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Abstract

The title problem is investigated for an upward projecting hot plate (“upflow”) and for its downward projecting
cold counterpart (“downflow”). When viscous dissipation is negligible, these two cases are physically equivalent, but
the heat released by viscous friction breaks the equivalence between the upflow and downflow cases, and substantial
differences occur. In particular, we find that, for self-similar flows, downflow is possible for all nonnegative values
of the temperature exponent, but upflow only exists above a critical value of this parameter, which equals the half
of the Gebhart number of the fluid. Each two upflow and downflow solution branches were found, respectively.
All the corresponding solutions decay exponentially with increasing distance from the plate. It could be shown that
these up and downflow solution branches do not represent in fact two isolated solutions but, they are the limiting
cases of respective families of intermediate solutions which are bounded between the branches, and which decay
algebraically in the transversal far field. This paper investigates in detail the heat transfer characteristics of all these
self-similar free convection flows analytically and numerically.
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1. Introduction

Since the early paper of Goldstein (1939) it has been known that the boundary layer equations for clear
fluids allow for two basic types of self-similar solution as a requirement of their scaling invariance. These
are the power-law and of exponential types, respectively. These statements also hold for free convection
flows over vertical plates for both clear viscous fluids and saturated porous media, but only when the
effect of viscous dissipation is neglected. When the viscous dissipation term is included in the energy
equation, self-similarity cannot exist for the power-law cases. Therefore, the exponential type forms are
the only possible case for self-similarity, as was first pointed out by Gebhart and Mollendorf (1969) for
the free convection of clear fluids and by Nakayama and Pop (1989) for the free convection in saturated
porous media. This circumstance suggests that concerning the self-similarity the exponential laws posses
a certain universality. It is worth mentioning in this respect that the exponential mean velocity profile
also allows for the self-similarity of the velocity correlation equations arising in the statistical theory of
turbulent flows, as being discovered recently by Oberlack (2000, 2001, 2004).

The present paper is concerned with the effect of viscous dissipation on self-similar Darcy free convec-
tion flow over an impermeable semi-infinite vertical plate adjacent to a saturated porous medium where
the heated surface has an exponential temperature distribution of the form

Tw(x) = T∞ + sT 0 exp
(
a

x

L

)
. (1)

Here x is the wall coordinate measured from the definite edge of the plate and L a reference length. The
logarithmic increment a of the wall temperature distribution is assumed to be nonnegative. The special
case a = 0 corresponds to the well-known but important particular case of the isothermal plate. T∞ is the
ambient temperature, and T0 the positive constant given by T0 = |Tw(0) − T∞|. In addition, s = +1 for
a hot plate (Tw > T∞, “upflow”) and s = −1 for a cold plate (Tw < T∞, “downflow”), respectively.

A remarkable qualitative effect of viscous dissipation is that its presence breaks the physical equivalence
between the free convection upflow due to an upward projecting hot plate on the one hand, and the free
convection downflow due to a downward projecting cold plate on the other hand. Some consequences
of this phenomenon were investigated recently by Magyari and Keller (2003) and Rees et al. (2003)
for isothermal plates adjacent to a saturated porous medium. The main focus of the present paper is to
examine the detailed mechanical and thermal characteristics of the up- and downflow cases for the wall
temperature distribution (1) by means of analytical and numerical methods.

2. Basic equations

Following Nield and Bejan (1999) we write the continuity, Darcy and energy equations for free con-
vection flow over a semi-infinite vertical flat plate adjacent to a saturated porous medium in the form

ux + vy = 0, (2)

uy = sg
g�T K

�
Ty , (3)

uT x + vT y = �Tyy + �

Kcp

u2, (4)
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Fig. 1. (a,b). Coordinate system for the up- and downflow domains. As a consequence of the heat released by viscous dissipation,
the two situations (a) and (b) become physically distinct. Some typical velocity and temperature profiles are shown in Figs. 3, 7
and 8.

where we have assumed that the boundary-layer and the Boussinesq approximations hold. The second
term on the right-hand side of Eq. (4) is proportional to the volumetric heat generation rate by viscous
friction q ′′′ ≡ �u2/K .

In the above equations x�0 and y�0 are the Cartesian coordinates along and normal to the plate,
respectively, u and v are the velocity components along x and y axes, T is the fluid temperature, K the
permeability of the porous medium, g the acceleration due to gravity, sg = +1 or −1 when the x-axis
is directed vertically upwards or downwards, respectively (see Figs. 1a,b), cp is the specific heat at
constant pressure, �, �T and � = �/� are the effective thermal diffusivity, thermal expansion coefficient
and kinematic viscosity, respectively, and the subscripts x and y indicate partial derivatives. This choice of
the coordinate system implies that sg =s=±1 (see Figs. 1a,b). The plate is considered to be impermeable.
Thus, the boundary conditions are:

v = 0, T = Tw(x) on y = 0,
u → 0, T → T∞ as y → ∞, (5)

where Tw(x) is given by Eq. (1).
Specifying the wall temperature at the leading edge Tw(0), and at some distance x =L from it, Tw(L),

its logarithmic increment a is given uniquely by

a = ln

∣∣∣∣Tw(L) − T∞
Tw(0) − T∞

∣∣∣∣ . (6)

Eq. (3) can be integrated immediately. Bearing in mind the boundary condition (5), we obtain

T = T∞ + s
�

g�T K
u. (7)

Furthermore, on introducing the dimensionless coordinates X = x/L, Y = y/L and velocity components
U =(L/�)u, V =(L/�)v and substituting Eq. (7) in Eq. (4), we obtain the dimensionless velocity equation,

UUX + V UY = UYY + sGeU2 (8)
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where Ge denotes the Gebhart number, Ge = g�T L/cp. We see that the Gebhart number specifies the
“weight” of the viscous dissipation in the energy balance.

Due to the presence of the sign s =±1 in Eq. (8), an important qualitative effect of viscous dissipation
becomes manifest. It shows that the well-known textbook result, according to which the free convection
flows over an upward projecting hot plate (s = +1, Fig. 1a) and over its downward projecting cold
counterpart (s = −1, Fig. 1b) are physically equivalent, holds only when viscous dissipation is neglected
(Ge = 0) in the energy equation. If, however, viscous dissipation is taken into account (Ge �= 0), this
physical equivalence is broken and the “upflow” (Fig. 1a) and the “downflow” (Fig. 1b) situations become
physically distinct. As has been reported recently by Magyari and Keller (2003) and Rees et al. (2003),
one of the important consequences of this broken equivalence is the existence of a strictly parallel free
convection flow, the so-called asymptotic viscous dissipation profile (ADP), which can only occur over
a downward projecting isothermal cold plate (the particular case a = 0, s = −1 of the present problem,
see Section 5.6), but not over its upward projecting hot counterpart. Substantial differences also occur
between the upflow and downflow cases for the nonisothermal plate (a �= 0), and these will be discussed
in detail in Sections 4–7.

It is worth underlining here that the broken upflow/downflow equivalence as an effect of viscous
dissipation is in full agreement with the first principle of thermodynamics since it is a direct consequence
of the energy balance equation. A basic difference between the free convection up- and downflows
in the presence of viscous friction (leading to broken equivalence mentioned) consists of their different
thermodynamic efficiency, i.e. of the useful work (“exergy”) generated in these processes as a consequence
of the second law of thermodynamics. Indeed, the natural convection past a heated vertical plate can be
regarded as an infinite sequence of convection loops, one nested inside the next, each of them consisting
of a heating → expansion → cooling → compression sequence, similarly to the cycles executed
by the working fluid in a heat engine (see Bejan, 1995, Fig. 4.1, p. 157). Hence, inserting in these
convection loops a suitably designed propeller we can gain useful mechanical work. In absence of viscous
dissipation, “Bejan’s free convection heat engine” works reversibly. Its cycles produce the same useful
work both from an upward projecting hot plate and from its downward projecting cold counterpart.
However, the volumetric heat generation by viscous dissipation is associated according to the second
law of thermodynamics with an entropy production and thus with a partial or even total destruction of
exergy delivered by the irreversible cycles of the free convection heat engine (Bejan et al., 2004). While
in the fluid cooling situation of the cold isothermal plate the heat released by viscous friction enhances
the (negative) wall heat flux and thus it is removed from the fluid, in the fluid heating situation of the
isothermal hot plate it diminishes the (positive) heat flux from the wall to the fluid and thus also the
useful work delivered. In the limiting case of the parallel free convection flows, the entropy production
and exergy destruction during the transient flow regime over the hot plate can even reach their extreme
values, such that in the steady regime the delivery useful work from the hot plate shrinks to zero.

3. Similarity transformation

In terms of the dimensionless stream function � defined by equations

u = �

L
�Y , v = − �

L
�X (9)
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the continuity equation (2) is satisfied identically and Eqs. (7) and (8) become

T = T∞ + s
T0

Ra
�Y , (10)

�Y �XY − �X�YY = �YYY + sGe�2
Y , (11)

where Ra = g�T KLT0/(��) denotes the Darcy–Rayleigh number.
In order to obtain the governing self-similar equations corresponding to the wall temperature distribu-

tion (1), we introduce the transformations

� = (Ra/Ge)1/2ea/2Xf (�), � = (GeRa)1/2ea/2XY . (12)

In this way the similarity solution of the problem (1)–(5) is obtained as follows:

u = �

L
RaeaXf ′(�), (13)

v = − �

L

a

2

(
Ra

Ge

)1/2

ea/2X[f (�) + �f ′(�)], (14)

T = T∞ + sT 0eaXf ′(�). (15)

Here the similar stream function f satisfies the ordinary differential equation

f ′′′ + �

2
ff ′′ + (s − �)f ′2 = 0 (16)

along with the boundary conditions

f (0) = 0, f ′(0) = 1, f ′(∞) = 0, (17)

where the primes denote derivatives with respect to � and

� = a

Ge
. (18)

The velocity and temperature fields (13)–(15) are fully determined if the dimensionless stream function
f =f (�) is known. In particular, f ′(�) corresponds to both the streamwise velocity component, u, as well
as the temperature field, T. Therefore, the basic task is to solve the two-point boundary value problem
(16), (17). The presence of the sign, s, in Eq. (16) recalls again the essential difference between the up-
and downflow if the viscous dissipation is taken into account (Ge �= 0).

The quantity of the main engineering interest is the wall heat flux

qw(x) = −k
�T

�y

∣∣∣∣
y=0

= −s
k

L

(
aRa

�

)1/2

T0e3/2aXf ′′(0), (19)

where k denotes the effective thermal conductivity of the fluid saturated porous medium. Thus, the wall
temperature gradient function, f ′′(0), is a quantity of basic interest in the present investigation. Eq. (16)
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and the boundary conditions (17) yield the following integral relationship for f ′′(0):

f ′′(0) =
(

s − 3�

2

)∫ ∞

0
f ′2(�) d�. (20)

This relationship holds for all the solutions which satisfy the condition,

lim
�→∞ f (�)f ′(�) = 0. (21)

Eq. (20) implies that

f ′′(0) = 0 for � = 2

3
s (22a)

and

sgn[f ′′(0)] = sgn

(
2

3
s − �

)
for � �= 2

3
s. (22b)

Therefore,

sgn[qw(x)] = sgn[−sf ′′(0)] = sgn

(
s� − 2

3

)
(23)

and thus qw > 0 (direct wall heat flux; plate heats the fluid) for s� > 2
3 and qw < 0 (reversed wall heat

flux; fluid heats the plate) for s� < 2
3 , respectively.

4. General features of the solutions

In the subsequent discussion of solutions it will be convenient to introduce, in addition to the parameter
� = a/Ge, an alternative parameter, m, defined by

� = s(1 + m). (24)

Thus, Eq. (16) becomes

f ′′′ + s

[
m + 1

2
ff ′′ − mf ′2

]
= 0. (25)

The condition a > 0 requires that

m > − 1 for upflows (s = +1),
m < − 1 for downflows (s = −1). (26)

For the isothermal plate (a =0) only a downflow solution exists which is precisely the ADP (see Sections
4.2 and 5.6).
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4.1. Upflows

For the case of upflows (s = +1) Eq. (25) reduces to the one first obtained by Cheng and Minkowycz
(1977) for the title problem of the present paper but on assuming that

(i) the plate temperature distribution is of the power-law form, Tw(x) = T∞ + T0X
m,

(ii) the effect of viscous dissipation may be neglected.

The connection between the present exponentially similar problem and the Cheng–Minkowycz power-law
similarity equation has already been noted by Nakayama and Pop (1989).

Cheng and Minkowycz (1977) solved Eq. (25) numerically for s = +1 along with the boundary
conditions (17) with the power-law exponent in the range −1

3 < m < 1. A comprehensive study was then
performed by Ingham and Brown (1986) who proved rigorously that the Cheng–Minkowycz problem
does not admit solutions in the parameter range m� − 1

2 . Later, several analytical and numerical solutions
of this problem were collected in the monograph of Pop and Ingham (2001). The following features of the
upflow solutions of the present problem may be extracted from the many studies of the Cheng–Minkowycz
problem:

1. Upflow solutions only exist above the critical value �crit = 1
2 of the parameter �, i.e. above the value

acrit = Ge/2 of the temperature exponent a. This follows from Eq. (24) and the result of Ingham and
Brown (1986) mentioned above.

2. In the range �crit < � < 1 (i.e. −1
2 < m < 0) both f and f ′ are nonnegative for s = +1 and for all ��0

(this also follows from the work of Ingham and Brown (1986)).
3. For �= 2 and s =+1 (i.e. for m= 1) an elementary analytical upflow solution exists (see Section 5.1).
4. For � = 2

3 and s = +1 (i.e. for m = −1
3 ) a one-parameter family of exact analytical upflow solutions

exists (see Section 5.2).
5. For � > 2 and s = +1 (i.e. for m > 1) a second branch of upflow solutions exists. This result is also

taken from Ingham and Brown (1986); see Sections 5.5 and 5.7).

It is worth underlining here that the analogy between the present upflow problem and the Cheng–
Minkowycz problem is restricted to the mathematical aspects of corresponding boundary value prob-
lems for the self-similar stream function f (�), but the physics underlying the equations is quite different
due to the viscous dissipation effect. The dimensional velocity and temperature fields as expressed in
terms of coordinates X and Y are also manifestly different in the present exponentially similar case (see
Eqs. (13)–(15)) and the Cheng–Minkowycz power-law similarity case (Cheng and Minkowycz, 1977).

4.2. Downflows

In contrast to the upflow problem discussed above, in the case of the downflows, as given by Eq. (25)
with s = −1, the previous literature on flow in porous media offers much less information. The only
downflow solution known in closed analytical form is the ADP (see Section 5.6). We defer the detailed
discussion of the downflow problem until Sections 6 and 7, only anticipating here that solutions of
Eq. (16) exist for all positive values of � (m < − 1 and s = −1 in Eq. (25). The domains of existence of
the up- and downflow solutions in the parameter plane (m, �) are shown in Fig. 2.
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Fig. 2. Domains of existence of the up- and downflow solutions in the parameter plane (m, �). The dots mark the exact up- and
down flow solutions corresponding to the parameter values (m, �)= (1, 2), (m, �)= (− 1

3 , 2
3 ) and (m, �)= (−1, 0), respectively.

5. Solutions

5.1. Exact upflow solution for � = 2

For s = +1 and the value a = 2Ge of the temperature exponent the problem (16), (17) admits the
elementary solution,

f (�) = 1 − e−�. (27)

The corresponding temperature field (15), expressed in terms of the coordinates X and Y, is

T = T∞ + T0 exp[2GeX − (GeRa)1/2eGeXY ]. (28)

The wall temperature gradient is given by f ′′(0) = −1.
The solution (27) is also known from the theory of boundary layer flows induced by continuous surfaces

stretched with the linearly rising velocity uw ∼ X. It was first reported by Crane (1970).

5.2. Exact upflow solutions for � = 2/3

As has been shown recently by Magyari et al. (2003), the boundary value problem which, in the present
context, results from Eqs. (16) and (17) for s = +1 and a = 2Ge/3, admits a one-parameter family of
solutions, one solution for every positive value of f ′′(0). These solutions may be expressed in terms of
Airy functions as follows:

f (�) = [36f ′′(0)]1/3 Bi′(z0)Ai′(z) − Ai′(z0)Bi′(z)
Bi′(z0)Ai(z) − Ai′(z0)Bi(z)

, (29)
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f ′ = f ′′(0)� + 1 − 1

6
f 2, (30)

where

z = [√6f ′′(0)]−2/3(1 + f ′′(0)�), z0 = z|�=0. (31)

The far-field behaviour of this solution is

f (�) → √
6 + 6f ′′(0)� as � → ∞ (32)

for all f ′′(0) > 0. Notice that lim�→∞f (�)f ′(�) = 3f ′′(0) > 0 for these solutions, i.e. in this case,
condition (21) and its consequences do not hold.

A remarkable feature of the solution (29) is that the algebraic asymptotic behaviour which it has when
f ′′(0) > 0 is transformed into an exponential decay in the limit as f ′′(0) → 0, when it may be described
in terms of the well-known hyperbolic tangent solution. Indeed, by using the asymptotic properties of the
Airy functions (see Abramowitz and Stegun (1965), for example) one obtains

f (�)→(6+6f ′′(0)�)1/2 tanh

(
(1 + f ′′(0)�)3/2 − 1

(27/2)1/2f ′′(0)

)
→ √

6 tanh

(
�√
6

)
as f ′′(0) → 0. (33)

In this way one obtains f ′(�)=1/cosh2(�/
√

6) when f ′′(0)=0, which shows that the family of solutions
f ′(�) which exhibit algebraic decay of the form, f ′(�) → 3f ′′(0)(6 + 6f ′′(0)�)−1/2 as � → ∞,
whenever f ′′(0) > 0, transforms into a solution which exhibits exponential asymptotic decay of the form,
f ′(�) → 4 exp(−2�/

√
6) as � → ∞. In the limit f ′′(0) → 0. It is also worth noticing here that the form,

f (�) = √
6 tanh(�/

√
6), (34)

coincides with the free plane jet solution of Eq. (16) which was found almost 70 years ago by Bickley
(1937). The wall heat flux (19) corresponding to the solution (34) is zero.

5.3. Ingham–Brown estimates (upflows)

Valuable analytical estimates for f ′′(0) and f (∞) have been given by Ingham and Brown (1986)
for s = +1 in the range, 0 < m + 0.5>1 as well as for m close to zero. In the present context of the
exponentially self-similar upflows, these estimates read

f ′′(0) = 0.078103 (� − �crit)
−3/4 and f (∞) = 1.77828 (� − �crit)

−1/4 (35)

for 0 < � − �crit>1, and

f ′′(0) = −0.44375 − 0.85665 (� − 1) + 0.66943(� − 1)2 (36)

for |� − 1|>1, respectively.
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5.4. Banks estimates (upflows)

Banks (1983) performed a comprehensive analytical and numerical investigation of self-similar bound-
ary layer flows induced in clear viscous fluids by continuous surfaces stretched with power-law velocities
uw = U0 Xm. The boundary value problem he obtained,

F ′′′ + FF ′′ − 2m

m + 1
F ′2 = 0,

F(0) = 0, F ′(0) = 1, F ′(∞) = 0 (37)

for his self-similar stream function, F = F(	), may be mapped onto the present problem (16), (17) by
the transformation

m = s� − 1, 	 =
√

�

2
�, F (	) =

√
�

2
f (�). (38)

In this way several of the numerical and analytical results of Banks (1983) may be applied to the present
problem. Indeed, the transformation (38) yields the following expressions for f ′′(0) and f (∞):

f ′′(0) =
√

�

2
F ′′(0) and f (∞) =

√
2

�
F(∞). (39)

Thus, in the neighbourhood of the lower bound, 0 < � − �crit>1, of the domain of existence of upflow
solutions (see Fig. 2), the following estimates may be made:

f ′′(0) = 0.078102 (� − �crit)
−3/4[1 − 3.22997 (� − �crit)], (40a)

f (∞) = 1.77828 (� − �crit)
−1/4[1 − 0.58772 (� − �crit)]. (40b)

Eqs. (35) and (40) are in excellent agreement with each other.

5.5. The second upflow solution branch

All the exact and approximate analytical solutions listed above (Eqs. (27)–(40)) belong to the same
upflow solution branch of the boundary value problem (16), (17) which may be called the “first solution
branch”. In the parameter range m > 1 (which in the present case means � > 2, s = +1), Ingham and
Brown (1986) also found a second solution branch. The values of f ′′(0) and f (∞) for m?1 (i.e. for
�?1 in the present case) may be determined from the results of Ingham and Brown (1986) and are

f ′′(0) = −0.90638 (� − 1)1/2, f (∞) = 1.28077 (� − 1)−1/2 (41)

for the first upflow solution branch, and

f ′′(0) = −0.91334 (� − 1)1/2, f (∞) = 0.43365 (� − 1)−1/2 (42)

for the second upflow branch.
On the first solution branch f ′(�) > 0 holds for all values of �, but, for the second branch, there exists

a value of � above which there exists negative values of f ′(�). Given that f ′(�) corresponds to the fluid
temperature, this implies that second branch upflow solutions are unphysical since negative values of
f ′(�) correspond to temperatures which are lower than the ambient temperature.
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5.6. The ADP: an exact downflow solution for � = 0

For � = 0 (i.e. for a = 0) the boundary value problem given by Eqs. (16) and (17) admits an exact
downflow solution. This is the ADP which was discovered recently by Magyari and Keller (2003) and
Rees et al. (2003). It is given by,

f (�) = �

(
1 + �√

6

)−1

, f ′(�) =
(

1 + �√
6

)−2

, (43)

where

f ′′(0) = −√2/3 and f∞ = √
6. (44)

In this case the exponential wall temperature distribution (1) reduces to a constant value, Tw(x)=T∞−T0
and the wall is isothermal. The similarity variable � also becomes independent of the wall coordinate x,
i.e. � = (GeRa)1/2Y . Hence, the ADP is a strictly parallel flow for which the dimensional velocity and
temperature fields, as given by Eqs. (13)–(15), are

u = �

L
Ra

(
1 +

√
GeRa

6
Y

)−2

, v ≡ 0, (45)

T = T∞ − T0

(
1 +

√
GeRa

6
Y

)−2

. (46)

Using the ADP solution (43) one easily deduces from Eqs. (16) and (17) that the following analytical
approximations must hold for small values of �:

f ′′(0) = −
√

2

3(1 − �)
and f (∞) =√

6(1 − �), (0 < �>1). (47)

5.7. New analytical series solutions

The main difficulty encountered when solving two point boundary value problems of the type repre-
sented by Eqs. (16) and (17) is the ability to satisfy the boundary condition at infinity to a prescribed
precision. The aim of the present section is to obtain an analytical series solution of the problem given by
Eqs. (16) and (17) in a form which automatically satisfies the boundary condition f ′(∞) = 0 precisely.
Clearly this requirement is not satisfied by a standard Taylor series expansion of f (�) in powers of the
similarity variable � (i.e. a Blasius series). However, the method of the Taylor expansion may be adapted
easily to the present goal. Indeed, one of the most frequently used procedures for the solution of differ-
ential equations is the coordinate transformation. Therefore, we will introduce a suitable transformation
z = z(�) of the independent variable � and then look for the solution in the form of a power series of the
new independent variable z,

f (�) =
∞∑

n=0

An[z(�)]n. (48)
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In the present context, “suitable” means that the boundary condition

f ′(∞) = lim
�→∞

∞∑
n=1

[nAnz
n−1(�)z′(�)] = 0 (49)

is satisfied precisely. There exists an infinite number of different variable transformations which satisfy
the requirement, (49). If, for example, one wishes to recover the ADP given by Eq. (43) by this method,
then z = (1 + const �)−1 should be chosen. If, on the other hand, an algebraic behaviour of the form of
Eq. (31) is suspected, then it is reasonable to choose z = (1 + const �)−1/2 and to start the summation
in Eq. (48) with n = −1 instead of n = 0. Finally, when one is interested in finding solutions with an
exponential decay, similar to those of the exact solutions (27) and (34), then an exponential choice for z

is reasonable. Obviously, one may also choose polynomials of exponentials of �, products of powers of
� and exponentials of �, etc. In the present paper it is sufficient to proceed with the simple exponential
ansatz

z = e−b�. (50)

Here b is a positive constant which ensures that the condition f ′(∞)= 0 is satisfied automatically. Then,
from Eqs. (48) and (50), A0 = lim�→∞ f (�) ≡ f∞ follows immediately, and we see that the free term of
the series (48) is equal to the entrainment velocity f∞. Furthermore, on substituting (48) and (50) into
Eq. (16) and identifying the coefficients of like powers of z, then, for n = 1 we obtain,

b = �f∞
2

. (51)

The assumption b > 0 implies, in agreement with our physical expectation, that the dimensionless en-
trainment velocity f∞ is positive. The other coefficients of the expansion (48) may be written in terms
of A1 as follows:

Ak =
∑k−1

n=1 [n2 − �n(k − n)]AnAk−n

k2(k − 1)f∞
, k = 2, 3, 4, . . . , (52)

where

� = 2

(
1 − s

�

)
= 2m

m + 1
. (53)

Bearing in mind that both f∞ and the coefficients Ak are not yet determined, it is convenient to eliminate
f∞ from the recurrence equations (52). This may be accomplished by substituting

Ak = (A1)
k

(f∞)k−1 Bk, k = 2, 3, 4, . . . (54)

into Eq. (52). Therefore we obtain

B1 = 1,

Bk =
∑k−1

n=1 [n2 − �n(k − n)]BnBk−n

k2(k − 1)
, k = 2, 3, 4, . . . . (55)
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These recurrence equations allow a rapid symbolical and numerical evaluation of the coefficients Bn for
any given value of �. In order to be specific, we list below the analytical expressions of the first few B’s:

B1 = 1,

B2 = +1 − �

4
,

B3 = −1 − �

72
(4� − 5),

B4 = +1 − �

1728
(21�2 − 53� + 34),

B5 = − 1 − �

172800
(456�3 − 1741�2 + 2235� − 968),

B6 = + 1 − �

5184000
(2960�4 − 15161�3 + 29286�2 − 25315� + 8278). (56)

Then, with the notations

A1

f∞
= 
 and B0 = 1. (57)

Eq. (48) takes the form,

f (�) = f∞
∞∑

n=0

Bn
n exp

(
−1

2
n�f∞�

)
(58a)

and the boundary condition f (0) = 0 becomes

G(
) ≡
∞∑

n=0

Bn
n = 0. (59a)

The coefficients Bk , which are given by Eqs. (55), depend only on the parameter � (i.e. on s/�, according
to Eq. (53). Thus, once the parameter 
 is determined as a solution of Eq. (59a), Eq. (58a) yields the formal
solution of the boundary value problem (16), (17) in terms of the dimensionless entrainment velocity f∞.
For this latter quantity, the boundary condition f ′(0) = 1 and Eq. (58a) yield the expression

f∞ =
(

− �

2

∞∑
n=0

nBn
n

)−1/2

. (60a)

The wall temperature gradient f ′′(0) may be written as

f ′′(0) = f 3∞
( �

2

)2 ∞∑
n=0

n2
nBn. (61a)

The rate of convergence of the series occurring in Eqs. (58a)–(61a) can be accelerated with the aid of
Euler’s series transformation (see, for example, Abramowitz and Stegun, 1965). On using an alternative
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Fig. 3. (a). Upflow velocity (and temperature) profiles corresponding to different values of the parameter �=a/Ge (first solution
branch). (b). Downflow velocity (and temperature) profiles corresponding to different values of the parameter � = a/Ge (first
solution branch).

form of this transformation which is due to Knopp (1990), Eqs. (58a)–(61a) may be rewritten as follows:

f (�) = f∞
2

∞∑
k=0

[
k!
2k

k∑
n=0

Bn
n

(k − n)!n! exp

(
−1

2
n�f∞�

)]
, (58b)

G(
) ≡
∞∑

k=0

(
k!
2k

k∑
n=0

Bn
n

(k − n)!n!

)
= 0, (59b)

f∞ =
[
− �

4

∞∑
k=0

(
k!
2k

k∑
n=0

nBn
n

(k − n)!n!

)]−1/2

, (60b)

f ′′(0) = f 3∞
2

( �

2

)2 ∞∑
k=0

(
k!
2k

k∑
n=0

n2Bn
n

(k − n)!n!

)
. (61b)

As a first simple example we show that the exact upflow solution (27) corresponding to � = 2 and s = +1
can be recovered immediately from the above equations. Indeed, in this case, � = 1 and from Eqs. (56)
we obtain B1 = 1, Bk = 0, k = 2, 3, 4, . . . . Thus, Eq. (59a) becomes 1 + 
 = 0 and yields 
 = −1. Then,
Eqs. (60a) and (61a) give f∞ = 1 and f ′′(0) = −1, respectively. Finally, from Eq. (58a), we recover the
exact solution (27).

The exact solution (34) corresponding to � = 2
3 , may also be recovered by the numerical evaluation

of Eqs. (58b)–(61b). It may also be recovered analytically but some special summation methods of
asymptotic series are required (e.g. the Borel summation).

We have collected a large number of up- and downflow first branch solutions in Table 1.As an illustration
of some of these, Figs. 3a and b display a couple of upflow and downflow velocity (temperature) profiles,
f ′(�), corresponding to different values of the parameter � = a/Ge. All the data contained in Table 1 has
been obtained by using Eqs. (58a)–(61a) or Eqs. (58b)–(61b), except for the upflow solution corresponding
to �=0.51 which has been calculated numerically with the aid of a Runge–Kutta method and the shooting
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Table 1
The values of f ′′(0) and f (∞) for the first branch of upflow (hot plate, s = +1) and downflow (cold plate, s = −1) solutions

� = a
Ge

First solution branch

Upflows (hot plate, s = +1) Downflows (cold plate, s = −1)

f ′′(0) f (∞) f ′′(0) f (∞)

0 For 0 < ���crit = 0.5 no upflow solutions exist −0.816 = −√
2/3∗ 2.449 = √

6
∗

0.05 −0.840669 2.171736
0.1 −0.864227 2.005790
0.2 −0.909662 1.778382
0.3 −0.953085 1.620144
0.4 −0.994726 1.499964
0.5 −1.034775 1.404076
0.51 2.417131 5.564696 −1.038699 1.395505
0.55 0.597658 3.587188 −1.054254 1.362774
0.6 0.221094 2.903538 −1.073393 1.325018
2
3 0∗ √

6
∗ −1.098412 1.279353

0.8 −0.234256 1.978203 −1.146864 1.200857
1 −0.443748 1.616125 −1.216019 1.106547
1.5 −0.770368 1.201224 −1.374023 0.943446
2 −1∗ 1∗ −1.515834 0.836421
3 −1.348454 0.787736 −1.765830 0.700107
4 −1.624356 0.670850 −1.984701 0.614244
5 −1.859928 0.594213 −2.181776 0.553811
6 −2.068913 0.539000 −2.362494 0.508307
7 −2.258674 0.496785 −2.530352 0.472448
8 −2.433700 0.463156 −2.687757 0.443247
9 −2.596968 0.435546 −2.836446 0.418868
10 −2.750568 0.412351 −2.977724 0.398115
50 −6.358095 0.181769 −6.459622 0.180497
100 −9.027795 0.128303 −9.099584 0.127853
500 −20.251115 0.057298 −20.283219 0.057258
1000 −28.650758 0.040509 −28.673459 0.040494

The superscript ∗ indicates the exact solutions discussed in Sections 5.1 and 5.2.

method. The reason for using the direct numerical solution is that when s =+1 and � is close to its critical
value, �crit =0.5 (i.e. �=−2+, m=−0.5+), is that both the series in (59a) and (59b) become divergent and
thus no root of Eqs. (59a) and (59b) could be determined reliably in this neighbourhood. In all other cases
included in Table 1 the solution 
 corresponding to the first branch of both up- and downflow solutions of
Eq. (59a) or (59b) have been calculated by increasing the number of terms of the sum taken into account,
until the results for f ′′(0) and f (∞) remained unchanged in the sixth decimal digit. On comparing the
“exact” data of Table 1 with the approximate values obtained from the corresponding Ingham–Brown and
Banks estimates discussed in Sections 5.3–5.5, an excellent agreement has been found. Furthermore, on
using the data of Table 1, Fig. 4a shows the wall temperature gradient f ′′(0) as function of � for the first
branch of both upflow and downflow solutions. Similarly, on using the data of Tables 2 and 3, in Fig. 4b
f ′′(0) is plotted for up- and downflows of the second solution branch (for a detailed physical discussion
of these and of the subsequent results of the present section see Sections 6 and 7).
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Fig. 4. (a). Plot of f ′′(0) as a function of � for the first branch of up- and downflow solutions. The positive and negative values
of −s f ′′(0) correspond to a direct (qw > 0) and a reverse (qw < 0) wall heat flux, respectively. The wall heat flux is always
negative for downflow cases (cold plate, s = −1), as expected, but, for upflows (hot plate, s = +1) it is positive above the value
� = 2

3 and becomes reversed when �crit = 0.5 < � < 2
3 . The dots correspond to the values � = 0, � = 2

3 and � = 2 for which exact
solutions exist (see Sections 5.1, 5.3 and 5.6) and the dashed vertical asymptote corresponds to �crit = 0.5. For large values of �,
both of the plotted curves scale with

√
� such that −s f ′′(0)/

√
� → 0.906376 as � → ∞ (see also Fig. 11a). (b). Plot of f ′′(0) as

a function of � for the second branch of upflow and downflow solutions. The positive and negative values of −s f ′′(0) correspond
to a direct (qw > 0) and a reverse (qw < 0) wall heat flux, respectively. The wall heat flux is again negative for downflow cases
(cold plate, s =−1), as expected, and positive for the upflows (hot plate, s =+1). The dots correspond to the values �= 0, �= 2

3
and 2 for which exact solutions exist (see Sections 5.1, 5.3 and 5.6) and the dashed vertical asymptote corresponds to �crit = 0.5.
For large values of �, both of the plotted curves scale with

√
� such that −s f ′′(0)/

√
� → 0.906376 as � → ∞ (see also

Fig. 11b).

Table 2
The values of f ′′(0) and f (∞) for the first and second upflow branches for 2.01���5

� = a
Ge

Upflows (hot plate, s = +1)

First branch Second branch

f ′′(0) f (∞) f ′′(0) f (∞)

2.01 −1.004072 0.996951 −1.014102 0.076913
2.05 −1.020202 0.985029 −1.031700 0.097938
2.1 −1.040020 0.970714 −1.052321 0.111512
2.25 −1.097370 0.931264 −1.110902 0.134444
2.5 −1.186906 0.875047 −1.201483 0.153283
2.75 −1.270224 0.827948 −1.285466 0.162536
3 −1.348454 0.787736 −1.364213 0.167161
3.5 −1.492755 0.722281 −1.509359 0.169668
4 −1.624356 0.670850 −1.641694 0.168059
4.5 −1.746106 0.629053 −1.764125 0.164796
5 −1.859928 0.594213 −1.878595 0.160892

The present approach also allows us to calculate the second branch of upflow solutions which, as
predicted by Ingham and Brown (1986), arise in the parameter range � > 2 (i.e. for m > 1). The results
obtained for a set of values of � in the range 2.01���5 are displayed in Table 2 and the corresponding
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Table 3
The values of f ′′(0) and f (∞) for the first and second downflow branches for 0���2

� = a
Ge

Downflows (cold plate,s = −1)

First branch Second branch

f ′′(0) f (∞) f ′′(0) f (∞)

0 −0.816 = √
2/3∗ 2.449 = √

6
∗ −.816 = −√

2/3∗ 2.449 = √
6
∗

0.1 −0.864227 2.005790 −0.864230 1.743320
0.25 −0.931609 1.693211 −0.931729 1.269554
0.3 −0.953085 1.620144 −0.953289 1.168985
0.5 −1.034775 1.404076 −1.035503 0.898282
1 −1.216019 1.106547 −1.218553 0.593499
2 −1.515834 0.836421 −1.521744 0.381991
3 −1.348454 0.787736 −1.774423 0.296144
4 −1.624356 0.670850 −1.995515 0.248361
5 −1.859928 0.594213 −2.194505 0.217362
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Fig. 5. The zeros of Eq. (56) in the neighbourhood of 
=−1 correspond to the first branch of upflow solutions and those between
the values 10 and 12 of 
 to the second branch of upflow solutions for the specified � -values. The corresponding values of f ′′(0)

and f (∞) shown in Table 2.

solutions illustrated in Figs. 5 and 6. In this range Eqs. (59a) and (59b) have two distinct roots 
 for any
specified value of �, and these correspond to the first and second branch of the upflow solutions, as shown
in Fig. 5.

Concerning these two solution branches, a remarkable detail is that they do not just represent two
isolated solutions, as one has believed until now, but they also form the limiting cases of a family of
nondenumerable multiple solutions. This circumstance is illustrated in Fig. 7 for � = 5. The solutions
corresponding to the values f ′′

first(0) and f ′′
second(0) of f ′′(0) represent the upper and lower bound of
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first(0) and f ′′
second(0) for � = 5. The solutions

corresponding to the values f ′′
first(0) and f ′′

second(0) of f ′′(0) represent, respectively, the upper and lower bounds of a family of
nondenumerable multiple solutions.

this family of multiple upflow solutions, respectively (see Table 2). It must be noted, however, that the
presence of this family of solutions does not contradict the fact that the two bounding cases correspond
to the only two roots for 
 shown in Fig. 5. The two roots correspond to exponentially decaying solutions,
whereas the family of solutions decay algebraically, and therefore the curve shown in Fig. 5 does not
apply to these solutions.

A further interesting new result is the existence of a second branch of solutions for downflows. The
results obtained for a couple of values of � in the range 0���2 are collected in Table 3 and illustrated in
Fig. 8. However, in this range of values of �, the series (56a,b) converge only for the first branch. The second
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multiple solutions.

branch of downflows has been calculated numerically using the shooting method. In contrast to the second
branch of upflow solutions, the second branch of downflow solutions are physically meaningful solutions
of the present problem (see further details in Section 7). As with their upflow counterparts plotted in
Fig. 7, the two downflow solution branches also represent the bounding cases of a family of nondenu-
merable multiple solutions, see Fig. 8. The solutions corresponding to the values f ′′

first(0) and f ′′
second(0)

of f ′′(0) again represent the upper and lower bounds of this family of multiple downflow solutions,
respectively (see Table 3). Figs. 7 and 8 show that, while the two “branches” are rapidly decaying solu-
tions, the intermediate solutions decay slowly as � → ∞. This difference in the asymptotic behaviour
of the f ′(�) -profiles shown in Figs. 7 and 8 becomes greater in the case of the corresponding stream
functions f (�). The downflows of Fig. 8 are illustrated in Fig. 9 which shows, that while the entrainment
velocities f (∞) of the two solution branches are finite and nonzero (see Table 3), f (∞) for the inter-
mediate solutions enclosed between the branches is zero. In the �-ranges included in Tables 2 and 3, the
values of the wall temperature gradient f ′′(0) for the two respective solution branches are quite close
to each other. However, the values of f (∞) for the two respective solution branches differ substantially
from each other. This circumstance is illustrated for the downflow cases of Table 3 by the plots shown in
Fig. 10.

6. Effect of the viscous dissipation on the heat transfer

The effect of viscous dissipation on the wall heat transfer as a function of the parameter � = a/Ge is
of great interest. In the present section it will be compared with the limiting case Ge → 0 (i.e. � → ∞)
which corresponds to negligible viscous dissipation (see Eq. (8)). To this end, we define the Nusselt
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number following the expression (19) for the wall heat flux:

Nu(�) = −s
f ′′(0)√

�
. (62a)

For more transparency, the dependence on � has been shown explicitly. Thus, Eqs. (61b) and (60b) yield

Nu(�) = −s

(
−

∞∑
k=0

k!
2k

k∑
n=0

nBn
n

(k − n)!n!

)−3/2 ∞∑
k=0

(
k!
2k

k∑
n=0

n2Bn
n

(k − n)!n!

)
, (62b)
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Fig. 11. (a). Plot of Nu(�) for the first branch of upflow and downflow solutions, respectively. For the downflows the Nusselt
number is negative for all values of �, whereas, in the case of upflows, it is positive above the value � = 2

3 and becomes negative

in the range �crit = 0.5 < � < 2
3 . For � = 0.53, the two Nusselt numbers are equal, Nuup(0.53) = Nudown(0.53) = −1.43762.

In the absence of viscous dissipation (Ge = 0), i.e. for � → ∞, the up- and downflows become physically equivalent, and the
absolute values of corresponding Nusselt numbers become equal. (b). Plot of Nu(�) for the second branch of up- and downflow
solutions, respectively. For the downflows the Nusselt number is negative for all values of �, whereas, in the case of upflows,
it is positive in the whole existence domain � > 2. In this case the two curves do not intersect each other. In the absence of
viscous dissipation (Ge = 0), i.e. for � → ∞, the up- and downflows become physically equivalent, and the absolute values of
corresponding Nusselt numbers become equal.

where the coefficients Bn and thus also the solution(s) 
 of Eq. (59b) are functions of � via � given by
Eq. (53). As Ge → 0 (i.e. � → ∞), Eq. (53) yields the common value � = 2 for both upflows and
downflows, which is in agreement with the fact that, in the absence of viscous dissipation, upflows
and downflows are physically equivalent. Moreover, for this value of �, Eq. (59b) has two solutions

1 = −0.810275 and 
2 = +9.786662 which correspond to the first and second branch of solutions,
respectively. For the corresponding Nusselt numbers one obtains

Nuup(∞) = −Nudown(∞) = 0.906376 (63)

for the first and

Nuup(∞) = −Nudown(∞) = 0.910397 (64)

for the second branch of solutions, respectively. (Notice that through |Nuup(∞)| = |Nudown(∞)| =
0.906376 the physical equivalence of the up- and downflows in the absence of viscous dissipation becomes
manifest again.) The results (63) and (64) are in a good agreement with the results (41) and (42) of Ingham
and Brown (1986). The connection of Nu(�) to its asymptotic values (63) for the first branch of up- and
downflow solutions is illustrated by the plots of Fig. 11a (with discussion in Section 7). The corresponding
curves for the second branch of solutions (shown in Fig. 11b) are very close to those of Fig. 11a since
the values of f ′′(0) itself for the first and second branch solutions are (in the corresponding domains
of existence, � > 2 for the first and ��0 for the second branch) quite close to each other (see Tables 2
and 3).
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7. Discussion and conclusions

The investigation of free convection flow over a vertical plate with an exponential temperature distribu-
tion is motivated by the fact that, in contrast to the more familiar power-law temperature distributions, a
similarity-reduction of the governing equations still remains possible even when the extra nonlinear effect
of viscous dissipation is taken into account. This holds both for the viscous flow of clear fluids as well as
for the flow in saturated porous media. Hence the influence of the viscous friction on the mechanical and
thermal characteristics of the flow can be examined for the exponential-similarity case by exact analytical
and numerical methods.

The main issues of the present paper are itemized below, and some of their consequences will be
emphasized.

1. As an effect of heat release by viscous friction, the usual physical equivalence of the free convection
up- and downflows over an upward projecting hot plate and over its downward projecting cold
counterpart, respectively, gets broken (this statement holds both for the viscous flow of clear fluids
and for the flow in saturated porous media). Accordingly, the possible delivery of useful work
(exergy) by the two types of free convection flows is quite different.

2. A further important consequences of this “broken equivalence” is that (in the present problem) the
downflows are possible for all nonnegative values of the temperature exponent a, but the upflows
only can exist above a critical value of a, a > acrit =Ge/2 (Fig. 2). In other words, for the occurrence
of an exponentially self-similar upflow, the logarithmic increment (6) of the wall temperature must
be sufficiently large. The physical reason for this difference between the up- and downflow cases is
that, while in the latter case the direction of motion coincides with the direction of the body force,
in the former one it is opposite to this.

3. The Gebhart number Ge of the fluid plays an important role for all these free convection flows since
the exponential dependence of the velocity and temperature fields on the wall coordinate x scales
with Ge (see Eqs. (12)–(18)).

4. Eq. (16) of the present boundary value problem can be mapped by the substitution (24) on to Eq. (25).
For upflow this equation coincides with the Cheng–Minkowycz equation which is valid for a plate
with a power-law temperature distribution, Tw(x)=T∞ +T0 Xm when the effect of viscous dissipa-
tion is neglected. However, in the case of downflows, Eq. (25) differs from the Cheng–Minkowycz
equation essentially. Accordingly, with respect to the Cheng–Minkowycz theory, the present down-
flow solutions are novel.

5. For the values a = 2Ge and a = 2Ge/3 of the temperature exponent, analytical upflow solutions
are available (see Sections 5.1 and 5.2). For the downflows a single analytical closed form solution
is known. It is the ADP ((43) corresponding to a = 0 (i.e. an isothermal, downward projecting cold
plate).

6. The upflow case corresponding to a = 2Ge/3 reveals a remarkable feature of the present boundary
value problem. It shows that a “usual” exponentially decaying boundary layer solution arises here
as a limiting case of a family of algebraically decaying solutions. This explicit example bridges
the historical disagreement concerning the feasibility of exponentially and algebraically decaying
boundary layers (see Kuiken, 1981; Magyari and Keller, 2004).

7. In Section 5.7 of the paper a new analytical series-solution in terms of powers of exponentials
has been given. This approach allows the calculation of all the upflow and downflow solutions
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belonging to the first branch (Tables 1–3, Figs. 2–4a, and 5–11a). The second solution branch of
the Cheng–Minkowycz equation (for upflows) could also be recovered with this method (Table 2,
Figs. 2, 4b, 5–7 and 11b).

8. In addition to the first branch of downflow solutions (Tables 1 and 3, Figs. 2, 3b, 4a, 8–11a), a second
solution branch of downflow solutions has also been found (Table 3, Figs. 2, 4b, 8–11b). These two
downflow solution branches bifurcate from the ADP at a = 0 and exist for all positive values of a.

9. It has been shown that the two solution branches do not represent in fact two isolated solutions but, in
both upflow and downflow cases, they are the limiting cases of respective families of nondenumerable
multiple solutions which are bounded between these branches (Figs. 7 and 8). As suggested by
Figs. 7 and 8 the intermediate solutions decay algebraically as � → ∞, while the two branches
correspond to exponentially decaying solutions. Moreover, while the entrainment velocities f (∞)

of the two branches are finite and nonzero, the intermediate solutions yield f (∞) = 0 (see Fig. 9).
10. In the present context the second branch of upflow solutions are nonphysical since they lead to

fluid temperatures which are (in spite of heat released by viscous friction) smaller than the ambient
temperature T∞. The second branch of downflow solutions, in contrast, are in agreement with the
principles of thermodynamics. Indeed, in this case the lowest temperature is the wall temperature.
Hence, negative values of f ′(�) arising in the second downflow solution branch are compatible with
this requirement. Moreover, for the first branch of downflow solutions the inequality 0 < f ′(�) < 1
must hold for all 0 < � < ∞. This is actually the case (see Fig. 3b).

11. The heat transfer characteristics of first branch of both up- and downflow solutions can easily be
extracted from Figs. 4a and 11a. [Remember that the latter figure is a rescaled form of the former one,
according to Eq. (62a).] Furthermore, the corresponding curves for the second branch of solutions
are very close to those of Figs. 4a and 11a since the values of f ′′(0) itself for the first and second
branch solutions are, in the corresponding domains of existence, � > 2 for the first and ��0 for the
second branch, quite close to each other (see Tables 2 and 3 and Figs. 4b and 11b). Although the
wall heat flux is always negative for downflows, in the case of upflows it is positive only above
of the value � = 2

3 and, surprisingly, in spite of the hot wall, it becomes negative for 0.5 < � < 2
3 .

The reason for this inversion of the heat fluxes at relatively low values (Ge/2 < a < 2Ge/3) of
the wall temperature exponent a is due to the excess heat released in the bulk of the fluid by
viscous dissipation. For large values of the logarithmic increment a, the heat released by viscous
dissipation is no longer able to overcome the heat flux issuing from the hot wall. As seen in Fig. 11a,
Nuup(�) < Nuup(∞) = 0.906376, which means that in the case of the upflows, the heat released
by viscous dissipation decreases the heat transfer from the fluid to the hot wall for all values of
the parameter � = a/Ge. On the other hand, Nudown(�) < Nudown(∞) = −0.906376, which means
that in the case of the downflows, the heat released by viscous dissipation increases the amount
of heattransferred from the fluid to the cold wall. Both these effects of viscous dissipation are in
agreement with our physical expectation.

12. Finally, it is also worth mentioning here that an expansion of type (48), (50) with respect to an
“exponential base” also has been used recently by Liao and Pop (2003) in their investigation of
the Cheng–Minkowycz problem with the aid of the homotopy analysis method (Liao, 2004). The
method of Liao is based on a continuous variation of the base functions to the exact solution
with the aid of auxiliary deformation operators, which also involves an auxiliary parameter which
controls the convergence of the expansion. However, as reported by Liao and Pop (2003), the second
branch of solutions of the Cheng–Minkowycz equation could not be recovered by the homotopy
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Table 4
Hints for finding the different results of the present paper

Flow direction Domain of existence, tables and figures

First branch Second branch

Upflows � > �crit = 0.5 � > 2
(hot plate, s = +1, Fig. 1a) Tables 1 and 2, Figs. 2, 3a, 4a, 5–7, and 11a Tables 2, Figs. 2, 4b, 5–7, and 11b

Downflows ��0 ��0
(cold plate, s = −1, Fig. 1b) Tables 1 and 3, Figs. 2, 3b, 4a, 8–11a Tables 3, Figs. 2, 4b, 8–11b

analysis method. This circumstance and the results of the present paper suggest that in order to
be converted to the exact solution, the exponential base, especially when combined with Euler’s
convergence accelerating series transformation, does not need any deformation for almost all values
of the parameters � and s.

The results of the present paper may be classified according to a 2×2 matrix which consist of the rows
upflows, downflows and the columns first and second solution branches, respectively. This is shown in
Table 4 where the domains of existence of the solutions as well as the numbers of tables and figures with
the corresponding results have been compiled.
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