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Abstract
Very large networks of randomly positioned resistors and capacitors have
been used to simulate the microstructures of real two-phase
(conductor–insulator) materials. These networks are found to exhibit
fractional power law frequency dependences of dielectric properties and ac
conductivity, of the type reported for a wide range of materials. The network
results are related to the resistor and capacitor values by a simple logarithmic
mixing rule. The same mixing rule is used to model the electrical
characteristics of two-phase electrical composites. The results are tested
using water impregnated lead zirconate titinate (PZT) ceramics samples that
have a microstructure that forms a complex interconnected random array of
conducting (water) and insulating regions. Excellent agreement is obtained
between the experimental data and the modelling predictions based on the
network simulation results. The power law exponents for ac conductivity
and relative permittivity are found to be equal to the proportions of the
composite occupied by the insulating and conducting phases, respectively.
Studies of conducting polymer impregnated PZT are also presented which
show less good agreement with modelling predictions.

1. Introduction

The development of electrical composites is motivated by
the technological need for properties that are not available in
individual single component materials. By combining two
or more components it becomes possible to tailor composite
materials with the required combinations of properties.
The design of such electrical composites necessitates a
detailed understanding of the ways in which composite
properties depend upon component properties, composition
and composite microstructure. Theoretical studies of
heterogeneous dielectric materials have been in a continuous
state of development since the initial work of Maxwell.
The bulk of these studies have been based on utilizing
exact solutions for geometrically simple (spheres, discs,
cylinders etc) inclusions of one component in a continuous
matrix formed by another component. These studies have
resulted in a range of effective medium theories and in the
determination of rigorous bounds on the predictive capabilities
of particular models. A review of this large body of work
has been made by Brosseau and Beroual [1]. In more
recent years, a range of numerical modelling techniques have

been employed to study increasingly complex systems of
inclusions, particularly randomized distributions of inclusions,
in composites. The computational demands of this work
are high because of the need to model large numbers of
inclusions to ensure that the results are representative of the
real macroscopic composite samples.

We offer here an alternative approach to composite design
that has arisen from efforts to understand another longstanding
problem: the anomalous power law frequency dependence of
dielectrics [2–4]. Recently [5–8], we proposed that the anoma-
lous power law dispersions of permittivity and ac conductivity,
found in many materials, could be attributed to the electrical
response characteristics of two-phase, conductor–insulator,
networks formed by their microstructures. Microstructural
examinations of many materials that exhibit these anomalous
properties reveal complex random arrays of conducting and
insulating/capacitive phases. We have suggested [6–8] that
such microstructural networks can be modelled as large net-
works of randomly positioned resistors and capacitors. The
electrical characteristics of these networks are found to closely
resemble those of the large body of materials that exhibit the
anomalous power law frequency dependences of permittivity

0022-3727/06/071295+10$30.00 © 2006 IOP Publishing Ltd Printed in the UK 1295

http://dx.doi.org/10.1088/0022-3727/39/7/S03
http://stacks.iop.org/JPhysD/39/1295


D P Almond et al

or ac conductivity. It was shown [5] that a simple formula,
arising out of the network simulation studies, could be used to
accurately predict the electrical properties of a two-component
composite material.

The purpose of this paper is to expand on the previous
work [5], in which the emphasis had been on testing the
validity of the proposed model by creating and measuring
a suitable composite. In this paper we explore further the
predictive capabilities of the network simulation models and
test these predictions using measurements of a range of
different composites. The principal findings of the network
simulation studies are summarized in section 2 of the paper and
new 3D finite element simulation results are introduced. These
results are used in section 3 to predict the electrical response
characteristics of composites. In section 4, these predictions
are tested experimentally using carefully chosen and well-
characterized composite samples. Finally, in section 5 the
results of the experiments and the simulations are discussed.

2. Network simulation characteristics

The electrical response characteristics of large networks
of randomly positioned resistors and capacitors were
initially [6, 7] obtained using commercial circuit simulation
software [9]. This work was followed [8] by the development
of a rapid network reduction algorithm that enabled the
statistical variation of responses from network to network to
be examined. The results that are typical of those found in
these simulation studies are shown in figure 1. Simulations of
the frequency dependence of the ac conductivity obtained from
255 different random networks are shown in figure 1(a). Each
network was a square network containing 512 components
of which 60% were randomly sited 1 k� resistors and the
remaining 40% were 1 nF capacitors. Very similar results
were found [8] for networks containing 2048, 8192 and 32,768
components. The frequency dependences of the capacitances
of the same collection of 512 component networks are shown
in figure 1(b). In both figures, the response characteristics
exhibit three clear regimes of behaviour. To discuss these, it is
helpful to introduce a third figure, figure 1(c), which shows the
variation with frequency of the admittances of the individual
network components. Whilst the resistors have a frequency
independent admittance, R−1, the admittances of the capacitors
rise as ωC, where ω is the angular frequency.

At low frequencies, where ωC � R−1, the capacitors
can be regarded as open circuits elements and the electrical
responses of the networks are dominated by the networks of
resistors alone. At these frequencies, a wide band of frequency
independent conductivities were obtained, figure 1(a). These
correspond to the many different percolation paths across the
randomly positioned resistors in the 255 different random
networks. At higher frequencies where ωC approaches R−1,
however, all the network responses are seen to converge upon a
common characteristic: a power law dispersion of conductivity
with frequency. This common characteristic occupies at
least two decades of frequency, roughly centred about the
‘characteristic frequency’, 159 kHz, at which ωC = R−1

for the components used in the network simulations. The
power law dispersion evident in figure 1(a) has an exponent
of 0.4 ± 0.037 that matches the proportion of the network,

40%, occupied by capacitors. It has been pointed out [8] that
this power law dispersion is an ‘emergent property’ of these
networks, i.e. a well-defined characteristic of the electrical
response that appears to be independent of the random
arrangement of the resistors and capacitors in the networks.
At these intermediate frequencies both component types make
significant contributions to the overall electrical conduction of
a network. Then, at high frequencies, where ωC � R−1, a
broad band of conductivities returns. At these frequencies,
capacitor admittances are so high that they short out much of
the resistor network. However, as only 40% of the networks
were occupied by capacitors there were insufficient number of
them that could percolate the 2D square networks. It has been
shown mathematically [10, 11] that the percolation threshold
for a 2D ‘bond’ lattice, of the type simulated here, is 50%.
Consequently, at high frequencies the conductivities of the
conduction paths across all the networks are limited by the
inclusion of one or more resistors and it is their conductivities
that determine the network response. Similar arguments can be
used to explain the three regimes of behaviour of the network
capacitances shown in figure 1(b).

The intermediate frequency range, power law response
characteristics of the networks have been found [6–8] to follow
a simple logarithmic mixing rule expression that is also known
as Lichtenecker’s rule [12]. The complex conductivity, or
admittance, of a network is found to conform with

σ ∗
net = (iωC)n(R−1)1−n, (1)

in which n is the proportion of the network that is occupied
by the capacitors. The ac conductivities of the networks have
magnitudes and frequency dependences that match the real part
of equation (1):

σnet = CnRn−1 cos(nπ/2)ωn. (2)

The imaginary part of equation (1) corresponds to the
admittance, iωCnet, of the network. Hence the network
capacitance is given by

Cnet = CnRn−1 sin(nπ/2)ωn−1. (3)

The power law dispersion evident in figure 1(b) has an exponent
of −0.6 that matches, in magnitude, the proportion of the
network, 60%, occupied by resistors, and its amplitude is in
good agreement with that predicted by equation (3).

The rationale for studying the properties of large networks
of randomly positioned resistors and capacitors was that the
microstructures of real materials could be seen to exhibit
an array of randomly positioned and shaped resistive and
capacitive phases. However, it is not clear that the above
relationships obtained from studies of 2D networks should also
apply to the 3D networks of interconnected phases formed
by the microstructures of real materials. A comprehensive
investigation of the characteristics of 3D networks has shown
that the emergent power law relationships are a common
feature of both 2D and 3D networks. A sample of this work,
which will be published in full elsewhere, is presented here in
figure 2. Figure 2 shows the results of 25 simulations of the
network conductivities of 20 × 20 × 20 element networks in
which 50% of the elements, the A elements, were randomly
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Figure 1. Network simulation frequency dependences [20] of (a) conductivity and (b) capacitance obtained for 255 networks containing
512 randomly positioned components of which 60% were 1 k� resistors and 40% were 1 nF capacitors. (c) admittances of a 1 k� resistor
and a 1 nF capacitor across the same frequency range.
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Figure 2. Finite element simulation dependences of bulk conductivity on the ratio of the conductivities of the two types of element. Results
are shown for 25 simulations of a cube of 20 × 20 × 20 elements with 50% of the element randomly chosen to have conductivities k, and the
remainder assigned conductivity 1.

assigned a conductivity k whilst the remaining 50%, the B
elements, were assigned a conductivity of 1. The figure shows
the variations of network conductivity with k i.e. with the ratio
of the conductivities of the two element types. The simulations
were undertaken using a straightforward implementation of the
method of successive over-relaxation to solve the full nodal
equations in three dimensions.

Figure 1(c) provides the link between the independent
variables, frequency and conductivity ratio employed in the
2D and 3D simulations. It is evident from figure 1(c) that
as frequency is swept from low to high values, the ratio of
the admittances , or ac conductivities, of the capacitors and
resistors is swept from values �1 to values �1. Hence the
frequency dependences of electrical network properties can be
equated with the dependences of these properties on the ratio
of the ac conductivities of the network components.

The 3D network characteristics, figure 2, exhibit the same
three regimes of behaviour found in the 2D characteristics
(figures 1(a) and (b)). At low conductivity ratios, k � 1,
network conductivity is attributed to percolation paths along
the B elements (conductivity 1) across the network. These
elements occupy 50% of the networks whilst the percolation
threshold for a 3D bond network is only 0.2492 [10]. At
intermediate conductivity ratios, the characteristics converge
on an emergent power law regime with a slope of 0.5, matching
the proportion of the network occupied with the A elements
having conductivity k. This regime is seen to occupy about
four decades of conductivity ratio. Then at high conductivity
ratios, k � 1, percolation on the A elements (conductivity
k) dominates, leading to the regime with a slope of 1. The
emergent power law part of the network characteristic is
in good agreement with the logarithmic mixing rule for a
system of two components having conductivities k and 1 in
the proportions n : (1 − n) i.e. the network conductivity is
given by

Knet = kn. (4)

The great similarities between the results obtained in the
2D and 3D network simulations, in particular in the power
law emergent regimes, gives us confidence in using the 2D
electrical network expressions, equations (2) and (3), to predict
the properties of real 3D composite materials.

To make the link to the network results it is necessary
to associate the average conductivity of the resistive phases
with that of a network resistor and the average capacitance of
the capacitive phases with that of a network capacitor. This
amounts to setting

R−1 = σA/l (5)

and

C = εε0A
′/l′, (6)

where σ is the electrical conductivity of the resistive phase
which, within the material, is taken to occupy, on average,
regions of length l of cross-sectional area A. Similarly, ε is
the relative permittivity of the capacitive phase that on average
occupies regions length l′ of cross sectional area A′. ε0 is the
permittivity of free space.

For the case in which the aspect ratios of the regions
occupied by the two phases are equal, i.e. for A/l = A′/l′,
substitution of expressions (5) and (6) in equations (2) and
(3) yields simple formulae for the ac conductivity and relative
permittivity of a two-phase composite material:

σcomp = (εε0)
nσ 1−n cos(nπ/2)ωn (7)

εcomp = εnεn−1
0 σ 1−n sin(nπ/2)ωn−1 (8)

and the characteristics frequency becomes

fch = σ/(2πεε0) (9)
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3. Model characteristics

It is generally recognized [4] that the ac conductivities and
permittivities of a wide range of materials exhibit frequency
dependences that are a reasonably good fit to expressions of
the form

σ(ω) = σdc + Bωp (10)

ε(ω) = Dωp−1 + ε∞. (11)

Equations (7) and (8) can be used to predict the frequency
dependent parts of these expressions if the material is a
composite containing two randomly distributed phases that are
individually conducting and insulating and which satisfy the
scaling relationship A/l = A′/l′. The latter condition would
apply, for example, to composites having microstructures
that could be modelled well by a lattice of equal size
cubic elements—the phase of each element being randomly
determined.

The dc conductivity, σdc, is determined by percolation
paths across the material. It is evident that the network
simulations, figures 1(a) at low frequencies, give no
precise indication of percolation conductivity as at these
frequencies conductivity is found to be highly variable between
simulations, each having different percolation paths. A
useful estimation of dc conductivity in porous solids, of the
type investigated experimentally here, section 4, is Archie’s
law [13] that was obtained from measurements of the dc
electrical conductivity of water-saturated rock

σdc = σwater · φd, (12)

where σwater is the conductivity of the water, φ is the porosity
level and d is a constant (typically ∼2). More generally,
equation (12) can be used to provide an estimate of dc
conductivity due to percolation if the conductivity of the water
is identified with the conductivity of the conducting phase,
σ and the proportion of the material occupied by this phase,
(1 − n), is identified with φ and d is taken to be 2.

Whilst potential insulating materials, for use in electrical
composites, exhibit a comparatively narrow range of relative
permittivities (∼2–∼3000), potential conducting materials
can have conductivities spanning ∼12 orders of magnitude.
However, it was noted above that the frequency dispersions
were roughly centred on a characteristic frequency determined
by the conducting and insulating properties of the two phases,
equation (9). For practical reasons, the majority of ac response
studies are made in the frequency range below ∼10 MHz.
If this frequency is set as the upper limit of characteristic
frequency for materials of interest, it is found that conducting
phases must have conductivities less than ∼1 Sm−1. Metals
have conductivities in the range ∼106–∼5×107 Sm−1, at room
temperature.

Model frequency dependences of ac conductivity are
shown in figure 3 for composites comprising an insulating
material with a relative permittivity, ε, of 10 occupying 60%
by volume and randomly distributed conducting phases of
conductivities indicated, occupying the remaining 40%. These
curves were obtained by adding conductivity terms defined in
equations (7) and (12) to provide an expression of the same
form as equation (10). The shift in the onset frequency for the
power law dispersion with the conducting phase conductivity
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Figure 3. Modelling characteristics of the ac conductivity of a
two-phase composite in which the insulating phase, relative
permittivity 10, occupies 60% of the material and the conducting
phase, with conductivities indicated, occupies the remaining 40%.
Characteristic frequencies are indicated by the arrows.
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Figure 4. Modelling characteristics of the relative permittivity of a
two-phase composite in which the insulating phase, relative
permittivity 10, occupies 60% of the material and the conducting
phase, with the same conductivities as shown in figure 3, occupies
the remaining 40%.

is a consequence of the dependence of characteristic frequency
on conductivity (equation (9)). The family of curves in
figure 3 bears a striking resemblance to experimental data
showing the variation of ac conductivity with temperature [4].
Many materials that exhibit such characteristics are effectively
two-phase composites comprising a conducting phase, with
a thermally activated conductivity, suspended within an
insulating phase.

The model variations in relative permittivity with
frequency for the same composites are shown in figure 4.
These results were obtained using equation (8) to represent
the frequency dependent term in equation (11). A permittivity
of 3.25 was added to represent the permittivity ε∞ of a
40% porous sample [14] of the dielectric phase (ε = 10) at
high frequencies, where the frequency dependent component
of permittivity becomes negligible. The model predicts
massive enhancements in relative permittivity and power law
dispersions at low frequencies. The power law exponent has a
magnitude, (1−n) from equation (8), equalling the proportion
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Figure 5. Modelling characteristics of the relative permittivity of a
two-phase composite in which the insulating phase, relative
permittivity 10, occupies the proportions n shown of the material
with the conducting phase, conductivity indicated, occupying the
remainder.

of the composite, here 0.4, occupied by the conducting phase.
The frequency range of the power law dispersion shifts with
conducting phase conductivity in a fashion similar to the
dispersion in ac conductivity.

The model dependence of permittivity on composite
composition is shown in figure 5. It can be seen that
the characteristics form a fan of lines with slopes having
magnitudes equalling the proportion of the composite occupied
by the conducting phase. The effect of composition on
conductivity is to cause the slope of the power law dispersion,
equation (8), to be equal to the proportion of the composite
occupied by the insulating phase. The effect of composition on
permittivity is more distinctive than for conductivity because
the added ε∞ term is insignificant in comparison with the
permittivity power law term at low frequencies, whilst the
reverse is the case for conductivities where σdc much exceeds
the power law term.

4. Experimental results

The network simulation results, equations (7) and (8), have the
same form as the experimental data obtained from a wide range
of real materials, characterized by equations (10) and (11). In
this section we present the results of experimental tests of the
relevance of the simulation results to real materials.

The tests necessitate the selection of a composite that has
a two phase, conductor–insulator, random microstructure and
a characteristic frequency below ∼10 MHz. In addition it is
essential that the two phases can be characterized separately,
prior to their incorporation as a composite.

The two materials selected to form the test system were
the ferroelectric ceramic lead zirconate titanate (PZT), as the
insulating/dielectric phase, and water as the conductive phase.
PZT powder was sintered to form a low-density porous pellet
that was infused with water. The pore structure of such
a ceramic comprises a random 3D array of interconnected
cavities that are readily filled with water. Interconnectivity
(open porosity) and microstructure for these materials has
previously been determined by the Archimedes method and
microstructural analysis [14].
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Figure 6. Measurements of (a) relative permittivity of a 22% porous
PZT sample, (b) conductivity of water at equilibrium with immersed
PZT fragments (see text), (c) the conductivity and (d) the relative
permittivity of the sample saturated with water.

The major factor leading to the choice of water as the
conducting phase was that it has an electrical conductivity
∼0.1 Sm−1 that is required to set the characteristic frequency
below 10 MHz. It also has the advantages of being readily
available, of having fairly featureless dielectric characteristics
in the frequency range of interest here and of being simple to
introduce into the insulating host, in the manner mentioned
above.

The first test sample was a sintered PZT pellet that had
a diameter of 10.5 mm, a thickness of 3 mm and a density of
78% of the theoretical density (a porosity of 22%). Silver
paste electrodes were applied to the two circular faces and
electrical measurements were made using a Solartron 1260
impedance analyzer with a Solartron 1296 dielectric interface.
The measured relative permittivity of the PZT sample, prior
to the introduction of the water, is shown in figure 6(a). The
permittivity is featureless across the frequency range shown,
100 Hz to 1 MHz, but has a magnitude of ∼900 that is lower
than that, 1500, for fully dense bulk PZT due to the presence
of porosity in both series and parallel with the PZT through its
thickness. The permittivity of materials with 22 vol% porosity,
evaluated by modelling and experiment, is typically 50–60%
that of the dense material [15–17].

The frequency dependence of the conductivity of the water
is shown in figure 6(b). PZT ceramic fragments were immersed
in the water sample for 70 h prior to the measurements
to ensure that a good indication of the conductivity of
the water within the pores of the ceramic was obtained.
It was found that the pieces of ceramic raised the water
conductivity by a factor of ∼5, presumably by dissolution
of ionic impurity compounds on the ceramic surfaces. The
conductivity of the water sample is flat and featureless across
the frequency range shown with a small decrease at lowest
frequencies attributable to an electrode polarization effect that
is commonly observed in ac measurements of all types of ionic
conductors [18].

The ac conductivity and relative permittivity of the porous
PZT sample saturated with water are shown in figures 6(c)
and (d). The experimental data for both the conductivity
and permittivity are similar to the modelling predictions
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Figure 7. Measurements of (a) the conductivity and (b) the relative permittivity of 16% and 35% porous PZT samples saturated with water.

(figures 3 and 4). The line shown with the data in figure 6(d)
was obtained from equation (8), setting ε = 1500, the
relative permittivity of bulk PZT; σ = 0.13 Sm−1, the
water conductivity indicated by the measurements shown in
figure 6(b) andn = 0.78, the proportion of the sample occupied
by PZT, the insulating phase. The slope of the line from
equation (8) is −(1 − n) = −0.22 i.e. of magnitude equalling
the porosity, 22%, of the sample. It can be seen that the
agreement between the model line and the data is excellent
in both slope and absolute amplitude. The same properties
were inserted into equation (7) to calculate the frequency
dependence of the ac conductivity. This was added to the
percolation plateau value of 0.0048 Sm−1, indicated by the
experimental data, to generate the curve shown in figure 6(c).
Again the overall agreement between the model curve and the
data is excellent.

Similar measurements were made for two further porous
PZT samples, one with a lower porosity of 16% and the other
with a higher porosity of 35%. The frequency dependences
of ac conductivity and relative permitivity are shown in
figures 7(a) and (b). The model curves shown with data
were generated using the same conductivity and permittivity
for the two phases, listed above, with n set as 0.84 and 0.65
for the lower and higher porosity sample cases, respectively.
Again the overall agreement between the model curves and
the data is excellent. The composition dependence of the
permittivity is seen to take the form indicated in figure 5.
There is also clear evidence, figure 7(a), that composition
determines the exponent for the power law dispersion in
ac conductivity. In figure 7(b), the deviation from the
predicted power law dispersion at low frequencies for the
65% porous sample is an electrode polarization effect [18]
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Figure 8. Measurements of (a) the conductivity and (b) the relative permittivity of a 22% porous PZT sample saturated with a solution
containing 90% methanol and 10% water.

typical of samples with a high dc ionic conductivity. It is
most significant for this sample because, being the sample
with the highest porosity , it has the highest dc ionic
conductivity.

The water was removed from the 22% porous PZT pellet
and its pore volume was refilled with a solution containing
90% methanol and 10% water. This solution had been found
to have a conductivity of 3.64 × 10−3 Sm−1, a factor of 35.7
lower than the water used in the tests described above. The
frequency dependences of the ac conductivity and relative
permittivity of the sample containing the lower conductivity
fluid are shown in figures 8(a) and (b). These data should
be compared with those shown in figure 6 obtained from
the same sample containing water alone. As expected, the

low frequency plateau in conductivity occurs at a much-
reduced value of conductivity in figure 8(a). In addition,
the power law dispersion in conductivity spans a far greater
proportion of the frequency range investigated. This is a
result of the characteristic frequency being reduced by the
same amount as the conductivity of the conducting phase. The
conductivity results in figures 7 and 8 are in good agreement
with the modelling predictions for ac conductivity shown in
figure 3. The relative permittivity exhibits a slope of −0.22
at low frequencies and a plateau value corresponding to the
permittivity of the dry PZT pellet at high frequencies. This is
in agreement with the modelling predictions for permittivity
shown in figure 4. The curves shown with the data in figure 8
were generated by equations (7) and (8) using the conductivity
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Figure 9. Measurements of (a) the conductivity and (b) the relative permittivity of PZT samples (porosity 1 − n) impregnated with Panipol
CX conducting polymer.

of the solution quoted above. Again the agreement is excellent
over most of the frequency range.

Whilst the use of water and other fluids for the conducting
phase has many advantages, the composites produced are not
stable because they dry out over time. In an effort to produce
stable samples, the conducting polymer Panipol CX [19] has
been investigated as an alternative conducting phase. Panipol
CX was found to have a frequency independent conductivity
of 1.5 Sm−1 at frequencies up to 10 MHz. Unlike water, it was
not possible to infuse the polymer as a liquid into a porous
ceramic. Instead granules of Panipol CX and PZT were mixed
together and pressed to form a pellet. The ac conductivities
and relative permittivities of four PZT Panipol CX samples are
shown in figures 9(a) and (b). The lines shown with the data
were calculated as before. The agreement between the model
curves and the data is reasonable for ac conductivity and poor
for relative permittivity. The reason for the poorer agreement,

when compared with using water, was that the polymer fails to
completely fill all the spaces between the PZT grains, leaving
internal air gaps that have a particularly deleterious effect on
measured permittivity.

5. Discussion and conclusions

The experimental studies have shown that simple modelling
based on network simulation results provides a comprehensive
description of the electrical characteristics of a conductor–
insulator composite system across a wide range of frequencies.
In particular, equations (7) and (8) which were obtained
from the logarithmic mixing rule equation (1), provide an
accurate description of the frequency dependent component
of a conductor–insulator composite’s electrical response
characteristics. The use of these expressions was based on the
discovery that simulations of large 2D networks of randomly

1303



D P Almond et al

sited resistors and capacitors exhibited emergent properties
that conformed to these expressions. Recent simulations of
large 3D networks of randomly sited elements having two
different conductivities exhibit essentially identical emergent
properties. These results are consistent with expressions
obtained from 2D network simulations (equations (7) and
(8)), also predicting the properties of real 3D materials. It
should be emphasized, however, that materials for which the
analysis shown here is relevant are confined to those whose
microstructures can be described as being a random array of
two phases that are individually conducting and insulating
and which occupy volumes that have the same average aspect
ratio. If the latter requirement is relaxed, the magnitudes of
the frequency dependent expressions, equations (7) and (8),
will be altered but the power law frequency dependence and
the relationship between the exponents and composition will
not be changed.

A simple relationship has been identified between the
frequency dependence of relative permittivity and sample
porosity/composition. There may be applications for which
this relationship will prove to be a valuable means of the
assessment of this property.

The physical/mathematical origin of the emergent power
law regime found in the 2D and 3D simulations of large
networks filled randomly with components of two types is
not understood and remains the subject of future research. It
appears to be a general characteristic of Laplacian systems that
may have widespread application in explaining phenomena in
other fields.
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