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Abstract

The effect of surface tension on unsteady laminar natural convection flow of an electrically conducting fluid in a rectangular enclosure
under an externally imposed magnetic field with internal heat generation has been investigated. The top horizontal surface of the rectangula
cavity is assumed to be free and the bottom one insulated, whereas the left vertical wall is cold and the right one is uniformly hot. The
equations are non-dimensionalized and solved numerically by an upwind finite difference method together with a successive over-relaxation
(SOR) technique. The effects of heat generation together with the combined effects of the magnetic field and the surface tension are presente
graphically in terms of isotherm and streamline plots. The effects of varying the physical parameters on the rate of heat transfer from the
heated surface of the enclosure are also depicted. The fluid here has Prandtl Rual2054 which is representative of liquid metal and
semiconductor melts.

0 2005 Elsevier SAS. All rights reserved.

Keywords:Marangoni; Convective flow; Magnetohydrodynamic; Heat generation; Enclosure

1. Introduction Basu [5] computed numerically thermocapillary flow in a
rectangular cavity during laser melting. The gas—liquid in-
When a free surface is present in free convection flow terface was assumed to be flat with a ;irjusoidal var_iation of
of a liquid, variations in the surface tension at the free €MPperature. Thereafter Basu and Srinivasan [6] simulated
surface due to temperature gradients, can induce motionNUmerically a two-dimensional steady state laser-melting
within the fluid. Such flow is known either as thermocapil- Problem in a cavity; while Chen and Huang [7] conducted
lary flow or Marangoni convection. Convective flows driven @ Similar study with a moving heat flux along the free

by both buoyancy and surface tension play an important surfage. Carpenter and Homsy.[8] studied the proble.m of
role in the growth of crystals and in materials process- combined buoyancy thermocapillary convection flow in a

ing, especially in small-scale and low gravity hydrodynam- Sduare cavity with a free surface, which is heated differen-

ics [1-3]. Combined buoyancy and thermocapillary convec- tially in the horizontal direction. The influence of thermo-
tion flow or Marangoni convection flow in a differentially cap_ﬂlaLy forlc esbon n_atural_ con\éectlon flolei "; aHSZ"_"(IjIOWd
heated cavity has been investigated numerically by Bergman:;avIty gas also been investigated numerically by Hadid an
and Ramadhyani [4] who showed that surface tension al- Oux [9].

ters significantly the resulting flow pattern. Srinivasan and An externally imposed magnv_ahc field is also a widely
used tool for control of melt flow in the bulk crystal growth

of semiconductors. One of the main purposes of electro-
* Corresponding author. magnetic control is to stabilize the flow and suppress os-
E-mail addressanwar@udhaka.net (M.A. Hossain). cillatory instabilities, which degrades the resulting crystal.
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Nomenclature

B uniform magnetic field= B.e, + B,e, v velocity iny-direction ................ rs 1

By, By space independent componentsBodf constant X,y Cartesian coordinates..................... m
magnitude X,Y dimensionless coordinates

Bo magnitude oB \% field velocity e, 4 ve))

C, specific heat at constant pressure kgdt.K-1 Greek symbols

e, €, unitvectors in Cartesian coordinate system

F electromagnetic force B coefficient of thermal expansion of fluid . . K

g gravitational acceleration.............. -gM? 0 dimensionless temperature

Gr Grashof number A dimensionless heat absorption/generation

H enclosure height.......................... m parameter

Ha Hartmann number ¢ the orientation of the magnetic field with

J the electric current horizontal axis (such that tgn= B, /By)

K effective thermal conductivity of the @ is the electric potential
media.....o.oovvieiiiennnn... wi—l.K-1 m effective dynamic viscosity ........... Ral

Ma Marangoni number v effective kinematic viscosity(/p)

Nu Nusselt number P fluid density at reference temperatuffe)

p fludpressure..................coiiiiin. Pa o surface tension

Pr Prandtl number y temperature coefficient

t time .o S T dimensionless time

T temperature . ..............oiiiii. °C v streamfunction...................... gt

u velocity inx-direction ................ st 94 dimensionless vorticity

Numerous studies have already been devoted to the numersure with isothermal or adiabatic rigid walls. Other re-
ical modeling of electromagnetic stabilization of the con- lated works dealing with temperature-dependent heat gen-
vective flows in several different configurations [10-14]. eration effects can be found in the works of Vajravelu and
In a recent article Gelfgat and Yoseph [15] studied the ef- Nayfeh [20]. Recently, Chamkha and Naser [21] inves-
fect of an externally imposed magnetic field on the linear tigated the problem of unsteady, laminar, hydromagnetic,
stability of steady convection flow in a horizontally elon-  double-diffusive natural convection flow inside a rectangu-

gated rectangular cavity for fluid havirgy = 0.015, which  |ar enclosure in the presence of heat generation or absorp-
is associated with the horizontal Bridgman crystal growth tjgn.
process. In the present investigation we have considered the prob-

On the other hand, Rudraiah et al. [16] investigated the |om on combined buoyancy and thermo-capillary convection
effect of surface tension on buoyancy driven flow of a elec- flow of electrically conducting fluid filled in an enclosure un-

rically cpnducting fluid in a square cavity in the Presence qar an externally imposed time-independent uniform mag-
of a vertical transverse magnetic field to see how this force netic field including the additional effect of internal heat

damps hydrodynamic movements; since, this is required to . . . . .
generation. Numerical simulations of the governing equa-

enhance crystal purity, increase compositional uniformity tions have been carried out by emploving an upwind finite
and reduce defect density. It should further be stated that nat- . _y ploy g P .

. . . difference method together with a successive over-relaxation
ural convection heat transfer induced by internal heat gener-

ation has recently received considerable attention because OESOR) tecrlllnllgue. dFlor eximpl_eépwe h; \éz:hoignha} fluid that
numerous applications in geophysics and energy-related en- as a small Prandtl number (i.&r = 0.054, which is ap-

gineering problems. Such applications include heat removal ProPriate for liquid metal and semi-conductor melts) and a
from nuclear fuel debris, underground disposal of radioac- Ma&rangoni number\ia = 100 and 1000) which depends on

tive waste materials, storage of food-stuff, and exothermic the thermocapillary force). Solutions of the problem in terms

chemical reactions in packed-bed reactor (see, for instance,Of streamlines, isotherms as well as heat transfer from the
Kakac et al. [17]). heated surface have been obtained for values of the Grashof
Acharya and Goldstein [18] studied numerically two- NumberGr, equal to 2« 10%, 2 x 10° and 2x 1P, the Hart-

dimensional natural convection of air in an externally heated mann numberHa, which depends on the transverse mag-
vertical or inclined square box containing uniformly dis- netic field, ranges from 0.0 to 40 and the heat generation
tributed internal energy sources. Recently, Churbanov etparameter, ranges from 0.0 to 40. A detailed development
al. [19] studied numerically unsteady natural convection of the present investigation is given in the subsequent sec-
of a heat generating fluid in a vertical rectangular enclo- tions.
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2. Mathematical formulation

Here we consider the unsteady two-dimensional natural

convection flow of a fluid with kinematic viscosity, den-
sity p, thermal diffusivitya and electrical conductivity, in
a rectangular enclosure of heightas shown in Fig. 1. The
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whereTy = (Ty + Tc)/2 is the mean of the temperatures of
heated and cold surface,

y = (1/00)(30/0T)

is the temperature coefficient of the surface tensignis
a reference surface tension ands the temperature of the

right and the left walls are maintained at uniform tempera- fluid in the cavity. Further it is assumed that, the upper
tures Ty and Tc, respectively, and are such thg; > Tc. boundary is flat and the fluid above the surface is assumed to
The upper and lower boundaries are considered to be adiabe a gas of negligible viscosity and conductivity, and there-
batic or insulated. We also bring into account the effect of fore it will not influence the flow and temperature fields in

a uniform volumetric heat generatiog! [W-m~3], in the
flow region.

We further assume that the cavity is permeated by a

uniform magnetic field8 = B,e, + Bye, (where B, and

B, are space independent) of constant magnitége=
/(B2 + Byz) ande, ande, are unit vectors in Cartesian co-

ordinate system. The orientation of the magnetic field forms

an angleg with horizontal axis, such that tgn= B, /B;.

The electric currend and the electromagnetic foré¢eare
defined by

J=0,(—Vp+V xB) (1a)
vV.J=0 (1b)
F=JxB (1c)

whereg is the electric potential andl = ue, 4 ve, is the
field velocity. Here Eq. (1a) is Ohm’s law and (1b) is the
conservation of electric current. With electrically insulated
boundaries in the present two-dimensional flow the electric
potentialy is constant (please see [15]) and hence we have

J=0,(V x B) (2a)
Which then reduce (1c) to
F=0,(V xB) xB (2b)

We also assume that the surface tensigvaries linearly
with temperature as given below:

o =0o[1—y(T —To)] (3

) u=v=0, dT/0y=0
Uou/dy =-(06/0T)dT/ox
o r T
= H g =
S v I
i :
= 44 By u N
By
0 u=v=0, dT/0y=0 X

Fig. 1. The flow configuration and coordinate system.

the fluid. Finally, the direction of the gravitational force is as
indicated in Fig. 1.

Under the above assumptions, the conservation equa-
tions for mass, momentum and energy in a two-dimensional
Cartesian co-ordinate system are [15]:

ou 90
ML o )
ax  dy
ou ou n ou
—tu—+v—
ot dax dy
10 oo B2 . .
_ ——3—p +vV2u + =L (vsing cosp — usirf ¢) (5)
X Y
v v n v
JR— —_— v—
ot ax %y
0 oeB? .
= =22 4 v 4+ Z20 (using cosp — veod¢)
p dy p
+ gB(T — To) (6)
aT aT T "
i u——i—v—:()lva—i-q— (7)
ot Ax dy pCp

where V2 is the Laplaciany andv are the fluid velocity
components in the- and y-direction, respectivelyI is the
time, p is the fluid pressureg is the volumetric thermal
expansion coefficienp, « andC, are, respectively, the den-
sity of the fluid, the thermal diffusivity, and the specific heat
at constant pressure.

In the present problem the effect of the induced elec-
tric current on the imposed field and the Joulean heating
are neglected. This is justified as an estimation of the non-
dimensional parameter characteristic for liquid metals and
semiconductors, which is the ratio of the induced and im-
posed magnetic fields and known as the magnetic Prandtl
number,Pm, for liquid metals and semi-conductor melts is
O(1077) [15].

The boundary conditions for the present problem can now
be given as

u=v=T=0 fort=0

u=v=0, T=Tq forO<y<Hatx=L
8
u=v=_0, T=Tc forO<y<Hatx=0
aT
u=v=0, a—:O forO<Kx<Haty=0
y

The conditions at the upper free surface are
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u=v=0 L _o ,__ 0001 U=V=y=0  0=+1 foro<y<latX=A4
ay ay aoT 0x 90
forO<Kx<Haty=H 9) U=V=y=0, W:O forO< X <latY =0
The dynamic boundary conditions on the upper free surfaceU _v_o 20 0 o oU _ Ma a0
(i.e., aty = H) relates the velocity gradient to the temper- - ay — 7 T 9Y T 2Prox
ature gradient and this represents the balance between the forO< X <latY =1 (15)

shear-stress and the surface tension gradient at the surface

which is responsible for establishment of thermo-capillary " the above equations = L/H andGr, Pr, 4, Ha andMa
flow in the cavity. are, respectively, the Grashof number, Prandtl number, heat

It should be noted that the effect of interface deformabil- 9&neration parameter, Hartmann number and the Marangoni
ity on the onset of instability has not been investigated. Its "UmbPer which are defined as given below:

influence on the flow velocity h_as been given by Strani et ¢Br (T — To)H® v Ra

al. [22] for the steady state regime. The shape of the gas-Gr = SR E— Pr= o A= 2@
liquid interface in a square cavity has been computed by 2052

Cuvelier and Driessen [26] for different values of driving a2 — BoH Ue’ Ma = 9o Ty—Tc (16)
forces, such as the buoyancy force and the pressure force. 2 T pa

For pure buoyancy flow, the pressure is higher in the upper In (16) Ray

hot corner and consequently there is an elevation of the freeber since it depends on the volumetric heat generagién

boundary in this corner and a depression near the cold cor- Once we know the numerical values of the temperature
ner. For pure thermocaplllary flow the Qpp03|te effect has 6 we may obtain the rate of heat flux from each of the
been observed. For combined convection the free surface

found to be flattened by i ina the Bond b walls since the non-dimensional heat flux from any surface
was foun 2 0 be Tlalténed by increasing heé Bond NUMOeEr, o given by— (37T /dn), wheren is the direction normal to the
Bo(= pg H</0p). Cuvelier and Driessen [23] also showed

that the f ; h d ds st | the Oh wall. For example, the non-dimensional heat transfer rate in
arthe free-suriace snape l/ezpen s strongly on the€ DNNESOfarms of local Nusselt numbeu, from the right vertical
age number@h= u/(pooH)"*).

. . . . heated surface is given b
Now, we construct the following dimension less vari- g y

= gBq"" H®/kav is the internal Rayleigh num-

: 1 H 1706
ables: Nu=-_— 97 _ = <_> (17)
X—i Y—l . t 2k(Ty — Tc) 2\0X ) x_4
H’ H’ H2/v The corresponding value of the average Nusselt number, de-
__u V= v 0 — T—-To (10) noted byNuyy,, may be calculated from the following rela-
v/H’ v/H’ Th—To tion:

Introducing the above dimensionless dependent and inde- 1 1
pendent variables into the governing equations (4)—(8) yields Ny,, = — = f(%) dy (18)
the following equations: 2 0.4

02 AUR)  IVR)

ot X Y _ _
5 1 90 5 U 9V 3. Numerical solution methodology
=V2Q2 + ZGr— i R
+ ZGraX + Ha [sm¢cos¢<ax 8Y> - |
5U 3V An upwind finite-difference method, together with a suc-
+ <sin2q>— — co§¢—)} (11) cessive over-relaxation iteration (SOR) technique, has been

Y X employed to integrate the model equations (11) and (14)
99 oW  a(Ve) _ ivzeJr A (12) subject to the boundary conditions given in (15). To do
at D¢ Y Pr Pr this, the first and second derivatives were approximated by
where central differences and were used in the vorticity, energy
Q=_v2y (13) and Poisson equations. To preserve the conservative prop-

erty, the finite difference forms of the vorticity and energy
is the vorticity function andy is the stream function defined equations were written in conservative form for the con-

by: vective terms as defined by Roache [24]. For the solution
oy v of the vorticity equation the values of the vorticity at the
U=y V=—1x (14) wall were needed. The wall vorticity were obtained by ex-

panding the stream function in a Taylor series. We then ob-
tained the wall vorticities as follows (for further details see

U=V=y=60=0 fort=0 Roache [24]):
U=V=y=0 6=-1 forO<y<latX=0 Qu = — 21/ Aw

The dimensionless initial and boundary conditions are:
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wherew andw + 1 are respectively the grid points atthe wall 4. Results and discussion
and close to the wall, anfw is the space between these two

grid points. Values of the streamfunction at all grid points  Nymerical results are presented in order to determine
were obtained with Eq. (13) via a successive over-relaxation yhe effects of the presence of a magnetic field, volumet-
method. All values for the relaxation parameters were be- ic heat generation and different Marangoni numbers on the
tween 1.82 and 1.89. The velocities at all grid points were pa¢,r5| convection flow of an electrically conducting fluid
determined with the dimensionless form of Eq. (14) using i, 5 square cavity. Values of the magnetic field parameter
updated values of the stream function. Variations by less o range between 0.0 to 40.0, the internal heat-generation
than 104 over all grid points for the streamfunction were parameter;, between 0.0 and 60.0 but for the Marangoni
adopted as the convergence criterion. number,Ma, equal to 1000 and. Typical value of direction

It is clear that the non-dimensional parameters of inter- ¢ iq axternal magnetic field with the horizontal considered
est are the Grashof numb@&r, the Prandtl numbePEr, the to beg (=0, /4, 7/2, 3t /4).

heat generation parameter, the Marangoni numbeiVa,
the Hartmann numbeHa, and¢ the direction of the exter-
nal magnetic field. In the present investigation, pertaining to
liquid metal, the value of the Prandtl number is chosen to be
0.054 and the Grashof number is taken to bel®®. The as- The corresponding problem of natural convection flow,
pect ratio considered is unity and the value of the grid length without heat generation, but in presence of a uniform mag-
is denoted by: (= 1/n, wheren is the number of grid points  netic field acting in the direction of the cavity (i.e., for the
in both theX andY directions for square cavity). casep = m/2) both with and without the effect of thermo-
The results, which are shown and discussed in the fol- capillary force has already been investigated by Rudraiah et
lowing sections, have been calculated from zero initial ve- al. [27]. In that investigation a finite difference method to-
locities and mean values of temperature. A grid dependencegether with ADI was employed for different values of the
study has been carried out, as in Hossain and Wilson [25] Grashof numbeiGr, Hartmann numbekla, and Marangoni
and Hossain and Rees [26] for a thermally-driven cavity number,Ma, for a fluid with Prandtl numbe®r = 0.733.
flow, for different values of the physical parameters, with Typical results obtained by the above authors has been re-
meshes of 4k 41, 51x 51 and 61x 61 points. It has been  visited by the present authors for the following values of the
found that there are very small differences in the maximum physical parameterssr = 2 x 10°, Pr = 0.733, Ha = 20
or minimum values of the stream-function between above and ¢ = n/2; these were found to be in excellent agree-
sets of meshes. Hence we have chosen to use&ll mesh ment. We also revisited the case for whiGh = 2 x 10%,
points throughout the present computationstfes 0.1 with Pr = 0.054 andMa = 100 withHa= 0 andXx = 0 in the
a time step of 5< 10-%, which was found to be sufficientto  model considered in Ref. [16] using the present method. In
reach the steady-state situation for the fluidPof= 0.054. this case also we found an excellent agreement with the re-
In Fig. 2 we demonstrate the values of the average Nusseltsults of [16] qualitatively as shown in Fig. 3.
number,Nuay, along the heated surface of a square cav-  Finally, the authors considered an aspect ratio 4 cavity
ity, againstz. In this figure the graphs are fd@r equal  subject to a heated left-walb (= 1) and a cold right wall
to 2 x 10%, 2 x 10° and 2x 10° while values of all other (6 = 0) with the parameter valueg:= 0, Gr = 5.37 x 10F,
physical parameters are zero. It is seen that the numericalpr = 0.015,Ha = 20,Ma = 0 andx = 0; this particular case
values ofNu,y reach their respective steady values long be- has been investigated by Gelfgat and Yoseph [15]. In this
fore z = 0.1. However, throughout the present computations case also we found an extremely close match with the results

4.1. Comparison with earlier investigations

we have taken the value of=0.1. obtained by Gelfgat and Yoseph [15], which are reproduced
in Fig. 4.
4.0f So we believe that the present method yields sufficiently
35 - e accurate results and is computationally efficient.
3.0 :l Gr
% _. I 20000
s 2 DI e,
20 e e e e e e e e e e

. .
1800 002 004 006 008 0.10
T

Fig. 2. AverageNuay, at the right heated surface againdor differentGr Fig. 3. Streamlines and isotherms fBr = 2 x 10* and Pr = 0.054 and
while Ma=1000,Ha=0,a =0 andx =0. Ma = 100 whileHa= 0 andx =0 [16].
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=

Fig. 4. Streamlines (top) and isotherms (bottom) with left heated-wall and
right cold-wall while Gr = 5.37 x 10%, Pr = 0.015, Ha = 20, Ma = 0, ( (1)
¢ = 0.0 (Gelfgat and Bar-Yoseph [15]).

(b)

: Fig. 5. Steady state (a) streamlines and (b) isotherms f@r(i 2 x 104
4.2. Effects_of varying the Grashof and Hartmann numbers (i) Gr — 2 105 and (ii)) Gr — 2 x 106 while Ma — 1000, Ha = 20, — 0
on the flow field and the heat transfer ands —0.

We consider first the effect of an external magnetic field
acting in the direction parallel to the horizontal (i.¢.= 0)
with surface tension effects at the top surface (whMia=
1000) but without internal heat generation=€ 0). The re-
sulting flow and temperature distributions are depicted in
Fig. 5. In Fig. 5(a) we depict the streamlines for increasing
values of the Grashof number>210%, 2 x 10° and 2x 10°
while the Hartmann numbeHa, and the Marangoni num-
ber, Ma, were taken as 20 and 1000, respectively. In this
figure we see the presence of two cells. The upper cell has
developed along the top surface of the domain because of
the presence of thermocapillary forces. From the streamlines
one may also see that the size of the upper cell and the flow  [( (ii (i
rate there gradually decreases with the increase of the value (b)
of the byoyancy paramet@,_r. Thisis pOSSIble_, since an in- Fig. 6. Steady state (a) streamlines and (b) isotherms foH#i)= 0,
crease in the value @&r will increase the dominancy of the iy Ha — 20 and (jii) Ha = 40 while Gr = 2 x 10%, Ma = 1000, ¢ = 0
buoyancy force over the present magnetic field strength andandx = o.
the thermo-capillary force.

The corresponding effect of the increasing buoyancy isotherms may be viewed in Fig. 6(b). It may be seen that
forces on the isotherms are shown in Fig. 5(b). From this the isotherms become more vertical and straighten out due
figure we can ascertain that increase in the buoyancy forceto the increase of the magnetic field strength, which is ex-
causes the isotherms to deform increasingly, and thin ther-pected; since the magnetic field resists the flow, as observed
mal boundary layers form near both the heated and cooledabove. This effect can also be seen in Fig. 10(b).
surfaces. This is because increasing buoyancy forces in-
crease the fluid velocity up the heated surface, and there-4.3. Effect of the direction of the external magnetic field on
fore heat cannot conduct so far perpendicular to the surface the flow and the temperature distribution
Thus thin layers form which are associated with high rates
of heat transfer. This effect of the increasing buoyancy force  Now we discuss the effect of the direction of the exter-
on the local heat transfer from the heat surface is depicted innal magnetic field on the flow and the temperature distrib-
Fig. 10(a). ution. Our results are shown in the form of streamlines and

Fig. 6(a) depicts the streamlines with effect of increas- isotherms in Figs. 7 and 8, respectively. Fig. 7 represents
ing values of magnetic field parameter while the magnetic the streamlines at the steady state situation, which was at-
field applied in the direction parallel to the horizontal (i.e., tained attimes of less then 0.1, b= 0, /4 andx /2 while
¢ = 0). From the figures, it can be seen that intensities in Gr = 2 x 10%, Ma = 1000 andHa = 20. It can be see from
both the primary and secondary flow decrease owing to in- this that, as the direction of the external magnetic changes
crease in the magnetic field. This is expected since presencdrom horizontal to vertical, the flow rate in both the primary
of magnetic field usually retards the velocity field. The cor- and the secondary cells decreases which causes an increase
responding effect of the increasing magnetic field on the in the effect of the thermocapillary force. But at higher val-
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ues of the buoyancy force (the case wi@m= 2 x 10°) the field changes from O ter /4, the isotherms near the heated
effect of the direction of the magnetic field is so significant surface become parabolic; whereas a further change of the
as the flow is dominated much more by the strength of the direction toxr/2, that is when the magnetic field acts in the

buoyancy force. vertical direction, the isotherms near the heated surface be-
The corresponding isotherms are depicted in Fig. 8. In come similar to the case of the horizontal magnetic field. All
this figure, for both values of the buoyancy parame®at, these because change in the direction reduces the flow rate

one can see that as the direction of the external magneticin the cells which results the reduction of heat transfer rate
from the heated surface.

4.4. Effects of internal heat generation on the flow field and
the heat transfer

Now we discuss the effects of the internal heat generation
parameter X) on the flow and heat transfer on the natural
convection flow on takingsr = 2 x 10%, Ma = 1000 and
Ha = 20.

Fig. 9(a) depicts the streamlines for values of heat gen-
eration parametek = 0.0, 10, 20, 40 and 60. From these
figures we may see that increasing values of the heat gen-
eration parameter leads increasing flow rates in the primary
Fig. 7. Steady state streamlines fordij= 0, (ii) ¢ = x/4 and (iii) ¢ = /2 cell as well an increase in its size until it occupies almost all
while Gr =2 10 and 2x 10°, 3 =0, Ma= 1000 ancHa = 20. of the total cavity space. The increasing rate of heat gener-
ation also causes the development of another secondary cell
at the top-right corner of the cavity. The flow strength in this
new cell also increases when the internal heat generation in-
creases in magnitude. On the other hand, the secondary cell
that exists near the lower surface of the cavity gradually dis-
appears when the heat generation paramateincreases.
This effect of internal heat generation on the flow field is
reasonable since internal heat generation assists buoyancy
forces by accelerating the fluid flow. This effect we see in
Fig. 9(b). On the other hand, the increase in the temperature
of the fluid due to the increasing rate of internal heat gen-
eration negates the heat transfer from the heated surface. In

=20 \Gr= i) Gr
y () ( Fig. 12, we see the corresponding effects of the increase of
Fig. 8. Steady state isotherms for ¢i)= 0, (ii) ¢ = 7/4 and (iii) ¢ = 7/2 the internal heat generation on the surface heat transfer from
while Gr = 2 x 10* and 2x 10°, » = 0, Ma= 1000 ancHa = 20. the heated surface of the cavity.

(b)

Fig. 9. Steady state (a) streamlines and (b) isotherms for differerile Gr = 2 x 10%, Ha= 20, Ma = 1000 andp = 0.
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Fig. 10. Numerical values of local Nusselt numbéhy, at the right
heated surface for differer®r while Ha = 0.0 and differentHa while
Gr=2x 10°, Ma=1000,A =0, ¢ = 0.

4.0 o
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Fig. 11. Numerical values of local Nusselt numk¥u, at the right heated
surface for differentp while Gr = 2 x 10* and 2x 10°, Ma = 1000,
Ha=20 andx =0.
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Fig. 12. Numerical values of local Nusselt numku, at the right heated
surface for different. while Ma = 1000 andGr = 2 x 10%, Ha = 20 and

¢=0.
5. Concluding remarks

In the present paper a problem on combined buoyancy
and thermo-capillary convection flow of electrically con-
ducting fluid filled in an enclosure under an externally im-
posed uniform magnetic field including the additional effect

of internal heat generation has been investigated numerically

683

by employing an upwind finite difference method together
with a successive over-relaxation (SOR) technique. Choos-
ing a fluid of small Prandtl numberP¢ = 0.054, which
is appropriate for liquid metal and semi-conductor melts)
and a Marangoni numbévja(= 1000, solutions have been
obtained for values of the Grashof numbé&r, equal to
2 x 10% 2 x 1P and 2x 10° and that of Hartmann num-
ber,Ha, which ranges from 0.0 to 40 and the heat generation
parametera, ranges from 0.0 to 40.

The following conclusions may be drawn from the
present investigations:

e change of direction of the external magnetic force from
horizontal to vertical leads to decrease in the flow rates
in both the primary and the secondary cells and that
causes an increase in the effect of the thermocapillary
force.

increase in the value of the heat generation parameter
leads to increase in the flow rates in the primary cell as
well an increase in its size until it occupies almost all
of the total cavity space. Further increase in the value of
heat generation causes for development of more cells in
the cavity.

the temperature of the fluid in the cavity also increases
due to the increase of internal heat generation and hence
that negates the heat transfer from the heated surface.

Finally, it requires to be mentioned that solutions of the
present problem could be investigated for a fluid having any
further smaller values d®r.
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