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Abstract. In this note we consider the thermoconvective stability of the recently-discovered
asymptotic dissipation profile (ADP). The ADP is a uniform thickness, parallel-flow
boundary layer which is induced by a cold surface in a warm saturated porous medium
in the presence of viscous dissipation. We have considered destabilisation in the form of
stream-wise vortex disturbances. The critical wavenumber and Rayleigh number for the
onset of convection have been determined for all angles of the cooled surface between
the horizontal and the vertical for which the ADP exists. The paper closes with a pre-
sentation of some strongly nonlinear computations of steady vortices.
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1. Introduction

In the last few years there has been much interest in how the presence of
viscous dissipation affects free, mixed and forced convective flows in porous
media. The first published works showing that the rate of heat generation
by viscous dissipation in porous media is proportional to the square of
the seepage speed are those by Ene and Sanchez-Palencia (1982) and Bejan
(1995). Nakayama and Pop (1989) were then the first to apply this model
to a thermal boundary layer flow while Ingham et al. (1990) applied it to
mixed convection in a uniform channel. All of these papers assume that the
momentum equation is given by Darcy’s law; the modelling of viscous dis-
sipation uses further terms when form-drag and boundary effects are sig-
nificant (see Rees et al., 2005).

An important property of viscous dissipation in porous media is that it
removes up/down symmetry from certain fluid flows. For example, when vis-
cous dissipation is negligible, then the flow induced by a constant tempera-
ture heated surface which is projecting upwards is mathematically identical
to that induced by a similar downward-projecting cold surface. This symme-
try no longer exists when viscous dissipation is present, since, for the hot
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surface, the heat generated serves to accelerate the flow, while, for the cold
surface buoyancy, is retarded. In the latter case Magyari and Keller (2003)
showed that a uniform thickness boundary layer with parallel flow is a pos-
sible solution of the governing equations, and it decays algebraically rather
than exponentially. A little later Rees et al. (2003) showed that this flow
is achievable in practice, at least within the confines of the boundary layer
approximation. Rees et al. (2003) showed that the flow near the leading edge
is identical to that obtained by Cheng and Minkowycz (1977), but that the
usual unbounded growth of the boundary layer thickness with distance from
the leading edge is restrained by the presence of viscous dissipation, and
the boundary layer tends towards the parallel-flow solution of Magyari and
Keller (2003). Therefore the solution of Magyari and Keller (2003) has been
named the asymptotic dissipation profile (ADP) due to its similarity to the
asymptotic suction profile which has the same qualitative features.

The aim of the present paper is to consider the stability of the ADP
which forms on generally inclined cold surfaces which are downward fac-
ing. It is essential to do this, for should the ADP be found to be unsta-
ble, then any flow patterns and heat transfer correlations deriving from the
ADP will be incorrect in practice. The basic flow is identical to that of
the vertical ADP of Magyari and Keller (2003) except that its thickness
depends on the inclination of the cooled surface. This solution is perturbed
by small-amplitude vortex disturbances of wavenumber k, and the value of
critical Rayleigh is determined as a function of k. The stability analysis is
then extended into the nonlinear regime with some fully numerical compu-
tations of the vortex system using a suitable finite difference method. The
evolution of the shape of the vortices with increasing Rayleigh number is
shown.

2. Equations of Motion and Basic Flow

Convection is induced by the presence of a cold surface embedded within
an otherwise hot porous medium. We assume that the flow is governed by
Darcy’s law modified by the presence of buoyancy and subject to the Bous-
sinesq approximation. In writing the energy equation it is further assumed
that the fluid and the porous matrix are in local thermal equilibrium, and
that viscous dissipation is significant. Thus we use the following equations:

∂ū

∂x̄
+ ∂v̄

∂ȳ
+ ∂w̄

∂z̄
=0, (1)

ū=−K

µ

∂p̄

∂x̄
− ρgβK(T −T∞)

µ
cos α, (2)
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v̄ =−K

µ

∂p̄

∂ȳ
− ρgβK(T −T∞)

µ
sin α, (3)

w̄ =−K

µ

∂p̄

∂z̄
, (4)

σ
∂T

∂t̄
+ ū

∂T

∂x̄
+ v̄

∂T

∂ȳ
+ w̄

∂T

∂z̄
=κ

(
∂2T

∂x̄2
+ ∂2T

∂ȳ2
+ ∂2T

∂z̄2

)

+ ν

Kcp

(
ū2 + v̄2 + w̄2) , (5)

see Nield and Bejan (1999). In these equations x̄, ȳ and z̄ are the stream-
wise, cross-stream and spanwise coordinates, respectively, and the corre-
sponding seepage velocities are ū, v̄ and w̄. All other terms have their usual
meaning in the context of porous media: K is the permeability, σ is the
heat capacity ratio of the porous medium to that of the fluid, µ is the
dynamic viscosity, ν = µ/ρ is the kinematic viscosity, where ρ is the ref-
erence density of the fluid, i.e. when the temperature is given by T = T∞.
The cold surface is held at the temperature Tw, where Tw <T∞. Finally the
quantities g,β, κ and cp are gravity, the coefficient of cubical expansion,
the inclination of the cold surface away from the downward vertical and
specific heat, respectively. The flow configuration is sketched in Figure 1,
where the z̄-direction is perpendicular to the diagram.

Equations (1)–(5) are nondimensionalised using the following scalings:

T =T∞ + (Tw −T∞)θ, x̄ =Lx, (ȳ, z̄)=LR−1/2(y, z),

t̄ = σL2

κR
t, ū= κR

L
u, (v̄, w̄)= κR1/2

L
(v,w), p̄ = µκR1/2

K
p.

(6)

Figure 1. A sketch of the flow domain indicating the axes, the orientation of the
cold surface (thick line) relative to the downward vertical, and a depiction of the
development of the boundary layer towards the ADP.
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The length scale L used in (6) arises naturally in the system due to the
presence of viscous dissipation and is given by

L= cp

gβ
. (7)

The value R is the Darcy–Rayleigh number defined by

R = ρgβK(T∞ −Tw)L

µκ
. (8)

These scalings were devised by Rees et al. (2003) when considering the
development of the ADP at high values of R, and it was found that
the boundary layer thickness is of O(LR−1/2) while the entry length for the
boundary layer itself is of O(L); this is the motivation behind the different
scaling for x̄ and for ȳ and z̄. Consequently ū must be scaled differently
from v̄ and w̄.

The governing equations now reduce to the form

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
=0, (9)

u=−R−1/2 ∂p

∂x
+ θ cos α, (10)

R−1/2v =−∂p

∂y
+ θ sin α, (11)

R−1/2w =−∂p

∂z
, (12)

∂θ

∂t
+u

∂θ

∂x
+v

∂θ

∂y
+w

∂θ

∂z
=R−1 ∂2θ

∂x2
+ ∂2θ

∂y2
+ ∂2θ

∂z2
−u2 −R−1(v2 +w2),

(13)

while the boundary conditions are that

y =0 : v =0, θ =1, (14)

y →∞ : u, θ →0. (15)

In this paper we are not assuming that R�1 and therefore that the bound-
ary layer approximation is valid, rather, we are taking R to be finite, but
assume that x is sufficiently large that a uniform thickness x-independent
flow has been attained.

The basic flow we analyse for stability is a constant thickness boundary
layer where all flow quantities are steady and independent of x, the stream-
wise direction, as found by Magyari and Keller (2003). The sole difference
between the present problem and that of Magyari and Keller (2003) is that
the cold surface is inclined away from vertical in the manner depicted in
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Figure 1. In this situation we will assume both x- and z-independence and
therefore (9) implies that u=u(y). Equations (10) and (13) become

u= θ cosα,
∂2θ

∂y2
−u2 =0. (16, 17)

The solution for θ is

θ = 6

(y cos α +√
6)2

, (18)

which is an algebraically decaying solution. We note that the thickness of
the boundary layer increases as α increases from zero. It proves very conve-
nient to have a description of the basic flow which is independent of cos α,
and therefore we define the variables, ŷ and ẑ according to

ŷ =y cos α, ẑ= z cos α. (19)

We denote the basic solution in the following way:

ub =F(ŷ) cos α, vb =wb =pb =0, θb =F(ŷ), (20)

where

F(ŷ)= 6

(ŷ +√
6)2

. (21)

3. Stability Analysis

Equations (9)–(13) may now be transformed according to (19) and linear-
ised about the solution given in (20) using

(u, v,w,p, θ)= (ub, vb,wb,pb, θb)+ (U,V,W,P,	), (22)

where the quantities, U , V , W , P and 	, are assumed to be infinitesimally
small. We will be taking disturbances of the form of streamwise vortices
whose form is independent of x, since this is a parallel basic flow. We also
invoke the principle of exchange of stabilities, which may be proved for this
system, and which allows us to set the time-derivative term in (13) to zero.
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After all these operations, the linearised stability equations become

∂V

∂ŷ
+ ∂W

∂ẑ
=0, (23)

U =	 cos α, (24)

R−1/2V =−∂P

∂ŷ
cos α +	 sin α, (25)

R−1/2W =−∂P

∂ẑ
cos α, (26)

(F ′ cos α)V + (2F cos α)U = ∂2	

∂ŷ2
+ ∂2	

∂ẑ2
, (27)

and they may be simplified by substituting for U from Equation (24) into
Equation (27), and by introducing the streamfunction, 
, according to

V = ∂


∂ŷ
cos α, W =−∂


∂ẑ
cos α. (28)

The linearised stability equations now become

∂2


∂ŷ2
+ ∂2


∂ẑ2
=R1/2 tan α

∂	

∂ẑ
(29)

∂2	

∂ŷ2
+ ∂2	

∂ẑ2
−2F(y)	=F ′(ŷ)

∂


∂ẑ
. (30)

Vortices may be introduced by setting


 =f (ŷ) cos kẑ, 	=g(ŷ) sin kẑ, (31, 32)

and we obtain the following ordinary differential eigenvalue problem for f

and g:

f ′′ −k2f = (R1/2 tan α)kg, g′′ − (k2 +2F)g =−F ′kf, (33, 34)

which must be solved subject to the boundary conditions

f =g =0 at ŷ =0 and f, g →0 as ŷ →∞. (35)

These equations were solved using the classical 4th order Runge–Kutta
method combined with a standard multidimensional shooting method to
find the variation of the eigenvalue, R1/2 tan α with the vortex wavenumber,
k. Thus it is essential to force nonzero solutions by imposing the further
boundary condition

g′(0)=1. (36)
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Numerical solutions were obtained using a steplength of 0.1 in the
ŷ-direction; this is sufficiently small to yield excellent accuracy using a
fourth order method. We also note that, despite the basic solution exhib-
iting algebraic decay, the disturbances which form the solution to (33) and
(34) decay exponentially. The maximum value of ŷ which was used varies
between 7 when k is relatively large and 200 when k is small.

Figure 2 shows how the critical value of R1/2 tan α varies with wave-
number, k. Not surprisingly the neutral curve follows the standard
Bénard-like behaviour of having a single well-defined minimum and of ris-
ing towards infinity as k → 0 and k → ∞. The interpretation of the curve
is also the usual one, namely, that points above the curve correspond to
growing vortex disturbances, while decaying disturbances are represented
by points below the curve.

It is important to determine the minimum value of R1/2 tan α since
this yields a global linear stability criterion in a spanwise-unbounded
layer. This was achieved by adding to Equations (33) and (34) a system
formed by differentiating (33) and (34) with respect to k, and by taking
∂(R1/2 tan α)/∂k =0. The resulting system yields the following result:

kc =0.5166, (R1/2 tan α)c =16.8469, (37)

which are correct to the quoted number of places.

Figure 2. The neutral curve for the onset of vortex convection in the asymptotic
dissipation profile. Profits above the curve represent unstable disturbances. the min-
imum lies at k =0.5166 and R1/2 tan α =16.8469.
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The critical wavenumber may be compared with π , which corresponds
to the critical wavenumber in the classical Darcy–Bénard problem which
comprises a layer of uniform thickness (equal to unity). In the present flow
the thickness of the boundary layer is substantially greater than 1, there-
fore the thickness (see Figure 3) and wavelength of the vortex will also be
greater than 1, and this corresponds to a much smaller critical wavenumber
than π .

The critical value of R is strongly dependent on the value of α. When
α →0+ then the critical Rayleigh number increases without bound, and we
conclude that the vertical ADP is stable. This situation is similar to that
for free convective flow in a vertical channel subject to a horizontal tem-
perature gradient, and which was proved by Gill (1969) to be stable using
an energy stability method. It is also similar to the classical vertical ther-
mal boundary layer flow from a uniformly hot surface in a porous medium;
see Lewis et al. (1995) and Rees (1993).

The flow is also stable when α is negative, for this corresponds to a cold
surface lying below a warm region. Finally, as α → 1/2π , the horizontal
limit, the critical Rayleigh number tends towards zero. In fact, this is not
an achievable limit within the current analyses since the boundary layer has
become infinitely thick.

Figure 3. The variation with ŷ of (i) g(ŷ). the temperature perturbation (continuous
curve); and (ii) F(ŷ), the basic temperature profile (dashed curve). The disturbance
was computed at the critical value of k :kc =0.5166.
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4. Nonlinear Vortices

In this brief section we present some preliminary computations of nonlin-
ear vortices which arise at Rayleigh numbers higher than those given by
Equation (37). The full nonlinear equations are

∂2


∂ŷ2
+ ∂2


∂ẑ2
=R1/2 tan α

∂	

∂ẑ
(38)

∂2	

∂ŷ2
+ ∂2	

∂ẑ2
−2F	−F ′ ∂


∂ẑ
= ∂


∂ẑ

∂	

∂ŷ
− ∂


∂ŷ

∂	

∂ẑ
+	2

+R−1

[(
∂


∂ŷ

)2

+
(

∂


∂ẑ

)2
]

+ ∂	

∂t
, (39)

which are to be solved subject to the boundary conditions that both 
 and
	 are zero on ŷ = 0 and become zero as ŷ → ∞. In Equations (38) and
(39) both 
 and 	 are O(1) quantities and they represent the full nonlin-
ear perturbation to the steady ADP. In the computations presented below
we assumed that the cooled surface is at an angle π/4 to the vertical and
we have considered a selection of values of R in order to see how the vor-
tices change when R increases.

The numerical method chosen was modified from the code developed by
Rees and Bassom (1993) and is a fully implicit scheme based on second
order accurate central differences in space and a first order accurate back-
ward difference scheme in time. The Jacobian term was modelled using the
well-known Arakawa (1966) formula. Computations proceeded by seeding
a suitable disturbance and following it to the steady-state. The advantage of
using a fully implicit scheme is that the steady-state solution is achieved in
much less CPU time than by using other explicit or pseudo explicit meth-
ods such as the forward difference or DuFort Frankel methods. A DuFort
Frankel time-stepping code was also developed and the results compared
very favourably with those of the backward difference scheme, although the
timestep had then to be restricted to near 0.01 in order to maintain numer-
ical stability.

We chose a computational domain of 48 points in the ẑ-direction and 96
in the ŷ-direction. In terms of spatial variables the computational domain
was 0� ẑ�12 and 0� ŷ �24. The former range is equivalent to the wave-
number k = 0.5236 which is very close to the critical value given in (37).
The latter range was found to be sufficient to contain the vortex system.
The grid aspect ratio is precisely unity, and therefore we used a pointwise
(rather than line-wise) Gauss–Seidel method as the basic smoother. Iter-
ative convergence was improved substantially by adopting a fully nonlin-
ear multigrid method with V-cycling, as described in Brandt (1984) and as
implemented in Rees and Bassom (1993) and Rees (1993). Additionally, we
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used a crude form of timestep control where the timestep was allowed to
increase when the number of V-cycles was sufficiently small with a maxi-
mum timestep of 1 being imposed.

In general the computations were started using the relatively small time-
step of 0.001, but this always increased gradually towards 1, our choice
of maximum timestep, as the computation progressed. Convergence to the
steady state was monitored by checking the size of largest absolute change
in 	 in neighbouring timesteps, and convergence was deemed to have taken
place when this change was less than 10−8. This criterion, together with the
large timesteps used towards the end of the computation yielded at least six
figures of accuracy of the steady discretised system (as opposed to being
compared with the precise solution).

Figure 4 shows the results of our computations for Rl/2 = 17, 18, 20,
25, 30 and 40 where the cooled surface is inclined at an angle of α =45 ◦.
In this figure are displayed the streamlines and both the perturbation and
full temperature fields. The streamlines shown in the top row of Figure 4
indicate the manner in which fluid particles move in the y − z plane. The
streamwise motion, which is perpendicular to that plane, is ub + U : see
Equation (22). The definition of ub is given by (20) and U by Equation
(24). The superimposition of these two motions yields particle paths which
are helical.

When R1/2 = 17 conditions are only just post-critical, and there are
only slight deviations in the isotherms away from the straight lines corre-
sponding to the ADP. The streamlines also display a left / right symmetry
about their maxima and minima, which is consistent with the substitutions
(31) and (32). When the value of R increases, the strength of the vortices
increases and the boundary layer becomes thicker. The symmetry alluded
to above is lost due to the fact that the flow away from the cooled surface
takes place into an unbounded region, while inflow in constrained by the
presence of the surface. In fact we see the gradual development of a strong
jet of cold fluid away from the surface as R increases, and this increas-
ing strength accounts for the increase in the boundary layer thickness. The
shape of the perturbation isotherms alters quite markedly with the develop-
ment of a very distinctive triangular-shaped region of relatively warm fluid,
while the cold regions grow outwards and begin to join together some dis-
tance from the cooled surface.

Given that viscous dissipation is present, the vortex flow gives an addi-
tional dissipative effect which will raise the mean temperature of the
porous medium near the cooled surface. As a simple means of assessing the
magnitude of this effect, we have integrated the perturbation temperature
field, 	, over the whole computational domain using a straightforward
two-dimensional form of the trapezium rule. The results of this computa-
tion are shown in Table I and we denote the mean temperature as 	m.
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Figure 4. Streamlines (top row), perturbation isotherms (middle row) and isotherms
(bottom row) for nonlinear vortices within the ADP for a cold surface at 45◦ to
the vertical, for a range of values of R. The vertical coordinate in these contour
plots is ŷ, and horizontal cordinate is ẑ.

We note that 	m is usually zero for Darcy-Bénard-like problems since
such flows retain the symmetry between positive and negative perturba-
tions, but here the viscous dissipative effect removes the symmetry. We
find that 	m increases with R indicating that there is, not surprisingly, an
extra heating effect on the fluid. It is also of interest to note that a lin-
ear extrapolation of the data for R1/2 =17 and 18 to determine, where 	m

returns to zero, which marks the onset of convection, shows that R1/2 =
16.904, a value which is in error by 0.34% compared with the value given
in (37).

In further computations at inclinations which are closer to the verti-
cal, the computed flows are similar to those presented here because the
coefficient of (
2

ŷ
+
2

ẑ
) in (39) is very small. However, we have found some
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Table I. Variation of 	m with R1/2

R1/2 	m

17 0.000269
18 0.003084
20 0.008253
25 0.019403
30 0.029067
35 0.037308
40 0.044408

qualitative differences when α corresponds to inclinations which are closer
to the horizontal. In some cases it is possible for this vortex system to
become destabilised and form four vortices instead of the original two. It
appears, therefore, that the postcritical development deserves a much more
comprehensive treatment than may be given here, and we intend to report
on it in the future.

5. Conclusions

In this paper we have determined the stability characteristics for the ADP
induced by a generally inclined cold surface embedded in a warm porous
medium in the presence of viscous dissipation. It has been shown that the
ADP is stable when the cooled surface is vertical. At inclinations lying
between the vertical (α =0) and the horizontal (α =π/2) the critical value
of the Rayleigh number is given by Rc = (16.8469 cot α)2, and is there-
fore a decreasing function of α in this range. The critical wavelength is
2π/0.5166 cos α, in terms of the original nondimenional coordinate, z, and
this increases in direct proportion to the thickness of the ADP itself.

At postcritical Rayleigh numbers nonlinear vortices occur and these
have been found to increase the thickness of the boundary layer as R

increases. Strong outflow jets were also found to grow with increasing R,
and the presence of more intense flow also serves to increase the mean tem-
perature of the boundary layer.

Appendix

For a porous region composed of a sand with water as the saturating fluid,
we may take the following as typical values. For sand we have Density:
ρ = 2000 kg/m3; specific heat: cp = 800 J/kg K; permeability: K = 10−10 m2.
For water we have diffusivity: κ = 1.44 × 10−7m2/s; dynamic viscosity: µ=
0.001 kg/ms; coefficient of cubical expansion: β = 4 × 10−4 K−1. Finally we
may assume a temperature variation of 50 K.
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From (6) we see that the dimensional lengthscale corresponding to the
boundary layer thickness has magnitude L/R1/2, where L is defined in
Equation (7) and R in Equation (8). Therefore we obtain the value

L/R1/2 =
(

µκcp

ρ(gβ)2K(T∞ −Tw)

)1/2

�27.4 m. (A.1)

Given that the thermal boundary layer whose stability is being analysed
has thickness roughly equal to 5 in nondimensional terms, this means that
the boundary layer has dimensional thickness of the order of (140/ cos α)m.
Therefore the ADP is most likely to arise in geologically sized regions, and
is unlikely to be achievable in laboratory experiments.
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