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1. INTRODUCTION

THE sTUDY of convection generated by a heated semi-infinite
surface embedded in a saturated porous medium has
atiracted extensive treatment in recent years. Of main con-
cern has been the practical need to determine accurately
the heat transferred into the porous medium from heated
surfaces of various orientations. After the pioneering work
of Cheng and Minkowyez [} and Cheng and Chang |2]. who
considered flows generated by vertical and upward-facing
horizontal surfaces, respectively, attention has been tocused
on higher order analyses (see refs. [3-6]). Detailed reviews
of much of this work are given in Cheng [7] and Tien and
Vafai [8]. However. the accuracy of high order analyses is
limited due to the appearance of eigensolutions at some point
in the expansion. This is due to the asymptotic nature of the
analysis and a lack of precise knowledge of the effects of the
leading edge. But we note in passing that a recent paper by
Pop er al. [9] has sought to account for the ‘leading-edge
effect” by means of a deformed streamwise coordinate.

In this note we reconsider two of the more well-researched
configurations. We consider a wedge-shaped region of satu-
rated porous medsyum bounded by two semi-infinite surfaces,
one heated isothermally, the other insulated. In particular,
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we study the two cases: (i} a vertical heated surface with a
wedge angle of m, and (i1} a horizontal upward-facing surface
with a wedge angle of 3m/2. It is shown that, for these con-
figurations, the full non-linear governing equations reduce
to a set of ordinary differential equations upon introduction
of appropriate coordinate transformations. These ODEs arc.
in faet, identical to those describing the classical leading
order boundary layer profiles, and therefore detailed descrip-
tions of the flow and temperature fields in the neighbourhood
of the leading edge are determined, as are expressions for the
heat transferred into the medium,

2. STATEMENT OF THE PROBLEM

The configuration we consider is as described above and
shown in ref. [6]. The surface y = 0. x > 0 is held at a non-
dimensional temperature of unity whilst the ambient
temperature of the saturated medium is zero (see ref. [6]
for details of the nondimensionalization). Assuming that
Darcy’s law and the Boussinesq approximation are both
valid, the two-dimensional equations become

Wi, = (cos 8, —(sin o), (la)
0 +0,, =0, —¢.0. (1b)

Since there is no natura) length scale in the problem the
Rayleigh number can be considered cither to have been
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NOMENCLATURE
f scaled non-dimensional streamfunction in Greek symbols
Section 3 o relative orientation of the two surfaces
I scaled non-dimensional streamfunction in S inclination of the heated surface relative to the
Section 4 vertical
g non-dimensional temperature in Section 3 n modified similarity variable for the vertical
g non-dimensional temperature in Section 4 configuration
q non-dimensional heat transfer coefficient i modified similarity variable for the horizontal
r non-dimensional radial coordinate configuration
u non-dimensional free-stream velocity in Section 8 non-dimensional temperature
5 & coordinate orthogonal to 5
x non-dimensional coordinate along the heated g coordinate orthogonal to
surface ¢ angular coordinate
y non-dimensional coordinate perpendicular to W non-dimensional streamfunction.
the heated surface
X arbitrary value of x.

scaled out of the equations or set to unity. In terms of polar
coordinates x = rcos ¢, y = rsin ¢, the boundary conditions
may be written conveniently as

Yy=0, 6=1 on ¢=0
00
Y =0, %=O on ¢=ua
00, Yy=o() as row, O<dp<a (2

3. ANALYSIS FOR THE VERTICAL SURFACE

A vertical heated surface corresponds to setting § = 0 in
equation (la). It is shown in ret. |6] that the similarity vari-
able 1 = y/x"* reduces the boundary layer approximation to
equations (1) to a pair of ordinary differential equations the
numerical solution of which is easily effected. The solution to
the full problem is determined by transforming to parabolic
coordinates (£,n) given by

¢n
=3 (
In view of the analysis in Section 4 it is worth noting that,

in terms of polar coordinates, we have the alternative rep-
resentation

(%)
o

-, ¥

¢
3
Then, setting § = 0, equations (1) transform to
Wee+ W = 3nb: +£6,) (5a)
O+ 8, = ,0:.— .0, (5b)

Although the governing equations are not simplified by
means of this transformation, they may be seen to admit the
exact solution

9

&=2r'"2cos n=2" sinE. ()

V=51, 0=gm) 6
if f(n) and g(n) satisfy the equations
=g, ¢'+ifg =0 (7a,b)
subject to
f@=0, g=1 f' -0, g»0 as ynoow. (70

These equations and boundary conditions are identical to
those defining the leading-order boundary layer profile in
ref. [1]. However, (6) satisfies all the boundary conditions
given in (2) only if &, the wedge angle, is equal to 7. We note
that (6) also satisfies the appropriate equations and boundary
conditions for an isolated semi-infinite heated surface in an
unbounded medium.

Plots of the streamlines and isotherms are displayed in
Figs. 1 and 2, respectively, where the formation of the
momentum and thermal boundary layers may be seen as x
increases. The depth of penetration of the temperature field
into the region below the leading edge is also clearly evident.
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F1G. 1. Streamlines for the vertical configuration plotted with
an interval of 0.5 between adjacent contours.
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FIG. 2. Isotherms for the vertical configuration plotted with
an interval of 0.1 between adjacent contours.
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The heat transterred from the plate between x = 0 and X
is given precisely by

(Yoo
0= -|

A
o C)

y—0

where f(0) = —0.44374832. For x » y the usual boundary
layer profile ¥ ~ x"2f(y), @ ~ g(n) is recovered, where
7~ ¥x~ "2 whilst the flow well away from the boundary
layer and the leading edge is ¢ ~ r? cos (¢/2) f (). where
f(oo) = 1.61612544 and 0 is exponentially small.

4. ANALYSIS FOR THE HORIZONTAL SURFACE

For the horizontal upward-facing surface the correct coor-
dinate transformation is obtained by first considering the
equations in polar coordinates. It may be shown that equa-
tions (1) with § = /2 are satisfied by

o= 170D, 0= g0 (9a.b)
where
fiSr”uosf. i1 =3r"%sin (10a)

(cf. the form of (4) for the vertical configuration) or. alter-
natively

»\‘:25(‘5—3“3'72) v —2:7'(3':_1*7/2) (10b)
provided that « = 37/2. Here fand § satisfy
F =g =0. §+ifg =0 (11a.b)
subject to
fOy=0. g0y =1 [ =0, g—0 as §—x.
(1)

This system was first given in ref. [2] to describe the leading-
order boundary layer profile over a horizontal surface. Thus
(9) satisfies the full equations in the whole flow region.

Plots of the streamlines and isotherms are displayed in
Figs. 3 and 4, respectively. Once more the formation of the
boundary layer and the effect of the leading edge can be seen.
The heat transferred from the surface between x = 0 and X
is given by

Y60 N
g=—| = dx = —3X"g(0) (12)
) y= 0

A I
o €Y

where §'(0) = —0.43021314. For large values of x the bound-
ary layer profile is recovered: ¢ ~ r'"* (7). 8 ~ §(5) where
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FIG. 3. Streamlines for the horizontal configuration plotted
with an interval of 0.5 between adjacent contours.
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F1G. 4. Isotherms for the horizontal configuration plotted

with an interval of 0.1 between adjacent contours. Inset: a

close-up diagram of the isotherms in the corner region with
an interval of 0.05 between adjacent contours.

# ~ yix* . Far from the boundary layer and the leading edge
() is exponentially small and ¥ ~ r'"* cos (6/3) f(:) where

T(oe) = 2.81581039.

5. DISCUSSION

Two specific cases of free convection from isothermal sur-
faces in porous media have been considered and shown to
admit solutions expressible in terms of the solutions to ordi-
nary differential equations. Precise expressions for the heat
transferred into the medium have been presented.

As these solutions are valid in the whole of the flow region
rather than asymptotically for large distances from the lead-
ing edge, we can investigate the detailed structure of the flow
near the leading edge. For the vertical surface

W o= rsing4+0(r),

0 = 1+2r'"sin (?)g'(O)J‘rO(r) (13a,b)
for small r, whilst for the horizontal surface
W= 21'3 *sin (%;é)_/_‘/(OH%)(r)~

= 143r" sin (f){]’(())—%()(r: Y (14)

where /7(0) = 1.05574767. The flow near the leading edge of
the vertical surface (see equation (13a)) is uniformly
upwards, to leading order, as ¥ ~ y. As regards the other
expressions, equations (13b) and (14), although they remain
finite as r — 0, their derivatives with respect to r become
unbounded. Doubt must therefore be cast on the degree of
idealization inherent in the mathematical modelling of the
physical problem, namely the assumption of a perfectly con-
ducting heated surface. By continuity we expect that a similar
doubt should be expressed for other inclinations &, and
wedge angles 2. However, we stress that, given the ideal-
ization, the presented solutions solve the full non-linear
equations.

There exists at least one example of a mixed convection
problem amenable to the approach presented here. Consider
the effect of uniform vertical pressure gradient on the free
convection problem described in Section 2. Thus we solve
equations (1) subject to the boundary conditions

Yy =0 =1 on ¢=0 (15a)
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D0 on g=n (15b)

o0

0—0, Yoursing as

W =0,
(15¢)

Here u is a non-dimensional measure of the pressure-induced
vertical velocity. It may be shown that  and @ are given by

r— 0.

Yo=K f )+ Knu, 0 =g (16)
where
=g, ¢'+{f+ung =0 (17a,b)
subject to
f0)=0, g0)=1, f,9—0 as g—oo (I17c)

and where (&,n) is as defined in Section 3. When u = 0 we
recover the analysis of Section 3 and f” and g decay expo-
nentially as y increases. For positive values of u the decay is
superexponential, both functions being proportional to
exp (—un?) to leading order. For negative values of u the only
steady-state solution is, of course, Y = uy with 0 = 1.

There is another configuration cited in the literature deal-
ing with flow in a saturated porous wedge where the govern-
ing partial differential equations can be reduced to a pair of
ordinary differential equations. In ref. [11] an analysis of
flow in a wedge is considered where the bounding surfaces
are held at temperatures which are inversely proportional to
r, the distance from the apex. Unfortunately we have not
found any other ‘boundary layer’ problems which may be
reduced to a set of ordinary differential equations. In this
regard we have considered the following problems: arbi-
trarily inclined surfaces in a porous medium, similar con-
figurations for the analogous problem of a semi-infinite sur-
face immersed in a Newtonian fluid and semi-infinite surfaces
with a power-law temperature distribution. Nevertheless, it
should be possible to obtain numerical solutions of some of
these problems using coordinate transformations similar to
those used here since the shape of the boundary layer is
incorporated into the transformation. We hope to report on
this in the future.

Recent work on the instability of thermal boundary layers
in porous media (see, e.g. refs. [12, 13]) uses boundary layer
theory to approximate the basic flow. Since it is shown in
ref. [12] that the boundary layer flow from a vertical surface
is stable we would expect the same conclusion to apply if the
exact solution presented here were to be used as the base
flow. However, flow from a horizontal surface is inherently
unstable (see ref. [13]). Therefore, it should be possible to
determine more accurately where the flow becomes unstable,
at least for the case of a wedge angle of 37/2, and to calculate
the wavelength of the vortices. Again, it is hoped to report
on this at some point.

It is worthwhile, in conclusion, to consider this work in
the wider context of boundary layer theory. Kaplun, in his
seminal paper [14] on the use of optimal coordinates for
boundary layer flows gave a method for determining such
coordinate systems. The transformations used here may
therefore be regarded, albeit fortuitously, as the ultimate in
this respect as they yield complete information about the
flow field. In general, in high order boundary layer theory,
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one encounters eigensolutions and logarithmic terms. For
the present configurations it is shown in ref. [6] that there are
no logarithmic terms corresponding to the first eigensolution.
The existence of the exact solutions presented here implies
that the coefficients of all eigensolutions can be determined.
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