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Abstract

We reconsider the onset of streamwise vortices in the thermal boundary layer flow induced by an inclined upward-

facing heated semi-infinite surface placed within a Newtonian fluid. Particular emphasis is laid upon how the induced

flow in the isothermal region outside the boundary layer affects the boundary layer itself at higher order, and how this,

in turn, affects the stability criterion for the onset of vortices. We find that the stability criterion for thermal boundary

layers in air is less susceptible to changes in external geometry than for boundary layers in water. In general, we con-

clude that the variation of the stability criterion with wedge angle (between the heated and the outer boundary surface)

is too great for the theory to predict reliably where disturbances first begin to grow.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The general problem of stability of free convection

boundary layer flows is a combination of the problems

of hydrodynamic instability and thermo-convective

instability. When an upward-facing semi-infinite heated

surface is inclined from the horizontal and is such that

the leading edge is below the rest of the surface, then

resulting flow is thermo-convectively unstable since it

is unstably stratified. In this regard it shares some char-

acteristics with the classical Bénard problem which con-

sists of a layer of fluid which is heated from below. In
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such cases the primary mode of instability takes the

form of longitudinal vortices with axes aligned in the

general direction of the induced basic flow.

When the heated surface is vertical buoyancy forces

generate the basic flow directly, but do not cause its

destabilization. Since the maximum streamwise velocity

increases as x1/2 and the boundary layer thickness as

x1/4, a local Reynolds number based on these quantities

increases as the 3
4

power of the distance from the leading

edge, and thus it may be suspected strongly that instabil-

ities are hydrodynamic in nature. Some confirmation of

this suspicion is provided by the identity of the primary

mode of instability, namely, two-dimensional travelling

waves, for these also form the primary mode for the iso-

thermal Blasius boundary layer. Additionally, waves

also arise when the heated surface is downward-facing,

for which the boundary layer is stably stratified.

Thus, as the inclination of an upward-facing heated

surface approaches the vertical the destabilizing
ed.
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Nomenclature

d dimensional length scale

F, G, H, T disturbances

f0, h0 leading order boundary layer solutions

f1, h1 first order boundary layer solutions

g gravitational acceleration

k wavenumber

p dynamic pressure

Pr Prandtl number

t time

u, v, w fluid velocities in the x, y, and z directions

U dimensional velocity scale

x, y, z Cartesian coordinates

Greek symbols

a wedge angle

b coefficient of cubical expansion

d surface inclination angle

DT dimensional temperature range

� small value

g similarity variable

l dynamic viscosity

h temperature function

/ angular coordinate

w streamfunction

n scaled x-variable

x vorticity

Superscripts and subscripts

c critical

n normal derivative

1 ambient conditions
0 derivatives with respect to g
� basic flow quantities

^ disturbance quantities
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influence of the unstable temperature gradient wanes,

but the direct action of buoyancy forces increases and

this increases the destabilizing influence of the magni-

tude of the streamwise velocity. Therefore there is a cor-

responding change over between the identity of the most

unstable mode as the inclination increases, and this has

been verified by the experiments of Lloyd and Sparrow

[1]. Using water as the working fluid they found that

waves provide the dominant mode of instability when

the inclination from the vertical is less than 14�, and vor-

tices when the inclination is greater than 17�. At inter-

mediate angles waves and vortices seem to coexist. On

the theoretical side, which comprises only linear stability

analyses to date (with one exception, see Chen et al. [2]),

Iyer and Kelly [3], using the parallel flow approximation,

found that both modes become linearly unstable at the

same downstream location at an inclination from the

vertical of only 4 degrees. They argue that this result is

consistent with the experimental work when account is

taken of modal amplification rates. Both modes individ-

ually are sufficiently strong to be first observed at the

same streamwise location when the inclination is 17

degrees.

In this paper we do not enter into the debate over the

circumstances in which vortices are more or less impor-

tant than waves. But rather we are concerned with the

effect on the vortex stability criterion of the induced flow

which is external to the boundary layer itself. Haaland

and Sparrow [4], Chen and Tzuoo [5], and Kahawita

and Meroney [6] used the leading order boundary layer

flow as the basic flow to analyse stability. Thus their
analyses take no account of the overall shape of the flow

domain.

Here the fluid region is bounded by two semi-infinite

flat plates forming a wedge of angle a; this serves as a

convenient way of analysing the influence of the shape

of the fluid domain on the stability criterion. The heated,

constant temperature plate is inclined at an angle d from

the vertical, while the other plate is either insulated or is

held at the ambient temperature of the fluid. The basic

flow used in the analysis is a two-term boundary layer

approximation using the method of matched asymptotic

expansions, the second term of which depends on the

wedge angle. Such a technique has been used recently

by Paul et al. [7] and Storesletten and Rees [8]. The for-

mer authors considered the wave instability for a vertical

heated surface, while the latter considered vortex insta-

bilities in thermal boundary layer flows in porous media.

We find that the critical distance from the leading edge

beyond which disturbances grow is dependent on both

d and a, and this suggests that the external geometry

of the fluid domain does exert an influence on stability

criteria. We consider two common fluids: air (for which

Pr = 0.7) and water (Pr = 6.7).

In Section 2 we derive the governing equations for

thermal boundary layer flow from an inclined surface.

A basic flow analysis is presented in Section 3 using

matched asymptotic expansions. The equations satisfied

by the vortex disturbances are derived in Section 4 using

a linearized analysis. The numerical techniques used are

discussed in Section 5 and the results are presented in

Section 6. We summarize our conclusions in Section 7.
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2. Governing equations of motion

We consider the instability of free convective bound-

ary layer flow from an inclined semi-infinite heated

plate. A sketch of the flow configuration is shown in

Fig. 1. The equations which describe the free convection

flow are taken to be the Navier-Stokes and energy equa-

tions. The unsteady equations of motion, which are sub-

ject to the Boussinesq approximation, are written in the

following nondimensional form,

ou
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Here x, y and z are the streamwise, cross-stream and

spanwise Cartesian coordinates, and u, v and w are the

corresponding fluid velocity components. Further, p is

the dynamic pressure, h is the fluid temperature, t is

time, and Pr is the Prandtl number. In Eqs. (1) the angle

of inclination of the semi-infinite surface from the verti-

cal is d, where 0 < d < p/2 corresponds to an upward fac-
Fig. 1. The sketch of flow domain and coordinate system

displaying wedge angle (a) and inclination angle (d).
ing surface with the leading edge placed vertically below

the rest of the surface; see Fig. 1. We do not include the

extreme cases, d = 0 and d = p/2 in our study because

waves (rather than vortices) form the primary instability

mechanism in the former case, while the similarity vari-

able takes a different form in the latter case. Eqs. (1)

have been nondimensionalized using

d ¼ m2

gbDT

� �1=3

and U ¼ gbDT mð Þ1=3 ð2Þ

as natural length and velocity scales. The ramification of

using these scales is that the Grashof number has effec-

tively been set to unity. A similar procedure has also

been used by Paul et al. [7] for the wave instability of

the vertical boundary layer (i.e. for d = 0), and by Rees

[9,10] in studies of vortex disturbances in thermal

boundary layer flows in porous media.

The surface y = 0, x P 0, is isothermal and is main-

tained at the temperature h = 1, while the other bound-

ing surface is either maintained at the ambient

temperature, h = 0, or else it is insulated. The corre-

sponding boundary conditions may be written down as

follows

u ¼ v ¼ w ¼ 0; h ¼ 1 at y ¼ 0; x P 0; on / ¼ 0;

ð3aÞ

u ¼ v ¼ w ¼ 0; h ¼ 0 or hn ¼ 0; on / ¼ a: ð3bÞ

In (3) / measures the angular coordinate relative to the

heated surface.
3. Basic flow analysis

We now determine the two-term solution of the

undisturbed basic boundary layer flow using the method

of matched asymptotic expansions. The basic steady

flow, whose stability is being considered, is two-dimen-

sional and may be written in a streamfunction-vorticity

form. We may assume that all z and t derivatives are

zero and therefore we substitute u ¼ �wy and v ¼ ��wx

into Eqs. (1) and (3). The following equations for the ba-

sic flow are obtained,

r2�w ¼ �x; ð4aÞ

r2 �x ¼ o�w
oy

r2 o�w
ox

� �
� o�w

ox
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oy
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ox

o�h
oy

; ð4cÞ

which are to be solved subject to the boundary

conditions,
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�w ¼ o�w
oy

¼ 0; �h ¼ 1; on y ¼ 0 ð/ ¼ 0Þ; ð4dÞ

�w ¼ 0; �h ¼ 0 or
o�h
on

; on / ¼ a: ð4eÞ

We have denoted the basic flow by overbars.

The leading order boundary layer flow now follows

simply by assuming that x 	 y and neglecting the

streamwise diffusion terms. This boundary layer flow en-

trains isothermal fluid from the region outside the layer,

but the detailed external flowfield which is produced de-

pends on the shape of the domain. Thus the boundary

layer itself is modified (albeit slightly when x 	 y) by

this external flow. Our aim here is to determine the sec-

ond term in the boundary layer expansion and to use it

as part of the basic flow in a vortex stability analysis.

In the boundary layer region (i.e. where x 	 y) we

may expand the streamfunction and temperature in

terms of the following series (see in Hieber [11] for a case

of d = 0),

�w ¼ x3=4ðcos dÞ1=4½f0ðgÞ þ x�3=4f1ðgÞ þ � � � � � ��; ð5aÞ

�h ¼ h0ðgÞ þ x�3=4h1ðgÞ þ � � � � � � ; ð5bÞ

where the similarity variable g is given by

g ¼ yðcos dÞ1=4x�1=4: ð6Þ

The functions f0, f1, h0, and h1 which appear in Eqs.

(5) satisfy the following ordinary differential equations

where primes represent derivatives with respect to g,
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At g = 0 these functions satisfy the following bound-

ary conditions

f0 ¼ f 0
0 ¼ f1 ¼ f 0

1 ¼ 0; ð8aÞ

h0 ¼ 1; h1 ¼ 0; ð8bÞ

whilst the appropriate boundary conditions which

match with the outer flow (as g ! 1) are that

f 0
0 ! 0; f 0

1 ! � 3

4
f0ð1Þðcos dÞ�1=4

cot
3

4
a

� �
; ð8cÞ
h0 ! 0; h1 ! 0: ð8dÞ

The matched asymptotic analysis which gives rise to

the condition (8c) is almost identical to that presented

in [7] and is omitted here.

The system of Eqs. (7a)–(7d) must be solved numer-

ically and this is discussed in Section 5. We note that the

definition of g which has been used means that the lead-

ing order boundary layer flow is independent of d, but

the second order terms are functions of both a and d.
4. Linear stability analysis

In this section we develop the linear stability equa-

tions for the basic flow given above. It is well-known

that the primary mode of instability for an upward fac-

ing inclined hot surfaces takes the form of streamwise

vortices when the heated surface is not too close to the

vertical; see [1]. Therefore we will consider small distur-

bances of this form.

We perturb the basic solutions by setting

ðu; v;w; h; pÞ ¼ ð�u;�v; 0; �h; �pÞ þ �ðû; v̂; ŵ; ĥ; p̂Þ; ð9Þ

where û, v̂, ŵ, ĥ, and p̂ are the components of the distur-

bance and are functions of x, y, z, and t. The disturbance

amplitude, �, is assumed to be infinitesimal. Substitution

of Eq. (9) into the full governing Eqs. (1), followed by

linearization yields the following set of disturbance

equations,

ûx þ v̂y þ ŵz ¼ 0; ð10aÞ

ût þ �uûx þ �uxûþ �vûy þ �uyv̂

¼ �p̂x þ ûxx þ ûyy þ ûzz þ ĥ cos d; ð10bÞ

v̂t þ �uv̂x þ �vxûþ �vv̂y þ �vy v̂

¼ �p̂y þ v̂xx þ v̂yy þ v̂zz þ ĥ sin d; ð10cÞ

ŵt þ �uŵx þ �vŵy ¼ �p̂z þ ŵxx þ ŵyy þ ŵzz; ð10dÞ

ĥt þ �uĥx þ �hxûþ �vĥy þ �hy v̂

¼ Pr�1ðĥxx þ ĥyy þ ĥzzÞ: ð10eÞ

The appropriate boundary conditions are

û ¼ v̂ ¼ ŵ ¼ ĥ ¼ 0; at y ¼ 0; for x > 0; ð11aÞ

û; v̂; ŵ; ĥ;! 0; as y ! 1 for x > 0: ð11bÞ

We note that, strictly speaking, y cannot increase

indefinitely whenever the wedge angle is less than p/2.

However, it is sufficient that the thermal boundary layer

is much narrower than the perpendicular distance from

the heated surface to the second surface, and, in general,

this means that our analysis usually remains valid for

fairly small values of a.
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We now make the same assumption as [4–6] and as-

sume that marginal stability corresponds to where there

is no streamwise variation with x, and that the onset of

vortices is stationary in time. Therefore, we assume that

the vortices are functions solely of y and z, and that they

are periodic in the spanwise direction z. Consequently,

the disturbance quantities û, v̂, ŵ, ĥ, and p̂ may be Fou-

rier decomposed using

û ¼ F ðyÞ cos kz; v̂ ¼ GðyÞ cos kz;

ŵ ¼ HðyÞ sin kz; ĥ ¼ T ðyÞ cos kz;

p̂ ¼ QðyÞ cos kz; ð12Þ

where F(y), G(y), H(y), T(y), and Q(y) are small ampli-

tude functions and k is the spanwise wavenumber of

the disturbances. Here the temporal growth rate is con-

sidered to be zero to correspond to neutral stability.

Eq. (12) may now be substituted into Eqs. (10). For

computational convenience, we eliminate Q and H

which leads to three equations involving only F, G,

and T. We also make the change of variables from

(x,y) to (x,g) where the similarity variable g is defined

in Eq. (6). The disturbance equations now become

F 00 � �vnF 0 � ðk2 þ �uxÞn2F ¼ n2ð�uyG� T cos dÞ; ð13aÞ

Giv � �vnG000 � ð2K2 þ �vyÞn2G00 þ k2�vn3G0

þ k2ðk2 þ �vyÞn4G ¼ �k2�vxn
4F þ k2n4T sin d; ð13bÞ

T 00 � Pr�vnT � k2n2T ¼ Prn2ð�hxF þ �hyGÞ; ð13cÞ

where the function, n, is defined as

nðx; dÞ ¼ x
cos d

� �1=4

: ð14Þ

The corresponding boundary conditions to be satisfied

by the disturbance equations are that

F ¼ G ¼ G0 ¼ T ¼ 0; at g ¼ 0; ð15aÞ

F ¼ G ¼ G0 ¼ T ¼ 0; as g ! 1: ð15bÞ

The system of Eqs. (13)-(15) is homogeneous and

therefore it is always satisfied by a zero solution. A nor-

malization condition is required to force nonzero solu-

tions, and this is taken to be

T 0ð0Þ ¼ 1: ð16Þ

Eqs. (15) and (16) form nine boundary conditions for

the eight order system of Eqs. (13). Therefore, one of the

two parameters, k and x has to be chosen as the eigen-

value. However, in general it is found that the neutral

stability curve has one well-defined minimum, and there-

fore it is this value which is of primary interest since it

yields both the minimum distance beyond which vortex

disturbances grow and the corresponding wavenumber.

These values are computed by solving the system (13)–
(16) together with the system obtained by differentiating

each equation in (13)–(16) with respect to k where

on/ok = 0 defines the minimum of the neutral curve. This

new extended system forms a 16th order system with 18

boundary conditions and two eigenvalues: n and k. A

suitably modified version of the Keller-box method is

employed to solve this ordinary differential eigensystem

and is discussed in the next section.
5. Numerical method

The equations for the basic flow were solved using a

standard shooting method which employs Newton–

Raphson iteration techniques. In this method the ordin-

ary differential Eqs. (7a)–(7d) are written as a first order

system of ordinary differential equations and a 4th order

Runge–Kutta method employed to solve them. These

solutions are accurate to at least six significant figures.

A modified version of the Keller-box code was em-

ployed to solve the disturbance equations. For this type

of method it is not necessary always to insist that the

governing equations are reduced to first order form,

and the present code solves the second order differential

equations using straightforward second order accurate

central difference approximations. When the difference

equations are suitably arranged the presence of two

eigenvalues, x and k causes the Jacobian matrix of the

Newton–Raphson iteration scheme, which is a central

part of the Keller box methodology, to have two extra

rows and columns over and above its usual block tridi-

agonal structure. Therefore the block-Thomas algorithm

is modified to account for this structural change; very

similar schemes were used by Lewis et al. [12] and Shu

and Wilkes [13].

In addition, we have used g1 = 10 with dg = 0.1 for

Pr = 0.7 and 6.7 and these were found to yield suffi-

ciently accurate computations for both the main flow

and the vortex disturbances.
6. Numerical results

In this section we present details of the vortex stabil-

ity criterion and how this varies with both inclination

angle and wedge angle. We have scaled the critical dis-

tance xc with respect to the inclination d (00 < d < 900)

angle according to

x̂c ¼ xcd
4=3; ð17Þ

since the critical distance is proportional to d�4/3 in the

small-d or vertical limit. Therefore we obtain a finite

value for x̂c as d ! 0. A similar type of scaling was used

by Storesletten and Rees [8], and Hsu and Cheng [14] to

analyse vortex instabilities in porous media, although

the power of d used in those studies is different.



Fig. 3. The variation of critical distance xc with wedge angle a
for air (Pr = 0.7) and d = 50, 100, 200, 300, 400, 500, 600, 700, 800.

The dashed line denotes the corresponding result for the leading

order boundary layer flow.
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Before presenting the detailed results of our stability

analysis it is necessary to consider first some of the

implications of the dependence of F1 on a. One compo-

nent of the solution for F1 is exactly proportional to

cot 3
4
a; see the boundary condition (8c). Although this

function is zero when a ¼ 2
3
p ¼120�, the two-term

boundary layer solution is not identical to the one-term

solution since there is a second component of F1 which

corresponds to the inhomogeneous term in (7c). There-

fore two-term stability results when a ¼ 2
3
p will not be

identical to those obtained using only the one-term solu-

tion. This is unlike the case considered by Paul et al. [7]

where F1 is proportional to cot 3
4
a. When a = 0 and

a ¼ 4
3
p ¼ 240� F1 is infinite and the asymptotic series

breaks down in these limits. Furthermore, the function

cot 3
4
a has period 4

3
p and therefore all the results for

the range 0 < a 6
2
3
p also apply for the range

4
3
p < a 6 2p. Finally we note that F1 is positive when

2
3
p 6 a < 4

3
p, and therefore the two-term streamwise

velocity is greater than that given by the leading term

only. For other values of a the basic flow is slower.

First we will present the stability characteristics for

air by choosing the Prandtl number to be 0.7. These re-

sults are summarized in Figs. 2–4. Fig. 2 displays the

variation of the scaled critical distance x̂c with the incli-

nation angle, d, for a set of discrete values of the wedge

angle values in the range 50
6 a 6 2350. We note that the

dashed curve corresponds to taking only the leading

order boundary layer as the basic flow. At moderate

inclinations of the surface we see that there is an extre-

mely large variation in the value of x̂c with a, and there-

fore we may conclude immediately that stability criteria
Fig. 2. The variation of critical distance x̂c with inclination

angle d for air (Pr = 0.7) and a = 50 to 2350. The dashed line

denotes the corresponding result for the leading order boundary

layer flow.

Fig. 4. The variation of critical wavenumber kc with inclination

angle d for air (Pr = 0.7) and a = 50 to 2350. The dashed line

denotes the corresponding result for the leading order boundary

layer flow.
based on the leading order boundary layer theory gives

misleading results, for the external domain exerts a very

large influence on the stability characteristics of the flow.

However, when the heated surface is close to the ver-

tical, i.e. d is small, then there appears to be much less

variation in the critical distance, x̂c. This is understand-

able since the unscaled value, xc, is asymptotically large

as d ! 0, and therefore the second term in the boundary



Fig. 6. The variation of critical distance xc with wedge angle a
for water (Pr = 6.7) and d = 50, 100, 200, 300, 400, 500, 600, 700,

800. The dashed line denotes the corresponding result for the

leading order boundary layer flow.
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layer expansion is asymptotically small compared with

the leading term. Thus there should be little variation

in x̂c with a. An alternative view of the stability charac-

teristics may be seen in Fig. 3 wherein is displayed the

variation of x̂c with a for discrete values of d. In this Fig-

ure we see that the critical distance is essentially constant

except when a is close to those values for which cot 4
3
a is

infinite (i.e. for a = 0 and a = 120�). Therefore we con-

clude that we have some measure of confidence in the

stability results at small inclinations, although we note

that it is within this regime that waves are more likely

to appear.

The critical wavenumber (kc) variation with d is plot-

ted in Fig. 4. We see that there is little variation in kc as

the wedge angle a varies, despite the large changes al-

ready observed in x̂c. But there is a distinct trend that

the wavenumber decreases as d decreases towards zero.

This may be understood easily for the boundary layer

thickens as d ! 0, and since the vortices tend to main-

tain a wavelength which is comparable to the local

boundary layer thickness at onset, the wavenumber

decreases towards zero as xc ! 1.

Equivalent results for the case of water, for which

Pr = 6.7, are shown in Figs. 5–7. In general the critical

distance for water is less than for air, but there appears

to be slightly less variation in x̂c with a. Fig. 6 also indi-

cates that the neutral distances vary less with a than they

do for air. Therefore a little more confidence may be

gained in using these results. The same trend is shown

by the wavenumber as d decreases towards zero, but

the variation with a is greater than that for air. Therefore

we have a somewhat conflicting picture, namely that the

computed neutral distances are more reliable for water
Fig. 5. The variation of critical distance x̂c with inclination

angle d for water (Pr = 6.7) and a = 50 to 2350. The dashed line

denotes the corresponding result for the leading order boundary

layer flow.

Fig. 7. The variation of critical wavenumber kc with inclination

angle d for water (Pr = 6.7) and a = 50 to 2350. The dashed line

denotes the corresponding result for the leading order boundary

layer flow.
than for air, but that the wavenumber shows much more

variation with wedge angle for air than for water.

Some comparison with published works may now be

made, although very few published experimental papers

deal with convection from a uniform temperature heated

surface, with the rest concentrating on uniform heat flux

surfaces. Both Lloyd and Sparrow [1] and Zuercher et al.

[15] have undertaken careful experimental studies of the
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onset of vortex convection in water. Estimates for the

critical distance for the onset of vortices relies on being

able to see disturbances, and these works yield 121 and

214 as the critical distance, xc, at d = 45�. Both these val-

ues are well above the critical distances shown in Fig. 6.

That this is so is not surprising for growing disturbances

must achieve a certain threshold amplitude before being

visible, as commented in [15]. However, Zuercher et al.

[15] also discuss why their results differ so much from

those of Lloyd and Sparrow [1], concluding that the de-

tailed configuration of the leading edge of the experi-

ments might be an important factor. This reason is of

the same type as that comprising the present paper,

namely that the shape of the domain can and does exert

a significant influence on the stability characteristics.

We also note that the occurrence of vortex instabili-

ties is an example of an absolute instability, and once

a disturbance is injected into the boundary layer it

evolves into a steady, stationary system of vortices.

The chief characteristic of a disturbance on which the

final vortex system depends is the wavenumber, or the

most rapidly evolving wavenumber of a collection of

wavenumbers. Thus, even fairly small variations in

wavenumber can alter the distance from the leading edge

at which vortices can become visible. The present results

report the smallest distance at which vortices can grow,

having been minimized over all wavenumbers.
7. Conclusions

We have used the theory of matched asymptotic

expansions to determine a two-term approximation to

the basic free convective boundary layer flow which is

induced by an inclined heated surface. This flow has

been analysed for stability with respect to vortex distur-

bances using the parallel flow approximation. The aim

has been to determine what influence a more accurate

representation of the basic flow has on the computed

stability criteria.

Although the critical distance x̂c is strongly depen-

dent on the angle of inclination d, we have found that

it also varies substantially with changes in the wedge

angle a. In this regard we may say that stability criteria

derived using the leading order boundary layer flow are

unreliable in general since the basic flow is clearly inad-

equately represented using one term. However, the pres-

ence of the second term in the basic flow yields stability

criteria which are dependent on the overall shape of the

convective domain. The only exception to this situation

is when the heated surface is close to the vertical, for it is

only in this limit that the second boundary layer terms

are small compared with the leading order terms, and

therefore the leading order criterion is accurate. How-

ever, it is in this regime that wave-like instabilities be-

come more important than vortices.
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