in Fig. 8(a), from the horizontal
nature of the streamlines, most of which is prevented by
insertion of the adiabatic block, as can be seen from
Fig. 8(b). The isotherms have again been compressed and
thus the vertical heat conduction prevented. Fig. 8(c) shows
that there is a certain amount of distortion in the stream-
lines, and that the core is not perfectly rectangular. Inser-
tion of the block forces the flow into the ‘‘channel’’
between the block and the enclosure walls.

Fig. 9 shows the effect of different values of Ra on the
heat transfer enhancement and the corresponding optimum
block size required for a Pr = 0.071 fluid. It is shown that
UOPT increases with increasing Ra because of the increase
in the size of the stagnant fluid core in Case 1 as shown
by the behavior of the streamlines in Fig. 3. The increase
in UOPT may also be explained by appealing to the expres-
sion for the thickness of the steady-state thermal boundary
layer coating the vertical walls, dT � HRa�1/4 (from p. 224,
[4]), which predicts a decrease in the dT or an increase in the
conduction dominant core for increasing Ra. Therefore,
the increase in the core size for Pr = 0.071, defined by
Eq. (11) and governed by a single length scale (BMAX �
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Table 4
Values of curve-fit constants of Eqs. (12) and (13)

Pr A1 A2 B1 B2 B3 R2 for
Eq. (12)

R2 for
Eq. (13)

0.071 0.0452 3.7843 �0.00003 0.003495 0.9999 0.9888 0.9936
0.71 0.0608 3.7319 �0.00002 0.001717 1.0009 0.9903 0.9986
7.1 0.0687 3.9022 �0.00006 0.0008 1.0007 0.9942 0.9987

Table 5
Comparison between the values of L and WMAX for several Ra and Pr

Ra Pr = 0.071 Pr = 0.71 Pr = 7.1

WMAX LOPT

(Eq. 12)
WMAX LOPT

(Eq. 12)
WMAX LOPT

(Eq. 12)

104 0.284 0.218 0.252 0.209 0.248 0.119
105 0.574 0.518 0.452 0.456 0.31 0.399
106 0.746 0.7 0.656 0.610 0.464 0.552
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WMAX) as seen from Table 3, promotes more vertical heat
conduction between the hot top layer of the core and the
cold bottom layer. The prevention of this heat transfer
needs a larger UOPT and hence an increased heat transfer
as well.

Fig. 10 summarizes the results of the numerical simula-
tions for the three different Pr (0.071, 0.71 and 7.1) and for
the range 103

6 Ra 6 106. The abscissa corresponds to the
UOPT values, while the ordinate on the left side is for
log(Ra) and on the right side is for Q, the heat transfer
increase due to the presence of the block. For a chosen
Ra (left-side ordinate), the UOPT (abscissa) is located on
the dashed-lines for each Pr value. Once this UOPT is
located, the corresponding QMAX value (right ordinate)
may be obtained from the continuous curves. This exercise
is shown in dotted line for Ra = 104.5 in Fig. 10. For a
given Ra, from Fig. 10, it can be observed that as Pr

decreases, both the UOPT and the corresponding QMAX

increases. From the values for WMAX in Table 3 and the
explanation for Fig. 9 it is obvious that the value of UOPT

for Pr = 0.071 would be the largest for a given Ra value,
which is corroborated in Fig. 10. Since the Pr = 0.071 case
allows the maximum size for UOPT in Case 2, without
replacing the originally convecting fluid of Case 1 (as
LOPT � BMAX �WMAX), QMAX is highest for all Ra values
in this case, which is also evident from the results of
Fig. 10. On decreasing Pr from 7.1 to 0.71, WMAX increases
as seen in Table 3, which prescribes in turn an increase in
UOPT and QMAX, as seen in Fig. 10. Further, for a given
optimum core size UOPT (i.e., d is fixed), for decreasing
Pr, the thermal diffusivity of the fluid increases, leading
to a total increase in the vertical heat conduction across
the conduction dominant core (as Qcond � kf[Ttop–Tbottom])
of identical average temperature (recall, that the natural
convection is across a fixed wall DT). Thus the prevention
of this heat transfer using the adiabatic block increases the
overall wall heat transfer increase. Hence, as seen in
Fig. 10, QMAX increases with decreasing values of Pr.

The numerical data in Fig. 10 are curve-fits from which
predictive correlations relating the UOPT to the Ra and Pr

of the convection situation and the corresponding maxi-
mum heat transfer QMAX are proposed of the form

UOPT ¼
1

A1

½logðRaÞ � A2� ð12Þ

QMAX ¼ B1U
2
OPT þ B2UOPT þ B3 ð13Þ

where the coefficients depend on Pr and are listed in Table
4, along with the R2 values to indicate the goodness of the
curve-fit employed in Fig. 10. The correlations in Eqs. (12)
and (13) are found to predict the numerical results to with-
in ±3%. In Table 5, the values of L predicted from Eq. (12)
are compared with the values of WMAX given in Table 3
and are found to be in good agreement. This supports
our earlier observation that, whenever L < WMAX (where
U = L2), there is heat transfer enhancement across the
enclosure and at L �WMAX, an optimum (maximum) in
heat transfer is reached.

6. Conclusions

It is observed from the detailed simulations that the pre-
vention of vertical heat conduction between the hot fluid
on the top and the cooler fluid at the bottom of the enclo-
sure through the stagnant fluid core, increases the left-
to-right rate of heat transfer, when compared with the
no-adiabatic-block situation. However, for each Ra (and
Pr), there exists an optimum block size, which is roughly
equal to the conduction dominant core size of the no-block
case, and which generates maximum wall heat transfer. For
instance, when an adiabatic block of appropriate size
(UOPT � 50%) is inserted in an enclosure with naturally
convecting fluid of Pr = 0.071, a heat transfer enhancement
of 10% over the no-block case is observed for Ra � 106,
which decreases progressively for other Ra and Pr values.
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For a block size which is greater than this optimum block
size, the wall heat transfer decreases as the increasing block
size displaces the originally convecting fluid that carried
greater enthalpy across the enclosure. We find that the rate
of heat transfer increases with U = L2) when L < WMAX.
At L �WMAX, an optimum (maximum) in heat transfer
is reached, and as L increases further the rate of heat trans-
fer decreases once more. These results are valid for values
of Ra and Pr within the ranges considered. Useful and sim-
ple correlations predicting this optimum block size of
square cross section and the corresponding maximum heat
transfer as a function of Ra and Pr are proposed in Eqs.
(12) and (13), which predict within ±3%, the numerical
results.
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