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Abstract

The effect of surface tension on unsteady laminar natural convection flow of an electrically conducting fluid in a rectangular e
under an externally imposed magnetic field with internal heat generation has been investigated. The top horizontal surface of the r
cavity is assumed to be free and the bottom one insulated, whereas the left vertical wall is cold and the right one is uniformly
equations are non-dimensionalized and solved numerically by an upwind finite difference method together with a successive over
(SOR) technique. The effects of heat generation together with the combined effects of the magnetic field and the surface tension ar
graphically in terms of isotherm and streamline plots. The effects of varying the physical parameters on the rate of heat transfe
heated surface of the enclosure are also depicted. The fluid here has Prandtl numberPr = 0.054 which is representative of liquid metal a
semiconductor melts.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

When a free surface is present in free convection fl
of a liquid, variations in the surface tension at the f
surface due to temperature gradients, can induce mo
within the fluid. Such flow is known either as thermocap
lary flow or Marangoni convection. Convective flows driv
by both buoyancy and surface tension play an impor
role in the growth of crystals and in materials proce
ing, especially in small-scale and low gravity hydrodyna
ics [1–3]. Combined buoyancy and thermocapillary conv
tion flow or Marangoni convection flow in a differential
heated cavity has been investigated numerically by Berg
and Ramadhyani [4] who showed that surface tension
ters significantly the resulting flow pattern. Srinivasan a
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Basu [5] computed numerically thermocapillary flow in
rectangular cavity during laser melting. The gas–liquid
terface was assumed to be flat with a sinusoidal variatio
temperature. Thereafter Basu and Srinivasan [6] simul
numerically a two-dimensional steady state laser-mel
problem in a cavity; while Chen and Huang [7] conduc
a similar study with a moving heat flux along the fr
surface. Carpenter and Homsy [8] studied the problem
combined buoyancy thermocapillary convection flow in
square cavity with a free surface, which is heated differ
tially in the horizontal direction. The influence of therm
capillary forces on natural convection flow in a shallo
cavity has also been investigated numerically by Hadid
Roux [9].

An externally imposed magnetic field is also a wide
used tool for control of melt flow in the bulk crystal grow
of semiconductors. One of the main purposes of elec
magnetic control is to stabilize the flow and suppress

cillatory instabilities, which degrades the resulting crystal.
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Nomenclature

B uniform magnetic field,= Bxex + Byey

Bx,By space independent components ofB of constant
magnitude

B0 magnitude ofB
Cp specific heat at constant pressure . . J·kg−1·K−1

ex, ey unit vectors in Cartesian coordinate system
F electromagnetic force
g gravitational acceleration . . . . . . . . . . . . . . m·s−2

Gr Grashof number
H enclosure height . . . . . . . . . . . . . . . . . . . . . . . . . . m
Ha Hartmann number
J the electric current
K effective thermal conductivity of the

media . . . . . . . . . . . . . . . . . . . . . . . . . W·m−1·K−1

Ma Marangoni number
Nu Nusselt number
p fluid pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦C
u velocity inx-direction . . . . . . . . . . . . . . . . m·s−1

v velocity iny-direction . . . . . . . . . . . . . . . . m·s−1

x, y Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . m
X,Y dimensionless coordinates
V field velocity (uex + vey)

Greek symbols

β coefficient of thermal expansion of fluid . . K−1

θ dimensionless temperature
λ dimensionless heat absorption/generation

parameter
φ the orientation of the magnetic field with

horizontal axis (such that tanφ = By/Bx )
ϕ is the electric potential
µ effective dynamic viscosity . . . . . . . . . . . Pa·s−1

ν effective kinematic viscosity (µ/ρ)
ρ fluid density at reference temperature (T0)
σ surface tension
γ temperature coefficient
τ dimensionless time
ψ streamfunction . . . . . . . . . . . . . . . . . . . . . . m2·s−1

Ω dimensionless vorticity
mer
n-
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Numerous studies have already been devoted to the nu
ical modeling of electromagnetic stabilization of the co
vective flows in several different configurations [10–1
In a recent article Gelfgat and Yoseph [15] studied the
fect of an externally imposed magnetic field on the lin
stability of steady convection flow in a horizontally elo
gated rectangular cavity for fluid havingPr = 0.015, which
is associated with the horizontal Bridgman crystal grow
process.

On the other hand, Rudraiah et al. [16] investigated
effect of surface tension on buoyancy driven flow of a el
trically conducting fluid in a square cavity in the presen
of a vertical transverse magnetic field to see how this fo
damps hydrodynamic movements; since, this is require
enhance crystal purity, increase compositional uniform
and reduce defect density. It should further be stated that
ural convection heat transfer induced by internal heat ge
ation has recently received considerable attention becau
numerous applications in geophysics and energy-related
gineering problems. Such applications include heat rem
from nuclear fuel debris, underground disposal of radio
tive waste materials, storage of food-stuff, and exother
chemical reactions in packed-bed reactor (see, for insta
Kakac et al. [17]).

Acharya and Goldstein [18] studied numerically tw
dimensional natural convection of air in an externally hea
vertical or inclined square box containing uniformly d
tributed internal energy sources. Recently, Churbano
al. [19] studied numerically unsteady natural convect

of a heat generating fluid in a vertical rectangular enclo-
-

-

f
-

,

sure with isothermal or adiabatic rigid walls. Other
lated works dealing with temperature-dependent heat
eration effects can be found in the works of Vajravelu a
Nayfeh [20]. Recently, Chamkha and Naser [21] inv
tigated the problem of unsteady, laminar, hydromagne
double-diffusive natural convection flow inside a rectan
lar enclosure in the presence of heat generation or abs
tion.

In the present investigation we have considered the p
lem on combined buoyancy and thermo-capillary convec
flow of electrically conducting fluid filled in an enclosure u
der an externally imposed time-independent uniform m
netic field including the additional effect of internal he
generation. Numerical simulations of the governing eq
tions have been carried out by employing an upwind fin
difference method together with a successive over-relaxa
(SOR) technique. For example, we have chosen a fluid
has a small Prandtl number (i.e.,Pr = 0.054, which is ap-
propriate for liquid metal and semi-conductor melts) an
Marangoni number (Ma= 100 and 1000) which depends o
the thermocapillary force). Solutions of the problem in ter
of streamlines, isotherms as well as heat transfer from
heated surface have been obtained for values of the Gra
number,Gr, equal to 2×104, 2×105 and 2×106, the Hart-
mann number,Ha, which depends on the transverse m
netic field, ranges from 0.0 to 40 and the heat genera
parameter,λ, ranges from 0.0 to 40. A detailed developme
of the present investigation is given in the subsequent

tions.
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2. Mathematical formulation

Here we consider the unsteady two-dimensional nat
convection flow of a fluid with kinematic viscosityµ, den-
sity ρ, thermal diffusivityα and electrical conductivityσe in
a rectangular enclosure of heightH as shown in Fig. 1. The
right and the left walls are maintained at uniform tempe
turesTH andTC, respectively, and are such thatTH > TC.
The upper and lower boundaries are considered to be
batic or insulated. We also bring into account the effec
a uniform volumetric heat generation,q ′′′ [W·m−3], in the
flow region.

We further assume that the cavity is permeated b
uniform magnetic fieldB = Bxex + Byey (whereBx and
By are space independent) of constant magnitudeB0 =√

(B2
x + B2

y ) andex andey are unit vectors in Cartesian c

ordinate system. The orientation of the magnetic field fo
an angleφ with horizontal axis, such that tanφ = By/Bx .
The electric currentJ and the electromagnetic forceF are
defined by

J = σe(−∇ϕ + V × B) (1a)

∇ · J = 0 (1b)

F = J × B (1c)

whereϕ is the electric potential andV = uex + vey is the
field velocity. Here Eq. (1a) is Ohm’s law and (1b) is t
conservation of electric current. With electrically insulat
boundaries in the present two-dimensional flow the elec
potentialϕ is constant (please see [15]) and hence we ha

J = σe(V × B) (2a)

Which then reduce (1c) to

F = σe(V × B) × B (2b)

We also assume that the surface tension,σ , varies linearly
with temperature as given below:

σ = σ0
[
1− γ (T − T0)

]
(3)
Fig. 1. The flow configuration and coordinate system.
-

whereT0 = (TH + TC)/2 is the mean of the temperatures
heated and cold surface,

γ = (1/σ0)(∂σ/∂T )

is the temperature coefficient of the surface tension,σ0 is
a reference surface tension andT is the temperature of th
fluid in the cavity. Further it is assumed that, the up
boundary is flat and the fluid above the surface is assum
be a gas of negligible viscosity and conductivity, and the
fore it will not influence the flow and temperature fields
the fluid. Finally, the direction of the gravitational force is
indicated in Fig. 1.

Under the above assumptions, the conservation e
tions for mass, momentum and energy in a two-dimensio
Cartesian co-ordinate system are [15]:

∂u

∂x
+ ∂v

∂y
= 0 (4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

= − 1

ρ

∂p

∂x
+ ν∇2u + σeB

2
0

ρ
(v sinφ cosφ − usin2 φ) (5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

= − 1

ρ

∂p

∂y
+ ν∇2v + σeB

2
0

ρ
(usinφ cosφ − v cos2 φ)

+ gβ(T − T0) (6)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α∇2T + q ′′′

ρCp

(7)

where∇2 is the Laplacian,u and v are the fluid velocity
components in thex- andy-direction, respectively,T is the
time, p is the fluid pressure,β is the volumetric therma
expansion coefficient,ρ, α andCp are, respectively, the den
sity of the fluid, the thermal diffusivity, and the specific he
at constant pressure.

In the present problem the effect of the induced e
tric current on the imposed field and the Joulean hea
are neglected. This is justified as an estimation of the n
dimensional parameter characteristic for liquid metals
semiconductors, which is the ratio of the induced and
posed magnetic fields and known as the magnetic Pra
number,Pm, for liquid metals and semi-conductor melts
O(10−7) [15].

The boundary conditions for the present problem can n
be given as

u = v = T = 0 for t = 0

u = v = 0, T = TH for 0� y � H atx = L
(8)

u = v = 0, T = TC for 0 � y � H atx = 0

u = v = 0,
∂T

∂y
= 0 for 0� x � H aty = 0
The conditions at the upper free surface are
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u = v = 0,
∂T

∂y
= 0, µ

∂u

∂y
= − ∂σ

∂T

∂T

∂x

for 0� x � H aty = H (9)

The dynamic boundary conditions on the upper free sur
(i.e., aty = H ) relates the velocity gradient to the temp
ature gradient and this represents the balance betwee
shear-stress and the surface tension gradient at the su
which is responsible for establishment of thermo-capill
flow in the cavity.

It should be noted that the effect of interface deforma
ity on the onset of instability has not been investigated
influence on the flow velocity has been given by Stran
al. [22] for the steady state regime. The shape of the g
liquid interface in a square cavity has been computed
Cuvelier and Driessen [26] for different values of drivi
forces, such as the buoyancy force and the pressure f
For pure buoyancy flow, the pressure is higher in the up
hot corner and consequently there is an elevation of the
boundary in this corner and a depression near the cold
ner. For pure thermocapillary flow the opposite effect
been observed. For combined convection the free sur
was found to be flattened by increasing the Bond num
B0(= ρgH 2/σ0). Cuvelier and Driessen [23] also show
that the free-surface shape depends strongly on the Ohn
age number (Oh= µ/(ρσ0H)1/2).

Now, we construct the following dimension less va
ables:

X = x

H
, Y = y

H
, τ = t

H 2/ν

U = u

ν/H
, V = v

ν/H
, θ = T − T0

TH − T0
(10)

Introducing the above dimensionless dependent and i
pendent variables into the governing equations (4)–(8) yi
the following equations:

∂Ω

∂τ
+ ∂(UΩ)

∂X
+ ∂(V Ω)

∂Y

= ∇2Ω + 1

2
Gr

∂θ

∂X
+ Ha2

[
sinφ cosφ

(
∂U

∂X
− ∂V

∂Y

)

+
(

sin2 φ
∂U

∂Y
− cos2 φ

∂V

∂X

)]
(11)

∂θ

∂τ
+ ∂(Uθ)

∂X
+ ∂(V θ)

∂Y
= 1

Pr
∇2θ + λ

Pr
(12)

where

Ω = −∇2ψ (13)

is the vorticity function andψ is the stream function define
by:

U = ∂ψ

∂Y
, V = −∂ψ

∂X
(14)

The dimensionless initial and boundary conditions are:

U = V = ψ = θ = 0 for τ = 0
U = V = ψ = 0, θ = −1 for 0� Y � 1 atX = 0
e
e

.

r-

U = V = ψ = 0, θ = +1 for 0� Y � 1 atX = A

U = V = ψ = 0,
∂θ

∂Y
= 0 for 0� X � 1 atY = 0

U = V = 0,
∂θ

∂Y
= 0, Ω = ∂U

∂Y
= − Ma

2Pr

∂θ

∂X

for 0� X � 1 atY = 1 (15)

In the above equationsA = L/H andGr, Pr, λ, Ha andMa
are, respectively, the Grashof number, Prandtl number,
generation parameter, Hartmann number and the Maran
number which are defined as given below:

Gr = gβT (TH − TC)H 3

ν2
, Pr = ν

α
, λ = 2

RaI

Ra

Ha2 = B2
0H 2σe

µ
, Ma= − ∂σ

∂T

TH − TC

µα
(16)

In (16) RaI = gβq ′′′H 5/kαν is the internal Rayleigh num
ber since it depends on the volumetric heat generationq ′′′.

Once we know the numerical values of the tempera
θ we may obtain the rate of heat flux from each of
walls since the non-dimensional heat flux from any surf
is given by−(∂T /∂n), wheren is the direction normal to th
wall. For example, the non-dimensional heat transfer rat
terms of local Nusselt number,Nu, from the right vertical
heated surface is given by

Nu= 1

2

qH

k(TH − TC)
= −1

2

(
∂θ

∂X

)
X=A

(17)

The corresponding value of the average Nusselt number
noted byNuav, may be calculated from the following rela
tion:

Nuav = −1

2

1∫
0

(
∂θ

∂X

)
dY (18)

3. Numerical solution methodology

An upwind finite-difference method, together with a su
cessive over-relaxation iteration (SOR) technique, has b
employed to integrate the model equations (11) and
subject to the boundary conditions given in (15). To
this, the first and second derivatives were approximate
central differences and were used in the vorticity, ene
and Poisson equations. To preserve the conservative p
erty, the finite difference forms of the vorticity and ener
equations were written in conservative form for the c
vective terms as defined by Roache [24]. For the solu
of the vorticity equation the values of the vorticity at t
wall were needed. The wall vorticity were obtained by
panding the stream function in a Taylor series. We then
tained the wall vorticities as follows (for further details s
Roache [24]):
Ωw = −2ψw+1/�w
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wherew andw+1 are respectively the grid points at the w
and close to the wall, and�w is the space between these tw
grid points. Values of the streamfunction at all grid poi
were obtained with Eq. (13) via a successive over-relaxa
method. All values for the relaxation parameters were
tween 1.82 and 1.89. The velocities at all grid points w
determined with the dimensionless form of Eq. (14) us
updated values of the stream function. Variations by
than 10−4 over all grid points for the streamfunction we
adopted as the convergence criterion.

It is clear that the non-dimensional parameters of in
est are the Grashof number,Gr, the Prandtl number,Pr, the
heat generation parameter,λ, the Marangoni number,Ma,
the Hartmann number,Ha, andφ the direction of the exter
nal magnetic field. In the present investigation, pertainin
liquid metal, the value of the Prandtl number is chosen to
0.054 and the Grashof number is taken to be 2×105. The as-
pect ratio considered is unity and the value of the grid len
is denoted byh (= 1/n, wheren is the number of grid point
in both theX andY directions for square cavity).

The results, which are shown and discussed in the
lowing sections, have been calculated from zero initial
locities and mean values of temperature. A grid depende
study has been carried out, as in Hossain and Wilson
and Hossain and Rees [26] for a thermally-driven ca
flow, for different values of the physical parameters, w
meshes of 41× 41, 51× 51 and 61× 61 points. It has bee
found that there are very small differences in the maxim
or minimum values of the stream-function between ab
sets of meshes. Hence we have chosen to use 51× 51 mesh
points throughout the present computations forτ = 0.1 with
a time step of 5× 10−6, which was found to be sufficient t
reach the steady-state situation for the fluid ofPr = 0.054.
In Fig. 2 we demonstrate the values of the average Nu
number,Nuav, along the heated surface of a square c
ity, againstτ . In this figure the graphs are forGr equal
to 2× 104, 2 × 105 and 2× 106 while values of all other
physical parameters are zero. It is seen that the nume
values ofNuav reach their respective steady values long
foreτ = 0.1. However, throughout the present computati
we have taken the value ofτ = 0.1.

Fig. 2. AverageNuav, at the right heated surface againstτ for differentGr

while Ma= 1000,Ha= 0, α = 0 andλ = 0.
t

l

4. Results and discussion

Numerical results are presented in order to determ
the effects of the presence of a magnetic field, volum
ric heat generation and different Marangoni numbers on
natural convection flow of an electrically conducting flu
in a square cavity. Values of the magnetic field param
Ha range between 0.0 to 40.0, the internal heat-genera
parameter,λ, between 0.0 and 60.0 but for the Marango
number,Ma, equal to 1000 and. Typical value of directio
of the external magnetic field with the horizontal conside
to beφ (= 0, π/4, π/2, 3π/4).

4.1. Comparison with earlier investigations

The corresponding problem of natural convection flo
without heat generation, but in presence of a uniform m
netic field acting in the direction of the cavity (i.e., for th
caseφ = π/2) both with and without the effect of thermo
capillary force has already been investigated by Rudraia
al. [27]. In that investigation a finite difference method
gether with ADI was employed for different values of t
Grashof number,Gr, Hartmann number,Ha, and Marangon
number,Ma, for a fluid with Prandtl number,Pr = 0.733.
Typical results obtained by the above authors has bee
visited by the present authors for the following values of
physical parameters:Gr = 2 × 106, Pr = 0.733, Ha = 20
and φ = π/2; these were found to be in excellent agr
ment. We also revisited the case for whichGr = 2 × 104,
Pr = 0.054 andMa = 100 with Ha = 0 andλ = 0 in the
model considered in Ref. [16] using the present method
this case also we found an excellent agreement with th
sults of [16] qualitatively as shown in Fig. 3.

Finally, the authors considered an aspect ratio 4 ca
subject to a heated left-wall (θ = 1) and a cold right wal
(θ = 0) with the parameter values:ϕ = 0, Gr = 5.37× 106,
Pr = 0.015,Ha= 20,Ma= 0 andλ = 0; this particular case
has been investigated by Gelfgat and Yoseph [15]. In
case also we found an extremely close match with the re
obtained by Gelfgat and Yoseph [15], which are reprodu
in Fig. 4.

So we believe that the present method yields sufficie
accurate results and is computationally efficient.

Fig. 3. Streamlines and isotherms forGr = 2 × 104 and Pr = 0.054 and

Ma= 100 whileHa = 0 andλ = 0 [16].
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Fig. 4. Streamlines (top) and isotherms (bottom) with left heated-wall
right cold-wall while Gr = 5.37 × 106, Pr = 0.015, Ha = 20, Ma = 0,
ϕ = 0.0 (Gelfgat and Bar-Yoseph [15]).

4.2. Effects of varying the Grashof and Hartmann numb
on the flow field and the heat transfer

We consider first the effect of an external magnetic fi
acting in the direction parallel to the horizontal (i.e.,φ = 0)
with surface tension effects at the top surface (whileMa =
1000) but without internal heat generation (λ = 0). The re-
sulting flow and temperature distributions are depicted
Fig. 5. In Fig. 5(a) we depict the streamlines for increas
values of the Grashof number: 2× 104, 2× 105 and 2× 106

while the Hartmann number,Ha, and the Marangoni num
ber, Ma, were taken as 20 and 1000, respectively. In
figure we see the presence of two cells. The upper cell
developed along the top surface of the domain becaus
the presence of thermocapillary forces. From the stream
one may also see that the size of the upper cell and the
rate there gradually decreases with the increase of the v
of the buoyancy parameter,Gr. This is possible, since an in
crease in the value ofGr will increase the dominancy of th
buoyancy force over the present magnetic field strength
the thermo-capillary force.

The corresponding effect of the increasing buoya
forces on the isotherms are shown in Fig. 5(b). From
figure we can ascertain that increase in the buoyancy f
causes the isotherms to deform increasingly, and thin t
mal boundary layers form near both the heated and co
surfaces. This is because increasing buoyancy force
crease the fluid velocity up the heated surface, and th
fore heat cannot conduct so far perpendicular to the sur
Thus thin layers form which are associated with high ra
of heat transfer. This effect of the increasing buoyancy fo
on the local heat transfer from the heat surface is depicte
Fig. 10(a).

Fig. 6(a) depicts the streamlines with effect of incre
ing values of magnetic field parameter while the magn
field applied in the direction parallel to the horizontal (i.
φ = 0). From the figures, it can be seen that intensitie
both the primary and secondary flow decrease owing to
crease in the magnetic field. This is expected since pres
of magnetic field usually retards the velocity field. The c

responding effect of the increasing magnetic field on the
f

.

e

(a)

(b)

Fig. 5. Steady state (a) streamlines and (b) isotherms for (i)Gr = 2 × 104

(ii) Gr = 2× 105 and (iii) Gr = 2× 106 while Ma= 1000,Ha = 20,φ = 0
andλ = 0.

(a)

(b)

Fig. 6. Steady state (a) streamlines and (b) isotherms for (i)Ha = 0,
(ii) Ha = 20 and (iii) Ha = 40 while Gr = 2 × 104, Ma = 1000,φ = 0
andλ = 0.

isotherms may be viewed in Fig. 6(b). It may be seen
the isotherms become more vertical and straighten out
to the increase of the magnetic field strength, which is
pected; since the magnetic field resists the flow, as obse
above. This effect can also be seen in Fig. 10(b).

4.3. Effect of the direction of the external magnetic field
the flow and the temperature distribution

Now we discuss the effect of the direction of the ext
nal magnetic field on the flow and the temperature dist
ution. Our results are shown in the form of streamlines
isotherms in Figs. 7 and 8, respectively. Fig. 7 repres
the streamlines at the steady state situation, which wa
tained at times of less then 0.1, forφ = 0,π/4 andπ/2 while
Gr = 2 × 104, Ma = 1000 andHa = 20. It can be see from
this that, as the direction of the external magnetic chan
from horizontal to vertical, the flow rate in both the prima
and the secondary cells decreases which causes an inc

in the effect of the thermocapillary force. But at higher val-
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from
ues of the buoyancy force (the case whenGr = 2× 105) the
effect of the direction of the magnetic field is so significa
as the flow is dominated much more by the strength of
buoyancy force.

The corresponding isotherms are depicted in Fig. 8
this figure, for both values of the buoyancy parameter,Gr,
one can see that as the direction of the external mag

Fig. 7. Steady state streamlines for (i)φ = 0, (ii) φ = π/4 and (iii)φ = π/2
while Gr = 2× 104 and 2× 105, λ = 0, Ma= 1000 andHa = 20.

Fig. 8. Steady state isotherms for (i)φ = 0, (ii) φ = π/4 and (iii) φ = π/2

while Gr = 2× 104 and 2× 105, λ = 0, Ma= 1000 andHa = 20.

Fig. 9. Steady state (a) streamlines and (b) isotherms for d
field changes from 0 toπ/4, the isotherms near the heat
surface become parabolic; whereas a further change o
direction toπ/2, that is when the magnetic field acts in t
vertical direction, the isotherms near the heated surface
come similar to the case of the horizontal magnetic field.
these because change in the direction reduces the flow
in the cells which results the reduction of heat transfer
from the heated surface.

4.4. Effects of internal heat generation on the flow field a
the heat transfer

Now we discuss the effects of the internal heat genera
parameter (λ) on the flow and heat transfer on the natu
convection flow on takingGr = 2 × 104, Ma = 1000 and
Ha= 20.

Fig. 9(a) depicts the streamlines for values of heat g
eration parameterλ = 0.0, 10, 20, 40 and 60. From the
figures we may see that increasing values of the heat
eration parameter leads increasing flow rates in the prim
cell as well an increase in its size until it occupies almos
of the total cavity space. The increasing rate of heat ge
ation also causes the development of another secondar
at the top-right corner of the cavity. The flow strength in t
new cell also increases when the internal heat generatio
creases in magnitude. On the other hand, the secondar
that exists near the lower surface of the cavity gradually
appears when the heat generation parameter,λ, increases
This effect of internal heat generation on the flow field
reasonable since internal heat generation assists buoy
forces by accelerating the fluid flow. This effect we see
Fig. 9(b). On the other hand, the increase in the tempera
of the fluid due to the increasing rate of internal heat g
eration negates the heat transfer from the heated surfac
Fig. 12, we see the corresponding effects of the increas
the internal heat generation on the surface heat transfer

the heated surface of the cavity.
(a)

(b)
ifferentλ while Gr = 2× 104, Ha= 20,Ma= 1000 andφ = 0.
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Fig. 10. Numerical values of local Nusselt number,Nu, at the right
heated surface for differentGr while Ha = 0.0 and differentHa while
Gr = 2× 105, Ma= 1000,λ = 0, ϕ = 0.

Fig. 11. Numerical values of local Nusselt number,Nu, at the right heated
surface for differentϕ while Gr = 2 × 104 and 2× 105, Ma = 1000,
Ha= 20 andλ = 0.

Fig. 12. Numerical values of local Nusselt number,Nu, at the right heated
surface for differentλ while Ma = 1000 andGr = 2 × 104, Ha = 20 and
φ = 0.

5. Concluding remarks

In the present paper a problem on combined buoya
and thermo-capillary convection flow of electrically co
ducting fluid filled in an enclosure under an externally i
posed uniform magnetic field including the additional eff

of internal heat generation has been investigated numerically
by employing an upwind finite difference method toget
with a successive over-relaxation (SOR) technique. Ch
ing a fluid of small Prandtl number (Pr = 0.054, which
is appropriate for liquid metal and semi-conductor me
and a Marangoni number,Ma(= 1000), solutions have bee
obtained for values of the Grashof number,Gr, equal to
2 × 104, 2 × 105 and 2× 106 and that of Hartmann num
ber,Ha, which ranges from 0.0 to 40 and the heat genera
parameter,λ, ranges from 0.0 to 40.

The following conclusions may be drawn from t
present investigations:

• change of direction of the external magnetic force fr
horizontal to vertical leads to decrease in the flow ra
in both the primary and the secondary cells and
causes an increase in the effect of the thermocapi
force.

• increase in the value of the heat generation param
leads to increase in the flow rates in the primary cel
well an increase in its size until it occupies almost
of the total cavity space. Further increase in the valu
heat generation causes for development of more cel
the cavity.

• the temperature of the fluid in the cavity also increa
due to the increase of internal heat generation and h
that negates the heat transfer from the heated surfac

Finally, it requires to be mentioned that solutions of
present problem could be investigated for a fluid having
further smaller values ofPr.
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