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1. INTRODUCTION 

THE STUDY of convection generated by a heated semi-infinite 
surface embedded in a saturated porous medium has 
attracted extensive treatment in recent years. Of main con- 
cern has been the practical need to determine accurately 
the heat transferred into the porous medium from hcdtec! 
surfaces of various orientations. After the pioneering work 
of Cheng and Minkowycz [I] and C‘heng and C’hang 121. who 
consldered fows gcneratcd by vertical and upward-lacmg 
horizontal surfaces. respectively, attention has been focused 
on higher order analyses (see refs. [3 -61). Detailed reviews 
of much of this work are given in Cheng [7] and Tien and 
V&i 181. However. the accura.cy of high order anaiyscs is 
limited due to the appearance of elgensoluti[lns at some point 
in the expansion. This is due to the asymptotic nature of’ the 
analysis and a lack of precise knowledge of the effects of the 
leading edge. But we note in passmg that a recent paper by 
Pop pi ul. [9] has sought to account for the ‘leading-edge 
effect’ by means of a deformed streamwise coordinate. 

In this note we reconsider two of the more well-researched 
Con~guratioIls. We consider a wedge-shaped region of satu- 
rated porous medium bounded by two seini-infinite sui-c&cc& 
one heated isothermally. the other insulated. In particular, 
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wc study the two cases: (i) a vertical heated surface with a 
wedge angle of’n. and (ii) a horizontal upward-facing surface 
with a wedge angle of 3n/2. It is shown that, for thcsc con- 
figurations. the full non-linear governing equations reduce 
to a set ofordmary difyerentiai equations upon introduction 
of appropriate coordinate t~nsfor~lations. These ODES arc. 
in fact. identical to those describing the classical leading 
;:rder boundary layer profiles. and therefore detailed descrip- 
tions of the flow and temperature fields in the neighbourhood 
of the leading edge are determined, as are expressions for tht 
heat transferred into the medium. 

2. STATEMENT OF THE PROBLEM 

The conftgurauon we consider is as described above and 
shown in ref. [6]. The surface F = 0. .\- > 0 is held at a non- 
dimensional tempcraturc of unity whilst the ambient 
temperature of the saturated mediurn is zero (see ref. [6] 
for derails of the nondimensionalization). Assuming that 
Darcy’s law and the Boussinesq approximation are both 
valid, the two)-diln~nsional equations become 

G~,,+$,V =: (cos&)O, -. (SlIl c>)(l, (I:*, 

O,,+O,, = $,.(1,-$,Cl,. (lb) 

Since there is no natural length scale in the problem the 
Rayleigh number can be considered crther to have hecn 
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NOMENCLATURE 

f scaled non-dimensional streamfunction in Greek symbols 
Section 3 

.T scaled non-dimensional streamfunction in : 
relative orientation of the two surfaces 
inclination of the heated surface relative to the 

Section 4 vertical 

9 non-dimensional temperature in Section 3 1 modified similarity variable for the vertical 

B non-dimensional temperature in Section 4 configuration 

4 non-dimensional heat transfer coefficient r modified similarity variable for the horizontal 
I non-dimensional radial coordinate configuration 

U non-dimensional free-stream velocity in Section 0 non-dimensional temperature 
5 coordinate orthogonal to q 

x non-dimensional coordinate along the heated f coordinate orthogonal to ij 
surface angular coordinate 

Y non-dimensional coordinate perpendicular to non-dimensional streamfunction. 
the heated surface 

X arbitrary value of x. 

scaled out of the equations or set to unity. In terms of pojar 
coordinates x = r cos 4, y = r sin 4, the boundary conditions 
may be written conveniently as 

$=O, O=l on c#J=O 

30 
+=O, ~=0 on $~=a 

O-0, I) = o(r) as r+co, O<f$<cc. (2) 

3. ANALYSIS FOR THE VERTICAL SURFACE 

A vertical heated surface corresponds to setting 6 = 0 in 
equation (la). It is shown in ref. [6] that the similarity vari- 
able q = y/x”’ reduces the boundary layer approximation to 
equations (1) to a pair of ordinary differential equations the 
numerical solution of which is easily effected. The solution to 
the full problem is determined by transforming to parabolic 
coordinates (5,~) given by 

In view of the analysis in Section 4 it is worth noting that, 
in terms of polar coordinates, we have the alternative rep- 
resentation 

5 = 2r”‘cos$, 4J 
q = 2r”‘sinZ. 

Then, setting 6 = 0, equations (1) transform to 

*cc + $77 = :@lo, + CO,) @a) 

oss+(& = ti,o,-*,o,. (5b) 

Although the governing equations are not simplified by 
means of this transformation, they may be. seen to admit the 
exact solution 

$ = /U(V)> 0 = g(1) 

iff(q) and g(q) satisfy the equations 

f”=g’, g”+ffg’zO 

subject to 

(6) 

(hb) 

f(0) = 0, g(0) = 1, f’-+ 0, g-0 as q + co. (7~) 

These equations and boundary conditions are identical to 
those defining the leading-order boundary layer profile in 
ref. [l]. However, (6) satisfies all the boundary conditions 
given in (2) only if c(, the wedge angle, is equal to rr. We note 
that (6) also satisfies the appropriate equations and boundary 
conditions for an isolated semi-infinite heated surface in an 
unbounded medium. 

Plots of the streamlines and isotherms are displayed in 
Figs. 1 and 2, respectively, where the formation of the 
momentum and thermal boundary layers may be seen as x 
increases. The depth of penetration of the temperature field 
into the region below the leading edge is also clearly evident. 

FIG. 1. Streamlines for the vertical configuration plotted with 
an interval of 0.5 between adjacent contours. 

FIG. 2. Isotherms for the vertical configuration plotted with 
an interval of 0.1 between adjacent contours. 
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The heat transferred from the plate between s = 0 and )r 
is given precisely by 

where/‘(O) = -0.44374832. For .Y >> j’ the usual boundary 
layer profile 11 - s”‘.f(q). 0 - g(n) is recovered. whcrc 
r/ _ ?‘.ym “2, whilst the flow well away from the boundary 
layer and the leading edge is $ - 7’ - ’ cm (c,b/2),f(r’). where 
/‘(w) = 1.61612544 and (1 is exponentially small. 

4. ANALYSIS FOR THE HORIZONTAL SURFACE 

For the horizontal upward-facing surface the correct coor- 
dmate transformation is obtained by lirst considering the 
equations in polar coordinates. It may be shown that equa- 
tions (1) with 6 = n/2 arc satisfied by 

11, = :F,f($. 0 = J(V) (‘kb) 

where 

(cf. the form of (4) for the vertical conliguration) or. altcr- 
natively 

provided that G( = 3n/2. Hererand g satisfy 

,i,’ - ?;@J = 0, 8” + : @ = () 

subject to 

(I lab) 

f(O)=O. a(o)= I. f’-0, 8-0 as +r.. 

(I IC) 

This system was first given in ref. [2] to describe the leading- 
order boundary layer profile over a horizontal surface. Thus 
(9) satisties the full equations in the whole how region. 

Plots of the streamlines and isotherms are displayed m 
Figs. 3 and 4, respectively. Once more the formation of the 
boundary layer and the effect of the leading edge can be seen. 
The heat transferred from the surface between x = 0 and X 
is given by 

d.\- = -3X’ ‘g’(O) (12) 

wherey’(0) = -0.430213 14. For large values ofu the bound- 
ary layer profile is recovered : t,b - r”? /‘($. 0 - y(f) where 

=t0 

=5 

FIG. 3. Streamlines for the horizontal configuration plotted 
with an interval of 0.5 between adjacent contours. 
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FIG. 4. laothcrms for the horizontal conliguration plotted 
with an interval of 0. I between adjacent contours. Inset. a 
close-up diagram of the isotherms in the corner region with 

an interval of 0.05 between adjacent contours. 

‘I - ,L’ v1 ‘. I:ar from the boundary layer and the leading edge 
0 is exponentially small and I/I - Y’ ’ ax (03) 7C L ) where 
T(7.‘) = 2.XlS81039. 

5. DISCUSSION 

Two specilic cases of free convectton from isothermal sur- 
facts in porous media have been considered and shown to 
admit solutions expressible in terms of the solutions to ordr- 
nary differential equations. Precise expressions for the heat 
transferred into the medium have been presented. 

As these solutions are valid in the whole of the flow region 
rather than asymptotically for large distances from the lead- 
ing edge. we can investigate the detailed structure of the flow 
near the leading edge. For the vertical surface 

I)- 1+2r”sin (13a,b) 

for small 1. whilst for the horizontal surface 

i 
I// = 

3 

where.j’(O) = I .05574767. The how near the leading edge 01 
the vertical surface (see equation (13a)) is uniformly 
upwards, to leading order. as (1, - j’. As regards the other 
expressions, equations (13b) and (14), although they remain 
iinite as r + 0. their derivatives with respect to r become 
unbounded. Doubt must therefore be cast on the degree of 
idealization inherent in the mathematical modelling of the 
physical problem, namely the assumption of a perfectly con- 
ducting heated surface. By continuity we expect that a similar 
doubt should be expressed for other inclinations 6, and 
wedge angles x. However, we stress that, given the ideal- 
ization, the presented solutions solve the full non-linear 
equations. 

There exists at least one example of a mixed convection 
problem amenable to the approach presented here. Consider 
the effect of uniform vertical pressure gradient on the free 
convection problem described in Section 2. Thus we solve 
equations (I) subject to the boundary conditions 

* = 0, (J = I on f#~ : 0 (15,) 
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a0 
n/1=0, %$=O on +=a (15b) 

O+O, +ursin4 as r+ccj. (15c) 

Here LI is a non-dimensional measure of the pressure-induced 
vertical velocity. It may be shown that $ and 0 are given by 

$ = 15f‘(?) + &u. 0 = 9(q) (16) 

where 

f” = 9’. g” + $(.f + u4)g’ = 0 (17a,b) 

subject to 

f(0) = 0, g(0) = 1, f’,g -+ 0 as q + co (17c) 

and where (5.7) is as defined in Section 3. When IA = 0 we 
recover the analysis of Section 3 and f’ and g decay expo- 
nentially as r~ increases. For positive values of u the decay is 
superexponential, both functions being proportional to 
exp (--ut$) to leading order. For negative values of u the only 
steady-state solution is, of course, $ = uq’ with 0 = 1. 

There is another configuration cited in the literature deal- 
ing with flow in a saturated porous wedge where the govern- 
ing partial differential equations can be reduced to a pair of 
ordinary ditIerentia1 equations. In ref. [ll] an analysis of 
flow in a wedge is considered where the bounding surfaces 
are held at temperatures which are inversely proportional to 
r, the distance from the apex. Unfortunately we have not 
found any other ‘boundary layer’ problems which may be 
reduced to a set of ordinary differential equations. In this 
regard we have considered the following problems: arbi- 
trarily inclined surfaces in a porous medium, similar con- 
figurations for the analogous problem of a semi-infinite sur- 
face immersed in a Newtonian fluid and semi-infinite surfaces 
with a power-law temperature distribution, Nevertheless, it 
should be possible to obtain numerical solutions of some of 
these problems using coordinate transformations similar to 
those used here since the shape of the boundary layer is 
incorporated into the transformation. We hope to report on 
this in the future. 

Recent work on the instability of thermal boundary layers 
in porous media (see, e.g. refs. [12, 131) uses boundary layer 
theory to approximate the basic flow. Since it is shown in 
ref. [12] that the boundary layer flow from a vertical surface 
is stable we would expect the same conclusion to apply if the 
exact solution presented here were to be used as the base 
flow. However, flow from a horizontal surface is inherently 
unstable (see ref. [13]). Therefore, it should be possible to 
determine more accurately where the flow becomes unstable, 
at least for the case of a wedge angle of 3a/2, and to calculate 
the wavelength of the vortices, Again, it is hoped to report 
on this at some point. 

It is worthwhile, in conclusion, to consider this work in 
the wider context of boundary layer theory. Kaphm, in his 
seminal paper [14] on the use of optimal coordinates for 
boundary layer flows gave a method for determining such 
coordinate systems. The transformations used here may 
therefore be regarded, albeit fortuitously, as the ultimate in 
this respect as they yield complete information about the 
flow field. In general, in high order boundary layer theory, 

one encounters eigensolutions and logarithmic terms. For 
the present configurations it is shown in ref. [6] that there are 
no logarithmic terms corresponding to the first eigensolution. 
The existence of the exact solutions presented here implies 
that the coefficients of all eigensolutions can be determined. 
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