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Abstract We consider unsteady laminar natural con-
vection flow of water subject to density inversion in a
rectangular cavity formed by isothermal vertical walls
with internal heat generation. The top and bottom
horizontal walls are considered to be adiabatic, whereas
the temperature of the left vertical wall is assumed to be
greater than that of the right vertical wall. The equations
are non-dimensionalized and are solved numerically by
an upwind finite difference method together with a
successive over-relaxation (SOR) technique. The effects
of both heat generation and variations in the aspect ratio
on the streamlines, isotherms and the rate of heat
transfer from the walls of the enclosure are presented.
Investigations are performed for water taking Prandtl
numbersto be Pr=11.58 and the Rayleigh number to be
Ra=10".

List of symbols
C, specific heat at constant pressure, J/kg K

g gravitational acceleration, m/s”

Ra Rayleigh number

H enclosure height, m

k effective thermal conductivity of the media,
W/m K

D fluid pressure, Pa

Pr Prandtl number

t time, s

T temperature, °C

u velocity in x-direction, m/s

U, (v/H) reference velocity, m/s

v velocity in y-direction, m/s
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Cartesian coordinates, m

X dimensionless coordinates

B coefficient of thermal expansion of fluid, 1/K

0 dimensionless temperature

A dimensionless heat absorption/generation
parameter

u effective dynamic viscosity, Pa/s

v effective kinematic viscosity, u/p

0 fluid density at reference temperature, 7,

T dimensionless time

V] streamfunction, m?/s

Q dimensionless vorticity

1 Introduction

A theoretical study of transient natural convection flow
in a square cavity at high Rayleigh number was per-
formed by Han [1]. In this analysis the heat transfer rate
was calculated and found to decay in an oscillatory
manner towards the steady state. Further experimental
studies were carried out by Ivey [2]. Nicolette et al. [3]
and Hall et al. [4] conducted numerical and experimental
investigations for transient cooling in an isothermal
square enclosure with one vertical wall cooled and the
other three walls insulated. Good agreement was found
between experimental data and numerical prediction. In
studies of transient flow in an enclosure, interest is
commonly directed toward the following: (a) the evo-
lution of convective flow pattern and temperature field
with time, (b) the time scale required to achieve steady-
state condition, (c) determining whether there is an
oscillatory or a monotonic approach to the steady-state,
(d) the thickness of the boundary layer at the vertical
wall when the flow approaches the steady state and (e)
the characteristic velocity within the boundary layer.

It is well known that for some fluids, such as
water, liquid helium and pseudobinary electronic alloy
HgCdTe, the fluid density is not a monotonic func-
tion of the temperature; rather the density reaches a
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maximum value at a specific temperature and decreases
when deviating from that temperature. As a result, the
Boussinesq approximation, which is based on the linear
behaviour of density-temperature relation, is strictly not
applicable to these fluids. This property, known as
density inversion, can significantly change the flow field
and heat transport in an enclosure. Natural convection
in such a liquid is of practical importance in areas such
as atmospheric and oceanic movement, ice formation
and melting, and crystal growth, etc. Although the
density inversion effect on natural convection has been
studied extensively in the past [5-9], the great majority
of these studies consider steady-state flows in closed
enclosures.

Transient natural convection in water subject to
density inversion was considered by Forbes and Cooper
[10]. In that study, water, confined laterally and under-
neath by rigid insulating walls, was initially set to a
uniform temperature and then the temperature of the
upper surface was suddenly changed. The effect of a
maximum density on transient natural convection in an
enclosed rectangular cavity was also investigated
by Vasseur and Robillard [11] and by Robillard and
Vasseur [12, 13]. They found that the convective heat
transfer, the flow pattern and the temperature profile
can be influenced greatly by the presence of a density
maximum of the convective fluid. Recently, Oostuizen
and Paul [14] performed numerical investigations for a
similar problem. On the other hand, Tong and Koster
[15] investigated numerically the transient natural con-
vection in a water layer subjected to density inversion
by employing the finite element method for Rayleigh
numbers up to 10° for a wide range of aspect ratios from
0.25 to 10.

Watson [5] analysed the effect of density inversion on
the fluid flow and heat transfer in a square vessel for
values of Ra, the Rayleigh number, which were less than
2x10%. The results showed that the maximum density
effect is greatest when AT=8°C. Seki et al. [7] investi-
gated natural convection both numerically and experi-
mentally in rectangular vessels. The cold vertical wall
was maintained at 0°C while the hot wall temperature
varied from 1 to 12°C. Lin and Nansteel [6] investigated
numerically the natural convection in a square enclosure
containing water near its density maximum and found
multi-cellular flow structures for certain ranges of values
of the density distribution parameter, which is inde-
pendent of Ra.

It should be mentioned that there are several models
which describe the density/temperature behaviour of
water around the maximum density region. A parabolic
density relationship is given by Debler [16]:

P = po I—V(T—To)z], (1)

where 7=8.000216x10"° (°C)™%, p, is the maximum
density at 7,=3.98°C (for water). Later, by adding a
cubic term in Eq. 10 this model was expanded to cover
the temperature range from 0 to 30°C (Sun et al. [17]):

p=po[1 =1 (T = TP +9(T = T)*]. (2)

Additionally, Gebhart and Mollendorf [18] proposed the
following density equation:
p(T,5,p) = pols,p) [ = als,p)|T = To(s, 1] (3)
The density variation is fitted in temperature, salin-
ity and pressure ranges up to 20°C, 40% and 1,000
bars absolute, respectively. For pure water under
1 atmosphere at a(0,1)=9.297173x10"°(°C), Tm(0,1)=
4.029325 °C and ¢(0,1)=1.894816. It is to be noted that
the value of T,,(0,1) obtained by the regression not ex-
actly either 3.98 nor 4°C. Though Eq. 1 is claimed to be
more accurate for the temperature range up to §°C [16],
the difference in the calculated values from Eqs. 1 and 3
for the present interested temperature range (0—-12°C) is
found to be negligibly small (<0.005%). Hence the
present work extends the previous studies of natural
convection in water with density maximum inversion, by
considering the density function as given by Eq. 1,
confined in a rectangular cavity by bringing into account
the effect of temperature dependant volumetric heat
generation, ¢ (W/m?), in the flow region, that is given
by Vajravelu and Hadjinicolaou [19] as below,

q" = 0o(T — Tp), (4)

where Q, is the heat generation constant. On taking into
consideration this form of heat-generation Hossain and
Wilson [20] have investigated recently the natural con-
vection flow of a fluid of Pr=0.7 in a fluid-saturated
porous medium enclosed by non-isothermal walls.

The reduced dimensionless equations governing the
flow have been simulated numerically by employing an
upwind finite-difference method, together with the suc-
cessive over-relaxation (SOR) iteration technique. The
results are displayed graphically in terms of streamlines
and isotherms, which show the combined effect of
internal heat generation and density inversion for cavi-
ties with differential heating of the sidewalls. Attention is
also focused on how the sidewall heat-flux varies.

T> T07

2 Formulation of the problem

Consider a rectangular enclosure of height H filled with
water whose temperature range is in the vicinity of the
temperature corresponding to its maximum density, as
shown in Fig. 1. The right and left walls are maintained
at the respective constant hot and cold temperatures Ty
and T, while the two horizontal walls are insulated. In
the flow field we also allow for the effect of temperature-
dependent heat generation. The volumetric rate of heat
generation, ¢ , is given in Eq. 4 where ¢ =0 when 7'<
To. We further assume that we are dealing with a lami-
nar flow of a viscous incompressible fluid having
constant properties. Free convection is considered by
assuming that all thermophysical properties are constant
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Fig. 1 The flow configuration and the coordinate system

except for the buoyancy term, which is modelled using
Eq. 1. Finally, the direction of the gravitational force is
as indicated in Fig. 1. In this figure dotted curves rep-
resent the regular convection flow moving in the clock-
wise direction and the solid curves represent convection
flow moving in the anticlockwise direction; this con-
vention is used throughout the paper.

The governing non-dimensional equations, which
express the conservation of mass, momentum, energy are

V.V =0, (5)
% = ;w’ + vV, (6)
ZD)—ZJ = —%Vp’ + W2 + py, (7)
%: av2T+p%°p(T— Tp), (8)

where, 7 is the time variable, u and v are the respective
velocity components along the x- and y- directions, 7T is
the temperature function, p’ is the pressure, o is the
thermal diffusivity, C, is the specific heat at constant
pressure and v is the kinematic viscosity of the fluid.

Defining the modified pressure, p’=p+ po gy, yields
oy Op

Initially, the fluid is assumed to be motionless and at
uniform temperature T,. The corresponding boundary
initial and conditions are

u=v=0 T=T,

at T = 0 and, for t>0,

u=v=0 on the boundary
OT(x,0) OT(x,H)

ay v =0.

T(07y):TC7 T(L7y):TH7

(10)

Out of many correlations, as mentioned in the
introduction, which have been used to represent the
density of cold water as a function of temperature, we
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consider the parabolic density-temperature relationship
given by Eq. 1 which had been very widely used.
Introducing Eqs. 1 and 9 into 5 and 6 one gets

Du 1 )
= _—_—_Vp+ WV 11
Dt po p Y “ ( )

Dy 1
D= VPt Wt g)(T ~ Th)”.
0

Dr (12)

Now the pressure is eliminated by cross-differentia-
tion between Egs. 9 and 10. On defining the non-
dimensional variables as:

=X =2
X_LR7 Y_LR7

U = Lru V = Lro

y vy

; (13)

where Ly is the reference length, AT = Ty- Tc, the
governing equations in their dimensionless form become

DQ ) Ra 00

E—V Q+2E98_X’ (14)
where

Q=-V (15)

is the dimensionless vorticity and y is the dimensionless
streamfunction which is defined by:

N 4
= V=——" 16

v oy’ 0X (16)
The energy equation may now be written in the form,
DO 1 _,
—=—V0+0 17
Dt Pr v+ 49, (17)
where

AT)*L? L3
Ra:u’ pr:L /l:% (18)

oy o pvC,

are the Rayleigh number, Prandtl number and the heat
absorption parameter, respectively. Finally the bound-
ary conditions are:

— — _TH_TO —
U=0, V=0, 0= AT atX =0
Ic — Ty
u=0, rv=0, 0 AT at
00
U=0, V=0, -5=0 at¥Y=0H. (19)

In Eq. 1 the heat generation term is active only when
0>0.

Once the solutions of Egs. 14, 15, 16 and 17 are
known one may calculate the rate of heat transfer in
terms of the Nusselt number at the left and right walls of
the cavity using the following relation:

Nu=— (%) o (20)
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An upwind finite-difference method together with the
successive over-relaxation (SOR) iteration technique has
been employed to solve Eqgs. 14, 15, 16 and 17 which
govern the flow. Details of this method have already
been discussed in Hossain and Wilson [14] and are
omitted for the sake of brevity. It is clear that the non-
dimensional parameters of interest are the Rayleigh
number, Ra, the Prandtl number, Pr, and the heat
generation number, A. In the present investigation, the
value of the Prandtl number is chosen as 11.58, which
corresponds to cold water, and that of the Rayleigh
number as 10° for values of 2=0.0, 1.0, 2.0, and 3.0.
This value of the Rayleigh number is sufficiently large
that convection is strong, but not sufficiently large that
the flow becomes unsteady. Throughout the present
investigation value of 7 has been set at 0°C.

The results shown and discussed in the following
section have been calculated from zero initial velocities
and mean values of temperature. A grid dependence
study has been carried out for a thermally-driven cavity
flow for the values of parameters Ra= 10°, Pr=11.58,
Ty =28°C, and A=1.0 with meshes of 43x43, 53x53 and
63%63 points and the resulting flow quantities are listed
in Table 1.

Finally, to gain the confidence in the present algo-
rithm, simulation of the natural convection is first per-
formed without effect of internal heat source for values
of Ty=23.98, 8.0 and 12.0 while Ra=10* and compared
the results with that obtained by Tong and Koster [15] in
terms of Y. and Y, (see Table 2) as well as the
streamlines and the isotherms (Fig. 2) and these were
found to be in excellent agreement.

For computational economy, a 43x43 mesh has been
used throughout for the simulations described below.
Finally, simulations were carried out until the steady
state was obtained. For all sets of parameters considered
it was found that the largest time, ¢, required to reach the
steady state solution was roughly ten when using the
time step Ar=10"*.

Table 1 Maximum and minimum values of  and 6 for different
sets of grids

mXn lpmin lpmax gmin 0max

63%x63 —6.724 3.810 —0.4904 0.5527
53x53 —6.797 3.760 —0.4905 0.5495
43%x43 —6.907 3.699 —0.4905 0.5450

Table 2 Maximum and minimum values of ¥ and 0 for different 7},
with 43x43 in square cavity while Ra=10*

Thx Tong and Koster [9] Present

!//min l//max lpmin ‘//max
3.98 0.0 15.318 0.0 15.706
8.00 —3.749 3.451 —3.800 3.461
12.00 —9.527 0.107 —9.740 0.114

(b)

Fig. 2 Evaluation of a convective flow pattern and the b temper-
ature field for different Ty: (i) 3.98, (i) 8.0 and (iii) 12.0 while
Ra=10* and 2=0. (These results are obtained by simulating the
equations simulated by Tong and Koster [9])

3 Results and discussion

Some representative results are shown in Figs. 3,4, 5, 6,
7, 8,9 and 10 for Ra=10> and Pr=11.58. These figures
show the effects of variation in the values of the heat
generation parameter A for three different aspect ratios,
and for different values of Ty for a square cavity.

Figures 3 and 4 summarize how variations in the
value of A affect the flow and temperature fields for a
square cavity with Ty =8. When there is no heat gen-
eration and the sidewall temperatures are equally far
from Tj, which corresponds to the maximum density, it
is natural that the streamlines and isotherms display
certain symmetries about the central vertical line. Each
sidewall generates an identical upward buoyancy force,
and therefore a two-cell flow is obtained with fluid
flowing down the middle of the cavity. Indeed any var-
iation in the values of Ty and T away from cases where
Ty = (Ty+ Tc)/2 will cause the flow to become asym-
metric due to different buoyancy forces on the sidewalls.
Figure 3a(i) shows a situation, which is very close to
symmetry since Ty-Tj is almost the same as To-Tc. As
To=3.98°C is slightly less than the mean temperature of
the sidewalls, which is 4°C, the buoyancy force exerted
at the hot wall is slightly greater than that at the cold
wall. Therefore there is a slightly stronger clockwise
circulation than anticlockwise.

This asymmetric effect may be seen increasingly in
frames (ii-iv) of Fig. 3 where nonzero values of A are
used. The heat generation principle of Vajravelu and
Hadjinicolaou [19] is such that heat is generated only
when T > T, (0 >0), and this serves to destroy the
near-symmetry found in Fig. 3a. There is now a stronger
buoyancy force on the left-hand hot wall because of heat
generation than on the cold wall, and therefore the hot
stream is able to push further across the top of the
square. Although the flow becomes stronger, the thermal
boundary layer becomes thicker, which causes a reduc-



Fig. 3 a Streamlines at steady
state for different A: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D=1:1 while
Ra=10% Pr=11.58 and

Ty =8°C. b Isotherms at steady
state for different 4: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D=1:1 while
Ra=10% Pr=11.58 and

TH =8°C

Fig. 4 Steady state Nusselt
number at a left wall b right
wall for different 1: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D=1:1 while
Ra=10° Pr=11.58 and
Ty=8°C

Fig. 5 Streamlines at steady
state for different 1: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D= 1:2 while
Ra=10° Pr=11.58 and

Ty =8°C. b Isotherms at steady
state for different Z: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D = 1:2 while
Ra=10° Pr=11.58 and

TH =8°C

(b)
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Fig. 6 Steady state Nusselt
number at a left wall and b right
wall for different A: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D =1:2 while
Ra=10% Pr=11.58 and
Ty=8°C

Fig. 7 Streamlines at steady
state for different 1: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D=2:1 while
Ra=10% Pr=11.58 and

Ty =8°C. b Isotherms at steady
state for different 4: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D=2:1 while
Ra=10° Pr=11.58 and

TH =8°C

Fig. 8 Steady state Nusselt
number at a left wall and b right
wall for different A: (i) 0.0, (ii)
1.0, (iii) 2.0 and (iv) 3.0 with
dimension D=2:1 while
Ra=10% Pr=11.58 and
Ty=8°C

(b)
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(@)

(b)

Fig. 9 Streamlines at steady state for different Ty: (i) 4°C, (ii)
7.95°C, (iii) 7.96°C, (iv) 7.97°C and (v) 12.0°C with dimension
D=1:1while Ra=10°, Pr=11.58 and 2=2.0. b Isotherms at steady
state for different Ty: (1) 4.0°C, (ii) 7.95°C, (iii) 7.96°C§ (iv) 7.97°C
and (v) 12.0°C with dimension D=1:1 while Ra=10, Pr=11.58
and 1=2.0

tion in the rate of heat transfer on the left-hand wall.
Conversely, the fact that the hot jet impinges on the
cold, right hand surface means that the rate of heat
transfer on the cold wall increases near the top right
hand corner.

However, when A is as large as 2, the heat generation
effect is sufficiently strong to raise the internal fluid
temperature higher than that of the hot sidewall. This
causes a change in sign of the heat transfer (see Fig. 4a),
and therefore the hot surface is cold relative to the fluid
in the top left hand corner. Thus the possibility of
thermal runaway is avoided by having heat lost through
the upper part of both sidewalls. The presence of hot
fluid close to a relatively cold wall means that buoyancy
forces now act downwards in the top left hand corner of
the cavity, and therefore we see a recirculation region
becoming stronger as A increases.

Figures 5 and 6 display the corresponding situation for
a tall cavity of aspect ratio 2. The same trends occur here,
namely that we have a nearly symmetric flow and isotherm
pattern in the absence of heat generation, and the pro-
gressive protrusion of the hot boundary layer across the
top of the cavity, as / increases, and into the region near
the cold sidewall. The main phenomenological difference

is that the increased strength of the upward boundary
layers compared with those in the square cavity, causes the
cold boundary layer to be ejected from the wall and into
the bulk of the flow. Thus the recirculating region in the
bottom two thirds of the cold half develops a bulge as the
boundary layer separates while still travelling slightly
upwards. The increased height of the cavity yields a
greater vertical distance over which buoyancy forces can
accelerate the fluid, and therefore the magnitude of the
surface rates of heat transfer are considerably greater for
this cavity than for the square cavity.

We now turn to a shallow cavity of aspect ratio 2,
as shown in Figs. 7 and 8. Near-symmetry persists
once more when A=0. However, the greater width
of the cavity means that a much larger expanse of fluid
is at temperatures greater than =0, and much of this
is situated far from the sidewalls. Therefore there is
potential for the fluid temperature to rise considerably
relative to the earlier two cases which correspond to
narrower cavities. Thus we see that heat generation is
sufficient powerful that the top left recirculation grows
so much in strength when A is as large as three, that it
forms a very strong downward boundary layer on the
hot surface. Therefore we have what is an extremely
strange situation, namely that the agency of heat
generation has transformed a flow consisting of
ascending boundary layers up the sidewalls (see
Fig. 7a) into one where there are descending boundary
layers on the sidewalls. The above comments regarding
the increasing potential for large temperatures is borne
out in Fig. 8 where the local Nusselt numbers for

Fig. 10 Steady state Nusselt (a)
number at a left wall and b right 40.0F _________. ‘7"85
wall for different Ty: (i) 4.0°C, | o 7.96
(ii) 7.95°C, (iii) 7.96°C, (iv) 7.97
7.97°C and (v) 12.0°C with = 200p e e
dimension D=1:1 while T
Ra=10° Pr=11.58 and 2=2.0 0.0F e
0.0 0.3 0.5 0.8 1.0




374

A #0 are considerably bigger than those for the
square cavity.

Finally we see in Figs. 9 and 10 the effect of
increasing Ty in a square cavity with all other parame-
ters held fixed, and with A=2. The reference case is
shown in Fig. 9a(i), b(i). An increase in Ty means that
we have an increase in the heat generation effect.
Associated with that is the increasing size of the top left
recirculation region, as discussed earlier, and the corre-
sponding rise in the temperature in the upper half of the
cavity is seen clearly in Fig. 8b. When Ty is relatively
small [see Figs. 3a (iv), b (iv) and 9a (iv), b (iv)], there
remains an ascending boundary layer in the bottom
right hand corner of the cavity, since buoyancy forces
are positive. However, the increasing strength of the left-
hand upward flow progressively kills this ascending
boundary layer as Ty increases. Therefore we see the
bottom right recirculation region decreasing in size as 4
increases. Increased rates of heat transfer accompany
increases in Ty quite naturally.

4 Conclusions

In this paper we have investigated convective flow in a
cavity which is induced by differential heating of the
sidewalls and assisted by internal heating. Attention has
been focused on convection near the density minimum
for water and the Prandtl and Rayleigh numbers have
been fixed at Pr=11.58 and Ra= 10’ . It has been found
that the flow and temperature field depend very strongly
on the internal heat generation parameter, A, and the
difference between 7|, and the mean temperature of the
sidewalls. When the mean temperature is the same as T
then the flow is symmetric, but the symmetry is broken
when either the mean temperature or A varies. It has also
been found that when 4 is sufficiently strong, the circu-
lation of the flow is reversed.
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