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Abstract

We examine the stability of free convective boundary layer flow over a vertical heated flat plate with respect to two-

dimensional wave disturbances. In particular we determine the effect of the overall external geometry on the stability

criterion. The fluid domain is taken to be bounded by two semi-infinite flat plates forming a wedge of angle a. The ver-
tical plate is held at a uniform hot temperature while the other is either insulated or is held at the ambient temperature

of the fluid. The basic flow used in the analysis is a two-term boundary-layer approximation using the method of

matched asymptotic expansions. A modified version of the Keller-box method is used to solve the linearised wave-dis-

turbance equations numerically. The neutral curves have been delineated for different values of wedge angle, a, where
the working fluids are water and air. We find that the critical distance from the leading edge beyond which disturbances

grow is strongly dependent on a, and this suggests that the external geometry of the fluid domain exerts a considerable
influence on stability criteria.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a very large literature associated with the

analysis of thermal boundary layer instabilities. A com-

prehensive review of the wider topic of thermal bound-

ary layer flows was given by Gebhart [1]. For the
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vertical free convection boundary layer the basic flow

arises from the presence of buoyancy forces, but the pri-

mary instability is well-known to be hydrodynamic in

origin. Thus this boundary layer shares some stability

characteristics with the Blasius boundary layer and is

subject to a primary mode of instability in the form of

two-dimensional waves travelling in the streamwise

direction [2–6]. The experimental work undertaken by

Szewczyk [6] also demonstrates that there is a three-

dimensional secondary instability mechanism which oc-

curs further downstream; to date there are no theoretical

studies of this particular aspect.

Most of the earlier theoretical studies of the linear

stability characteristics of boundary layer flows use the

parallel flow approximation. In these analyses the basic
ed.

mailto:d.a.s.rees@bath.ac.uk 


Nomenclature

A0 constant

d natural lengthscale

F, G, H disturbances

F0, H0 leading order boundary layer solutions

F1, H1 first order boundary layer solutions

g gravitational acceleration

k wavenumber

P dynamic pressure

Pr Prandtl number

r nondimensional radial distance from origin

�r radial distance from origin

t nondimensional time
�t time

T temperature of the fluid

u,v nondimensional fluid velocities in the x, y

directions

�u, �v fluid velocities in the �x, �y directions
U natural velocity scale

x,y nondimensional Cartesian coordinates

�x, �y Cartesian coordinates

Greek symbols

a wedge angle

b coefficient of thermal expansion

c scaled wedge angle

DT temperature scale

� small value

g similarity variable

h scaled temperature

j thermal diffusivity

k complex exponential growth rate

m fluid viscosity

q density of fluid

/ angular coordinate

w streamfunction

W streamfunction in outer region

x vorticity

Superscripts and subscripts

B basic flow

c critical

D disturbance

I imaginary part

n normal derivative

R real part

w wall or heated surface

1 ambient conditions
0 derivatives with respect to g
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flow is assumed either to be parallel, or, more generally,

sufficiently slowly varying in the streamwise direction

that such variations may be ignored. However, Haaland

and Sparrow [4,7] allowed for the nonparallelism which

is inherent in free convective flows by incorporating x-

dependent terms in their disturbance equations, which

are the equivalent to the Orr–Somerfeld equations. In

[4], they conclude that such nonparallel effects serve to

increase the neutral distance relative to that obtained

by Nachtsheim [2] who used parallel flow theory.

All of the above authors used the leading order

boundary layer flow as the basic flow whose stability

was considered. Strictly speaking, the leading order

boundary layer flow forms part of an asymptotic theory

which is valid in the asymptotic limit of large distances

from the leading edge. However, it remains fairly accu-

rate at moderate distances from the leading edge. In

the present paper we use a more accurate representation

of the flow in the boundary layer by determining the

influence on the boundary layer of the flow which is in-

duced in the region external to the boundary layer. The

analysis of the interaction of the boundary layer flow

and the external region can only be made by invoking

the boundary layer approximation and subsequent

application of the method of matched asymptotic expan-

sions. Again this means that the distance from the lead-

ing edge (x) should be asymptotically large, but the
result of the ensuing stability analysis yields a finite

value of x. Thus corrections to the leading boundary

layer flow are not necessarily vanishingly small when

using higher order boundary layer theory to describe

the basic flow at the marginally stable value of x.

Such a technique has been used recently by Storeslet-

ten and Rees [8] who considered the onset of instabilities

in the form of streamwise vortices which occur in the

thermal boundary layer induced by a heated inclined

surface embedded in a saturated porous medium. Those

authors discovered that stability criteria are very highly

dependent on the flow field which is external to the

boundary layer.

In the present paper we extend the technique of [4] by

applying the method of analysis of Storesletten and Rees

[8] to the problem of the wave instability of thermal

boundary layer flow of a clear fluid from a vertical sur-

face. As in [8] we assume that the fluid is bounded by

two semi-infinite flat plates. One of these is the vertical

heated surface while the other is either insulated or at

the ambient temperature of the medium. The surfaces

form a wedge of angle a, and the basic flow is obtained
using the method of matched asymptotic expansions.

Although the leading order boundary flow is independ-

ent of a, further terms are functions of a. The full distur-
bance equations are reduced to ordinary differential

form in the usual way and are solved numerically to
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determine how the shape of the overall fluid domain af-

fects the stability criterion.
2. Governing equations

We consider the two-dimensional free convective

boundary layer flow from a vertical semi-infinite heated

plate as shown in Fig. 1. Apart from the fluid Prandtl

number, the only other parameter is the wedge angle,

a. A Cartesian frame of reference is chosen, where the

x-axis is aligned vertically with the heated surface and

the y-axis is perpendicular to this.

The system of equations which describe the free con-

vection from a vertical plate is taken to be the Navier–

Stokes and energy equations. For unsteady two dimen-

sional flow subject to the Boussinesq approximation this

system is written in the dimensional form

�u�x þ �v�y ¼ 0; ð1Þ

�u�t þ �u�u�x þ �v�u�y ¼ � 1
q
P�x þ mð�u�xx þ �u�yyÞ þ gbðT � T1Þ;

ð2Þ

�v�t þ �u�v�x þ �v�v�y ¼ � 1
q
P �y þ mð�v�xx þ �v�yyÞ; ð3Þ

T�t þ �uT �x þ �vT �y ¼ jðT �xx þ T �yyÞ: ð4Þ

Here �u and �v are the velocity components in the �x and
�y-directions, respectively, �t is time, P is the dynamic

pressure, T is the temperature, g is the gravitational

acceleration in the negative �x-direction, q is the density
Fig. 1. Schematic diagram of the flow configuration showing

the coordinate directions, the orientation of surfaces, and

displaying two different wedge-angles, a.
of the fluid, m is the kinematic viscosity, j is the diffusiv-
ity and b is the coefficient of thermal expansion.
The boundary conditions for Eqs. (1)–(4) for the case

of an isothermal plate are:

�u ¼ �v ¼ 0; T ¼ T w at �y ¼ 0; �x P 0; ð5Þ

�u ¼ �v ¼ 0; and either T n ¼ 0 or

T ¼ T1 on the second surface; ð6Þ

and

T ! T1 as �r ¼ ð�x2 þ �y2Þ1=2 ! 1; ð7Þ

where Tw is the temperature of the plate and T1 is the

ambient temperature of the fluid with Tw > T1, and n

as a subscript denotes the normal derivative. Eqs. (1)–

(7) may be nondimensionalised using the following

transformations:

ð�x; �yÞ ¼ dðx; yÞ; �t ¼ ðd=UÞt; ð�u;�vÞ ¼ Uðu; vÞ;
T � T1 ¼ ðT w � T1Þh; ð8Þ

where the natural length and velocity scales, d and U, are

given by

d ¼ m2

gbDT

� �1=3
; U ¼ ðgbmDT Þ1=3: ð9Þ

A further simplication is afforded by the introduction of

a streamfunction, w, according to u = wy and v = �wx.

Eqs. (1)–(4) now become

r4w ¼ r2wt þ wyr2wx � wxr2wy � hy ; ð10Þ

1

Pr
r2h ¼ ht þ wyhx � wxhy ; ð11Þ

where Pr = m/j is the Prandtl number. The correspond-
ing boundary conditions may be written as follows

wy ¼ w ¼ 0; h ¼ 1 at y ¼ 0; x P 0 ½i:e: / ¼ 0�;
ð12Þ

w ¼ wn ¼ 0; and either hn ¼ 0 or

h ¼ 0 on / ¼ a; ð13Þ

and

h ! 0 as r ¼ ðx2 þ y2Þ1=2 ! 1: ð14Þ
3. Basic flow analysis

In this section we determine the two-term solution of

the undisturbed basic boundary layer flow using the

method of matched asymptotic expansions. The basic

flow, which we denote by the subscript B, is steady

and two-dimensional and it satisfies the equations
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r2wB ¼ xB; ð15Þ

r2xB ¼ owB
oy

oxB

ox
� owB

ox
oxB

oy
� ohB

oy
; ð16Þ

1

Pr
r2hB ¼ owB

oy
ohB
ox

� owB
ox

ohB
oy

; ð17Þ

where wB is the basic flow streamfunction and xB de-
notes the basic vorticity, as defined by (15). Eqs. (15)–

(17) are to be solved subject to the boundary layer

approximation. Therefore we introduce the following

expansions for the streamfunction and temperature in

the boundary layer region,

wB ¼ x3=4F 0ðgÞ þ F 1ðgÞ þ � � � ; ð18Þ

hB ¼ H 0ðgÞ þ x�3=4H 1ðgÞ þ � � � ; ð19Þ

where the similarity variable g is given by

g ¼ y=x1=4; ð20Þ

and we apply the boundary layer approximation where-

in we assume that x  y. The equations for the zeroth

order terms, F0 and H0, correspond to the classical

problem:

F 000
0 þ 3

4
F 0F 00

0 �
1

2
F 0
0F

0
0 þ H 0 ¼ 0; ð21Þ

H 00
0 þ

3

4
PrF 0H 0

0 ¼ 0; ð22Þ

subject to

F 0ð0Þ ¼ F 0
0ð0Þ ¼ 0; H 0ð0Þ ¼ 1;

F 0
0ð1Þ ¼ H 0ð1Þ ¼ 0: ð23Þ

Given that solutions to Eq. (22) decay exponentially to

zero, the region outside the boundary layer is isothermal

and we may ignore the temperature field in this potential

flow region. If we denote by W the outer-region stream-

function, then we may expand it according to

WB ¼ r3=4W0ð/Þ þ W1ð/Þ þ � � � ; ð24Þ

where the polar coordinates, r and /, are defined as

x ¼ r cos/; y ¼ r sin/: ð25Þ

If F0(1) is denoted by A0 then, as shown by Yang and

Jerger [9], W0 satisfies

r2W0 ¼ 0; ð26Þ

subject to

W0ð/ ¼ 0Þ ¼ A0; W0ð/ ¼ aÞ ¼ 0; ð27Þ

where the inhomogeneous boundary condition repre-

sents an asymptotic matching of v with the boundary

layer solution. The solution of Eq. (26) can be written as
W0 ¼ �A0
sin 3

4
ð/ � aÞ
sin 3

4
a

: ð28Þ

We note, for later reference, that this solution is singular

when a = 4p/3. On expanding Eq. (28) around / = 0 and
rewriting the result in terms of the similarity variable, g,
it follows that the behaviour of W0 in the matching

region is given by

W0 � A0 1� 3
4

gx�3=4 cot
3

4
a þ � � �

� �
: ð29Þ

The second term in (29) provides the matching condition

for the second streamfunction term in the boundary

layer expansion, (18).

As shown by Yang and Jerger [9], the equations for

F1 and H1, the first order boundary layer terms, are

F 000
1 þ 3

4
F 0F 00

1 �
1

4
F 0
0F

0
1 þ H 1 ¼ 0; ð30Þ

H 00
1 þ

3

4
PrðF 0H 1Þ0 ¼ 0; ð31Þ

subject to

F 1ð0Þ ¼ F 0
1ð0Þ ¼ 0; H 1ð0Þ ¼ 0;

F 0
1ð1Þ ¼ � 3

4
A0 cot

3

4
a; H 1ð1Þ ¼ 0; ð32Þ

where the inhomogeneous boundary condition repre-

sents a matching with the O(x�3/4) term in Eq. (29).

Numerical integration of Eqs. (30)–(32) at Pr = 6.7 re-

sults in the values

F 00
1ð0Þ ¼ �0:13908; H 0

1ð0Þ ¼ 0; A1 ¼ �2:0622; ð33Þ

where

F 1ðgÞ � � 3
4
cot
3

4
a½�gA0 þ A1� as g ! 1: ð34Þ

The corresponding values for air (Pr = 0.7) are

F 00
1ð0Þ ¼ �0:39967; H 0

1ð0Þ ¼ 0; A1 ¼ �3:37412:
ð35Þ

We note that

H 1 ¼ 0

may be derived analytically from Eq. (31), and therefore

there is no correction to the temperature field at this

order.
4. Linear stability analysis

In this section we develop the linear stability equa-

tions for the basic flow given above by substituting

wðx; y; tÞ ¼ wBðx; yÞ þ �wDðx; y; tÞ; ð36Þ

hðx; y; tÞ ¼ hBðx; yÞ þ �hDðx; y; tÞ; ð37Þ
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into Eqs. (10) and (11). It is important to note that the

asymptotic theory of the last section is being used to ob-

tain what is hoped to be a closer approximation to the

basic flow that is provided by the leading order bound-

ary layer solution. On taking j�j � 1 and linearising we

obtain the following system of linearised disturbance

equations in streamfunction/vorticity form:

r2wD ¼ xD; ð38Þ

r2xD ¼ oxD

ot
þ owB

oy
oxD

ox
þ owD

oy
oxB

ox
� owB

ox
oxD

oy

� owD
ox

oxB

oy
� ohD

oy
; ð39Þ

1

Pr
r2hD ¼ ohD

ot
þ owB

oy
ohD
ox

þ owD
oy

ohB
ox

� owB
ox

ohD
oy

� owD
ox

ohB
oy

; ð40Þ

where xB = wByy represents the vorticity corresponding

to the basic flow. The appropriate boundary conditions

to solve the disturbance equations are

wDy ¼ wD ¼ 0; hD ¼ 0 at y ¼ 0; x P 0; ð41Þ

wDy ! 0; xD ! 0; h ! 0 as y ! 1: ð42Þ

We now impose the parallel flow approximation where

we assume that the disturbances have solutions of the

form,

wD

xD

hD

0
BB@

1
CCA ¼

F ðyÞ

GðyÞ

HðyÞ

0
BB@

1
CCAeðikxþktÞ; ð43Þ

where the amplitudes F(y), G(y), and H(y) are the com-

plex functions of y. Here k is a real positive quantity and

represents the wave number of the disturbance, and

k = kR + ikI is the complex temporal growth rate. Neu-
tral stability corresponds to kR = 0 and the computed
value of kI is related to the wavespeed of the disturbance
which is �kI/k. The neutral stability condition kR = 0
leads to a relation between k and x in the form of a curve

in the (k,x) plane and which is referred to as the neutral

curve.

Eq. (43) may now be substituted into Eqs. (38)–(40),

and on changing the variable from y to g, the distur-
bance equations take the forms

F 00 � k2x1=2F ¼ x1=2G; ð44Þ

G00 þ owB
ox

x1=4G0 � k2 þ ikI þ ik
owB
oy

	 

x1=2G

¼ oxB

ox
x1=4F 0 � ik oxB

oy
x1=2F � x1=4H 0; ð45Þ
H 00 þ Pr
owB
ox

x1=4H 0

� k2 þ iPrkI þ ik Pr
owB
oy

	 

x1=2H

¼ Pr
ohB
ox

x1=4F 0 � ikx1=2 ohB
oy

F
	 


; ð46Þ

where primes represent derivatives with respect to g. The
boundary conditions to be satisfied by the disturbances

are that

F 0 ¼ F ¼ H ¼ 0 at g ¼ 0 and

F ;G;H ! 0 as g ! 1: ð47Þ

As this homogeneous system forms an eigenvalue prob-

lem for x and kI in terms of the wavenumber, k, an addi-
tional (complex) normalisation condition at g = 0 is
required to solve the disturbance equations and it is

taken to be

H 0 ¼ 1: ð48Þ

This extra boundary condition means that we may solve

Eqs. (44)–(48) and determine the eigenvalues, x and kI.
A suitably modified version of the Keller-box method

is used to solve this ordinary differential eigensystem

and it is discussed in the next section.
5. Numerical method

In this section the numerical solutions of the basic

flow Eqs. (21)–(23), and (30)–(32) and the disturbance

Eqs. (44)–(48) are discussed. The equations for the basic

flow were solved using a standard shooting method

which employs Newton–Raphson iteration techniques.

In this method the ordinary differential Eqs. (21), (22),

(30) and (31) are written as a first order system of

ordinary differential equations and a fourth order

Runge–Kutta method was employed to solve them. These

solutions are accurate to at least six significant figures.

When solving the disturbance equations it was ob-

served that the vorticity, G, and temperature function,

H, both decay to zero very quickly as g increases, but
that the streamfunction, F, does not. Therefore we intro-

duced the alternative boundary condition

F 0 þ kx1=4F ! 0 as g ! 1; ð49Þ

which allows the streamfunction to exhibit the appropri-

ate decay rate well before the streamfunction attains

small values. Thus we were able to solve the problem

on a smaller computational domain than would other-

wise be necessary. All these disturbance equations are

in the complex form, and after resolution into their

real and imaginary parts we have six second order ordi-

nary linear differential equations together with two

eigenvalues.
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Due to the stiffness of the eigensystem (especially for

large values of kx1/4) the Runge–Kutta method was

abandoned in favour of a direct method. Thus a modi-

fied version of the Keller-box code was employed to

solve the disturbance equations. For this type of method

it is not necessary always to insist that the governing

equations are reduced to first order form, and the pre-

sent code solves the six second order differential equa-

tions using straightforward second order accurate

central difference approximations. When the difference

equations are suitably arranged the presence of two

eigenvalues, x and kI causes the Jacobian matrix of New-
ton–Raphson iteration scheme, which is a central part of

the Keller-box methodology, to have two extra rows and

columns over and above its usual block tridiagonal

structure. Therefore the block-Thomas algorithm had

to be modified to account for this structural change; very

similar schemes were used by Lewis et al. [10] and Shu

and Wilkes [11].
Fig. 3. Neutral curves for water (Pr = 6.7), corresponding to

c = 8, 9, 12, 14, 14.4, 14.6, 14.8, 15, 15.2, 15.4, 15.6, 15.8, where
c = 12a/p. This corresponds to a varying between 2p/3 and
almost 4p/3.
6. Numerical results

We present first the stability calculations for water

for which we take Pr = 6.7. The detailed stability results

in the form of x–k neutral curves are shown in Figs. 2

and 3 where the different curves correspond to different

values of the wedge angle. Here we see that there are

very substantial variations in the shapes of the curves

and that the minimum value of x also varies considera-

bly as a varies. In these figures we use a scaled value of a
defined according to
Fig. 2. Neutral curves for water (Pr = 6.7), corresponding to

c = 0.2, 0.3, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8 where c = 12a/p. This
corresponds to a varying between just above 0 and 2

3
p.
c ¼ 12a
p

: ð50Þ

Fig. 2 shows curves corresponding to the range 0 < c < 8
(i.e. 0 < a < 2

3
p), or, equivalently, 16 < c < 24 (i.e.

4
3
p < a < 2p). Those corresponding to the intermediate
range, 8 < c < 16 (i.e. 2

3
p < a < 4

3
p) are displayed in

Fig. 3. We note that the curve which corresponds to tak-

ing only the leading order boundary layer flow as the

basic flow is obtained when cot3a/4 = 0, i.e. when
a = 2p/3 and 2p (or c = 8,24). Conversely, the asymp-
totic analysis for the basic flow breaks down when

cot3a/4 is infinite, that is, for a ¼ 0; 4
3
p or c = 0,16.

When the wedge angle is a ¼ 2
3
p (c = 8) the neutral

stability curve is unimodal and displays the usual char-

acteristic for boundary layer flows of having a maximum

wavenumber for which instability may be expected. As

the wedge angle decreases from this value towards zero

the curve rises and the critical distance increases. The

reason for this may be understood in terms of the effect

of the second term in the basic vertical velocity which is

negative, and increasingly so as a decreases. If, crudely
speaking, we were to assume that instability takes place

when the maximum streamwise velocity within the

boundary layer attains a certain threshold value, then

the decrease in this velocity due to the second term in

the basic flow boundary layer analysis means that a

greater distance from the leading edge is required before

instability can take place.

On the other hand, when a increases from 2
3
p, the sec-

ond term in the boundary layer flow increases the

upwards velocity making the flow more susceptible to



Fig. 5. Neutral curves for air (Pr = 0.7), corresponding to

c = 0.2, 0.3, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8 where c = 12a/p. This
corresponds to a varying between just above 0 and 2

3
p.

M.C. Paul et al. / International Journal of Heat and Mass Transfer 48 (2005) 809–817 815
instability. This is seen quite clearly in Fig. 3, where the

neutral curve is also found to attain a more complicated

bimodal form. In this case, as a ! 4
3
p, the singular case

mentioned above for which the asymptotic expansion

breaks down, the critical value of x approaches zero.

The results from Figs. 2 and 3 are summarised in Fig.

4 in which is displayed the variation with c of both the
local extrema of the neutral curves. We see that there

is very little variation of the critical value of x over most

of this range, thereby lending confidence to analyses

based only on the leading order boundary layer flow.

However, anomalous results occur in the region fairly

close to a ¼ 4
3
p due to the incipient breakdown of the

asymptotic analysis. It highly likely that a much more

accurate representation of the basic flow will be required

for such cases, and this may very well-need to involve

a full solution of the elliptic governing equations.

Equivalent results for the case of air, for which

Pr = 0.7, are shown in Figs. 5–7. Again the neutral curve

corresponding to the leading order boundary layer flow

is given by the case c = 8 in Fig. 5, and the curve is uni-
modal. As c decreases towards zero the neutral values of
x increase in general, but the detailed evolution is com-

plicated by the fact that the neutral curve becomes bi-

modal. When c is close to 8 the left hand minimum
corresponds to the smaller minimum, whereas the right

hand one assumes this dominance as c decreases.
Fig. 6 shows that the neutral values of x decrease to-

wards zero as c increases towards 16; in this regard the
behaviour is identical to that shown in Fig. 3. However,

the curves assume increasingly bizarre shapes as c
increases.
Fig. 4. Evolution of the critical points on the neutral curves

against c = 12a/p for water (Pr = 6.7). M denotes a local

maximum while m denotes a local minimum.

Fig. 6. Neutral curves for air (Pr = 0.7), corresponding to

c = 8, 9, 12, 14, 14.2, 14.4, 14.6, 14.8, 15, 15.2, 15.4, 15.6, 15.8,
where c = 12a/p. This corresponds to a varying between 2p/3
and almost 4p/3.
The overall variation in the extrema of the neutral

curves with a is given in Fig. 7. In the ranges 1 < c < 5
and 17 < c < 21 (i.e. 1

12
< a=p < 5

12
and 17

12
< a=p < 21

12
)

there is very little variation in the critical value of x.

But outside of these ranges there is a very strong varia-

tion suggesting that the thermal boundary layer flow of

air is particularly sensitive to the external geometry.



Fig. 7. Evolution of the critical points on the neutral curves

against c = 12a/p for air (Pr = 0.7).M denotes a local maximum

while m denotes a local minimum.
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7. Discussion and conclusions

Over much of the range of wedge angles the criterion

for the onset of wave convection in water does not vary

greatly from that found when using only the leading

order basic flow. However, when the wedge angle is close

to 4p/3 (or to 0) the results become unreliable due to
the fact that the second term in the asymptotic expan-

sion becomes unbounded and the asymptotic expansion

ceases to be uniformly valid. For wedge angles less than

this critical value, the flow is increased in strength rela-

tive to the leading order flow and instability is enhanced,

whereas the opposite effect is found at wedge angles

slightly greater than 4p/3. For air the neutral distance
is much more sensitive to changes in a than for water.
The equivalent analysis for vortex instabilities in con-

vective boundary layers in porous media was under-

taken by Storesletten and Rees [8] who also found a

very substantial variation in the critical distance with

wedge angle. In that context higher order terms in the

basic flow become infinite only as a ! 0+. However,

the conclusion there is that the variation in the value

of xc with a is too great for the theory to be deemed reli-
able. This is due to the fact that the basic flow is not suf-

ficiently well-represented by the three-term asymptotic

expansion used in [8].

More generally it is very likely to be true that the

position of onset of convection depends on the shape

of the bounding region of the fluid. To support this con-

tention we cite the experimental studies of Yan and Tao

[12] and Yan and Zhang [13]. These authors consider an

air-filled tall rectangular domain, and they obtain the
respective critical Grashof numbers, 65 and 40, which

are equivalent to xc = 65 and 34 here. These values are

smaller than most of those depicted in Fig. 7. One pos-

sible explanation of this might lie with a comment made

by Brooker et al. [14] that self-sustaining oscillations

have been observed in differentially heated cavities. In

such situations a disturbance placed near the base of

the hot vertical surface decays at first, but then begins

to grow once it is past the neutral location. Thereafter

it decays after turning the corner at the top of the cavity,

continues to decay on beginning the descent of the cold

vertical surface, but then grows as it did on ascending

the hot surface. Finally it decays once more as it passes

along the lower surface and finally enters the hot bound-

ary layer again in order to repeat the cycle. Therefore at

critical conditions a neutrally stable feedback loop is

established. This is, of course, an entirely different mech-

anism by which the shape of the domain affects the sta-

bility criterion, but it nevertheless shows that

consideration must be given to conditions which are

external to the boundary layer.

For the present flow, then, we would recommend (i)

that the stability characteristics should be studied using

a more accurate basic flow and (ii) that the role played

by the overall domain chosen to represent the fluid

dynamical situation be emphasised. Both of these rec-

ommendations involve the computation of a steady

elliptic system of partial differential equations for the ba-

sic flow which is of equal difficulty to a detailed unsteady

simulation of the full equations, and therefore a direct

fully numerical approach should be adopted. Such work

has been undertaken by the present authors for a ther-

mal boundary layer in a completely unbounded fluid,

see [15,16].
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