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Abstract. It is well known that the onset of convection in an inclined porous layer heated
from below takes the form of longitudinal vortices when Darcy’s law is valid. In this
paper we consider briefly how the onset criterion alters when form drag, as modelled by
the Forchheimer terms, is significant. In general, the critical Rayleigh number increases
substantially as form drag effects strengthen, but the wavenumber rises by only a small
amount. This numerical study is supplemented by a brief asymptotic analysis of the case
when the Forchheimer terms dominate and it is shown that the critical Rayleigh number
increases in direct proportion with the form drag parameter.
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1. Introduction

Very many authors have been associated with the Darcy–Bénard problem,
namely the onset and development of convection in a uniform thickness,
fluid-saturated, porous layer which is heated from below. Early studies con-
sidered linearised theory and the subject has since developed to consider
(i) flows at increasingly high Rayleigh numbers, (ii) the stability of such
flows and (iii) the manner in which successive destabilisations take place.
Additionally, the equations used to model flow and heat transfer in porous
media are subject to a wide range of different extensions. Some of these
include form drag effects (Forchheimer terms), no-slip effects (Brinkman
terms), thermal dispersion, anisotropy, layering, variable permeability and
the two-temperature model of thermal energy transport. Much of this work
is summarised in the various reviews by Kimura (1998), Nield and Bejan
(1999), Rees (2000), and Tyvand (2002).
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It is well known that when the layer is inclined and when Darcy’s
law applies, then convection takes the form of longitudinal vortices if the
layer is of large or unbounded spanwise extent; see Caltagirone and Bories
(1985) for a detailed discussion. In view of the statements regarding exten-
sions to Darcy’s law in the above paragraph, it is surprising that there
does not yet exist an analysis of the effect of form drag on convection
in an inclined layer. Form drag is the additional resistance due to micro-
scopic wake and flow separation effects, and forms an intermediate regime
between viscous-dominated flow and unsteady/turbulent microscopic flow.
Three recent studies exist which include form drag in the horizontal Darcy–
Bénard problem. He and Georgiadis (1990) considered the combined effect
of form drag, internal heating and thermal dispersion on the onset of con-
vection and its very early development. They found that the usual pitchfork
bifurcation is replaced by a pair of sharp-nosed bifurcations. Rees (1996)
looked at a full weakly nonlinear stability analysis in presence of form drag
only and determined how stability boundaries change as form drag effects
increase. That work also confirmed the fact that form drag does not affect
the onset criterion for convection since it is modelled by a nonlinear term
with a no-flow basic state. Most recently Rees et al. (in progress) have con-
sidered hexagonal cell convection due to the presence of viscous dissipa-
tion, but part of that analysis shows that, when form drag effects increase,
then hexagonal convection eventually loses its stability unconditionally and
roll convection is re-established.

This short paper is concerned with the onset of vortex convection in an
inclined layer in the presence of form drag. The problem differs from that
of a horizontal layer since there is always a basic flow when the layer is
inclined. We assume that vortices remain the favoured pattern of convection;
a full proof of this is outside of the scope of the present work. Although
one might suspect that there should be two free parameters to vary, namely
a form drag parameter and the inclination of the layer, it is possible to com-
bine these into one. Detailed numerical results are given for the combined
effects of form drag and inclination on both the critical Rayleigh number
and the associated wavenumber and these are supplemented by an asymp-
totic analysis for the cases where form drag dominates.

2. Governing Equations

The full nondimensional equations governing free convection in an inclined
porous layer heated from below and where form drag effects cannot be
neglected are

ux +vy +wz=0, (1)

u(1+Gq)=−px +Rθ sin α, (2)
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v(1+Gq)=−py +Rθ cos α, (3)

w(1+Gq)=−pz, (4)

θt +uθx +vθy +wθz=∇2θ. (5)

Here x, y and z are the streamwise, cross-stream and spanwise coordinates,
respectively, and u, v and w are the corresponding fluid seepage velocities.
The value q is a fluid speed given by

q= (u2 +v2 +w2)1/2 �0 (6)

and α is the inclination of the layer from the horizontal. The variables
θ and p denote dimensionless temperature and pressure, respectively. The
Darcy–Rayleigh number and the form drag parameter are given by

R= ρgβKd �T

µκ
, G= K̃ρκ

µd
, (7a)

respectively, where ρ is a reference fluid density, g gravity, K permeability,
d the depth of the layer, �T the temperature drop across the layer, µ the
dynamic viscosity, κ the effective thermal diffusivity of the medium, and K̃
is a material parameter. We may quote Ergun’s (1952) experimental rela-
tions to see how K and K̃ may vary with porosity, φ, and L, the length-
scale associated with the pores:

K= L2φ3

150(1−φ)2 , K̃= 1.75L
150(1−φ). (7b)

Therefore the parameter G could be said to vary with K since both K and
K̃ are defined in terms of φ. However, we refer the reader to the detailed
discussion on pages 9–12 of Nield and Bejan (1999) for further information
on the modelling of the form drag term.

The boundary conditions required to complete the specification of the
problem are

y=±1
2

: θ =∓1
2
, v=0, py =∓1

2
R cos α. (8)

3. Linear Stability Analysis

The basic flow and temperature field are obtained by solving Equations
(1)–(5) subject to (8) on assuming that all quantities are steady and depen-
dent solely on y, and are,

θ =−y, p=−1
2
(R cos α)y2, u=− 2RG sinα y ′

1+ [1+4RG sinα|y| ]1/2
≡ Ū (y), (9)

which defines the quantity Ū , the basic streamwise velocity profile.
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If we now linearise Equations (1)–(5) about the solutions given in Equa-
tion (9), and assume that all disturbances are independent of both x and t
we obtain

vy +wz=0, (10)

u(1+2Q)=Rθ sinα, (11)

v(1+Q)=Rθ cosα−py, (12)

w(1+Q)=−pz, (13)

∇2θ =−v. (14)

Here the quantity Q is given by

Q=G|Ū (y)|. (15)

Equation (11) is now decoupled from the rest of the system, and serves
solely to define the streamwise velocity in terms of the temperature. Given
the form of Equation (10), we may define a streamfunction, ψ , according
to

v=ψz, w=−ψy (16)

and therefore Equations (10)–(14) reduce to

(1+Q)∇2ψ+Qyψy =R cosα θz, (17)

∇2θ =−ψz. (18)

We may now Fourier-decompose ψ and θ in the spanwise direction by
means of the substitutions,

ψ=f (y) cos kz, θ =g(y) sin kz, (19)

where k is the wavenumber of the vortex, and therefore Equations (17) and
(18) become

[(1+Q)f ′]′ −k2(1+Q)f = (R cosα)kg, (20)

g′′ − k2g=kf (21)

and the corresponding boundary conditions are

f =g=0 on y=± 1
2 . (22)

In Equations (20) and (21) primes denote differentiation with respect to y.
As the present problem is now an eigenvalue problem for R, we may find
R by applying the normalisation condition,

g′(− 1
2)=1. (23)
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Equations (20) and (21) have two free parameters other than α and
which we will label as R and G. The first, R, is simply

R=R cos α. (24)

Given that Q may be written in the form

Q= 2RG sin α|y|
1+ [1+4RG sin α|y| ]1/2

, (25)

we see that the second is

G =RG sinα. (26)

Neutral curves showing the variation of R with wavenumber, k, for
any chosen value of G may be obtained using a straightforward shoot-
ing method algorithm employing, for example, the classical fourth order
Runge–Kutta method after reduction to first order form. In the present
case the standard manner in which a system such (20) and (21) is reduced
to first order form involves Q′ which has a discontinuous change in slope.
Such discontinuities were avoided by defining the following four variables:

F1 =f, F2 = (1+Q)f ′, F3 =g and F4 =g′. (27)

Therefore the first order system we solved is

F ′
1 =F2/(1+Q), (28a)

F ′
2 =k2(1+Q)F1 +RkF3, (28b)

F ′
3 =F4, (28c)

F ′
4 =k2F3 +kF1. (28d)

As the neutral curves obtained follow the classical form with one
well-defined minimum for any chosen value of G, we have concentrated on
determining the minimum value of R which is denoted by Rc. The mini-
misation is achieved by differentiating Equations (20)–(23) with respect to
k and setting dR/dk=0. Therefore we solve a 10th order system of equa-
tions with R and k as eigenvalues which are both dependent on the chosen
value of the parameter, G.

4. Numerical Solutions

Numerical solutions were obtained as described above and all calculations
are correct to at least six significant figures. Figures 1 and 2 show the
respective variations of the critical values of R and the minimising wave-
number, k, respectively. It was found that the value of Rc varies over many
magnitudes, and therefore it has been presented in the form log10(Rc/4π2).
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Figure 1. Variation of the critical value of R, with log10 G. Also shown are the
asymptotic forms for large values of G: one term (short dashes) and two terms
(long dashes).

Figure 2. Variation of the critical wavenumber, kc, with log10 G. Also shown are the
asymptotic forms for large values of G: one term (short dashes) and two terms
(long dashes).

When G< 0.04 then the critical values of R differ from 4π2 by less than
1%. As form drag effects increase in magnitude the value of Rc rises sub-
stantially and a detailed examination of the numerical solutions indicates
that Rc∝G1/2 when G is large.
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Figure 3. Variation of the critical value of Rc=Rc cosα with log10G for the follow-
ing values of α : 1◦,5◦,10◦,15◦,30◦,45◦,60◦,75◦,80◦,85◦, and 89◦. Short dashes cor-
respond to α= 1◦,89◦ while long dashes correspond to α= 45◦. When G is small
Rc is independent of α.

The variation of the critical wavenumber, kc, is much less severe and
is shown in Figure 2. Numerically we find that it varies between π when
G =0 and 3.603430 as G →∞. Thus the width of a convection roll reduces
slightly from 1 to 0.871834. The transition between one extreme value and
the other takes place over the range 0.1�G �10,000.

Although we have been able to compress the three governing parameters,
R,G and α, into two, R and G, it is not obvious how the critical Rayleigh
number varies with G for a fixed value of α. Given that Rc is indepen-
dent of α when G = 0, we have plotted the variation of Rc with G in
Figure 3 for a set of values of the inclination, α, using the data shown in
Figure 1. When α	1 the basic flow is relatively weak, and therefore form
drag effects are relatively small. This is seen in Figure 3 by noting that,
for a chosen value of G,Rc increases as α increases from zero. Again, a
detailed examination of the associated numerical data shows that Rc ∝G
when G is sufficiently large.

5. Asymptotic Analysis for Large Values of G
We now turn to an analysis of the case when form drag effects dominate.
Equation (25) shows that Q∝G1/2 when G 
1, and so the terms (1+Q) in
Equation (20) may be replaced by Q as a first approximation. In fact Q∼
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(G|y|)1/2 as G →∞, and therefore Equations (20) and (21) may be replaced
by

(
|y|1/2f ′

)′
−k2|y|1/2f = (R/G1/2) kg, (29)

g′′ −k2g=kf (30)

and are subject to the boundary conditions (22). Practically it is easier to
solve Equations (29) and (30) in the range − 1

2 � y� 0 and to apply sym-
metry conditions at y=0, namely that

f ′(0)=g′(0)=0. (31)

A reduction to first order form following the technique introduced in
Equation (27) avoids numerical difficulties due to singular derivatives.

The numerical solution of (29) yields the values

(R/G1/2)c=17.4418, kc=3.60343. (32)

These asymptotic values are shown in Figures 1 and 2 as the short-dashed
straight lines, and these clearly show a good agreement with the fully
numerical data discussed above.

The determination of a second term in the large-G expansion of Rc and
kc involves finding a local solution valid near y=0 where Q∼1, and using
this to provide matching conditions for the equations for the second terms
in the main bulk of the flow. However, the numerical data used to generate
Figure 1 showed very clearly that the discrepancy between the computed
value of Rc and the asymptotic value given in (31) is constant when G is
sufficently large. Thus we find numerically that

Rc∼17.4418G1/2 +21.562 (33)

and

kc∼3.60343−0.677G−1/2, (34)

again we have confidence in these numerical values to the number of decimal
places quoted. The variation of these values with G are shown in Figures 1
and 2 as long dashed lines, and we see that there is very good agreement
between the computed and the asymptotic values when log10 G>1.5.

Finally, we may use Equation (33) to find how Rc varies with G, rather
than with G. We obtain the expression

Rc∼ (17.4418)2G tanα+2×21.562. (35)

When G= 1 and α= 45◦, Equation (35) is in error by just less than 0.4%
even at such a small value of G. Thus the linear relationship between Rc
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and G, noted earlier, has been verified, and we conclude that the upwards
extension of the curves given in Figure 3 may be made with a very high
degree of accuracy using Equation (35).

6. Conclusion

In this short paper we have determined how the presence of form drag
affects the onset criterion for the stability of convection in an inclined
porous layer heated from below. When form drag effects are absent then
the critical value of R =R cosα is independent of α. However, this inde-
pendence is lost when form drag effects exist. The primary reason for this
is that the strength of the basic flow now depends additionally on the mag-
nitude of G, the form drag parameter. In general, then, we have found that
the critical value of R cosα increases when either the layer inclination, α,
or the form drag parameter, G, increases. In particular, it was found that
R cosα∝G when G is large, showing that form drag effects are very pow-
erful in stability problems involving a basic flow.
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