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The onset of convection in a two-dimensional porous cavity is investigated where the cavity is
subject to asymmetric boundary conditions at the lateral walls: one vertical wall is thermally
conducting and impermeable, while the other is thermally insulating and open. At the open boundary
the saturating fluid flows freely in and out from a hydrostatic reservoir in contact with the porous
medium. The top and bottom of the box are impermeable and perfectly conducting. It is shown that
the mode for onset of convection is oscillatory in time. This corresponds to a disturbance traveling
as a wave through the box from the impermeable wall to the open wall. The preferred eigensolution,
its oscillation frequency, and critical Rayleigh number are calculated numerically for different
aspect ratios of the porous box, and these values are confirmed by means of suitable asymptotic
analyses. €004 American Institute of PhysidDOI: 10.1063/1.1781160

I. INTRODUCTION A first analysis of the linear theory for a finite porous
box was performed by Woodingg,who considered the
The classical problem of the onset of convection in agsymptotic limit of tall porous cylinders. His results were
porous layer heated from below is nonoscillatbfyThe complemented by exact results for the rectangular box de-
Horton-Rogers-Lapwood problem assumes impermeablg,ed by Beck? and the circular cylinder derived by Zebib.
and perfectly conducting top and bottom planes. These corggain no oscillations were found, but this was physically
ditions were generalized by Ni€ldo include the cases of | eas0nable because of the traditional boundary conditions ap-
constant pressure and constant heat flux. Despite these Qljoq ot the lateral walls. These wall conditions are identical
tered conditions the single-diffusive onset of convection is, yhose which are valid at the internal cell walls, and corre-
governed by strictly nonoscillatory modes of instability. spond to the wall being impermeable and thermally insulat-

Strau$ investigated the stability of finite-amplitude con- ing. The above-mentioned studies of finite porous boxes can,

vection in the Horton-Rogers—Lapwood problem. The pres, general, be constructed from superposing modes of con-
ferred modes of secondary instability in a layer of infinite

. . . vection for an porous layer of infinite extent, once we specify
horizontal extent are also nonoscillatory. This means that th . oo
) o . . . e appropriate wave numbers which fit in with the geometry.
first oscillations may appear at third level in a hierarchy of

instabilities, which will require highly supercritical Rayleigh . The physics changes somgvyhat when the condlt-u.)ns ap-
numbers. plied at the lateral wall of a finite box are nontraditional.

In a finite box, oscillatory instability may set in some- Nontraditional wall conditions are those which do not corre-

what earlier as a secondary instabifity) a two-dimensional spond to tlhe cond_ltlo_ns athmternal cellkwallls. Yet Ene would
square box this oscillatory instability takes place at a Ray£XP€ct only quantitative changes to take place when nontra-

leigh number of order 10 times that of the onset of convecditional lateral conditions are introduced. However, the
tion. Accurate computations of the triggering of oscillatory Présent paper shows that it is possible to introduce oscilla-
convection were performed by Aidun and Steeand tONS at the onset of convection by means of asymmetric
Kimura, Schubert, and StralisKimura, Schubert, and nontraditional lateral conditions. o
Strauf investigated three-dimensional oscillatory convection ~ The first exact analysis of the onset of convection in a
in a cube. They found oscillations as a secondary instabilitf?0x With nontraditional lateral conditions was performed by
occurring at a Rayleigh number somewhat higher than that dNilsen and Storeslettelf. They assumed impermeable and
two-dimensional flow. In these papers, the lateral walls aréonducting lateral walls, and their analysis was confirmed by
taken as thermally insulating. Rees and Lag%?. Since both lateral walls were identical, the
Oscillatory convection in the presence of a single-onset mode could be given as a superposition of one sym-
diffusive component is acknowledged as a nonlinear phemetric mode and one antisymmetric mode with respect to the
nomenon, appearing at Rayleigh numbers one order of magniddle of the box. These symmetries do not allow traveling
nitude above the threshold for onset. One would not expeavaves to occur.
oscillations to take place in a linearized Horton—Rogers— The condition of an impermeable and conducting wall
Lapwood problem for a finite box. can be called the first nontraditional wall condition. There is
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a second nontraditional wall condition: the case where the 4T ,

wall is hydrostatic(free horizontal throughflow of the satu- o +yu- VT=VT. (4)
rating fluid) and thermally insulating. By considering the first

nontraditional condition valid at the left-hand wall in combi- The Rayleigh number for a porous medium is given by
nation with the second nontraditional condition valid at the gBKATH

right-hand wall, we obtain a configuration without left/right Ra=—"——.
symmetry. The left-hand boundary allows heat transfer with-
out mass transfer. The right-hand boundary allows masge have introduced as the gravitational acceleration agd
transfer without heat transfer. This type of physical antisym-as the expansion coefficient. In EG&)—(4), v is the velocity,
metry implies no mathematical symmetry, and it induces ayhile p is the pressure, anis the vertical unit vector. The
wave traveling from left to right at the onset of convection, hasic dimensionless temperature gradient is -1 and is due to
as will be shown by the analysis below. These nontraditionapure conduction. We perturb the basic temperature field and

boundary conditions do not allow the mathematical solutionntroduce the temperature perturbatiéix,y,t) as follows:
to be extended outside the porous box. This is in contrast to
T=1-y+0(xy.t). (6)

the traditional conditions corresponding to cell walls, where
a symmetric extension outside a boundary describes a pos- e introduce the stream functios and eliminate the

©)

VoY,

sible neighboring cell in a larger cavity. pressure. The governing equations are
The present physical problem gives an astonishingly
simple mechanism of generating oscillations in a porous me- V2 - Ra_a =0 7)

dium. We believe that it is the simplest possibility available
for oscillatory convection in a porous medium. It is a simpler
mechanism for oscillations than the standard one, which was V29 + ap_ a6

first identified by Horne and O’Sullivanh. ax ot ®

The velocity components aKk@,v)=(=dy/ dy, disl x).
As boundary conditions in the vertical direction we take
Il. BASIC EQUATIONS the standard conditions of impermeable and conducting top

We consider a two-dimensional porous medium with aand bottom planes:

homogeneous and isotropic permeabilty Cartesian coor- Yy=60=0 at y=0, y=1. (9)
dinatesx,y are introduced, where theaxis points vertically

upwards. The porous medium occupies a rectangular bo;hese are the conditions that are applied in the classigal
with lengthL in the x direction and heighHl in they direc-  iorton-Rogers-Lapwood problem. The lateral wall condi-
tion. tions are nontraditional, however. At the left-hand end we

The temperature field i&(x,y,t), wheret denotes time. 2SSume an impermeable and conducting wall:
There is an undisturbed state of pure conduction where the 4=¢=0 at x=0. (10)
lower planey=0 is kept at a constant temperaturg+AT . ) ]
and the upper plang=H is kept at a constant temperature Physically this means that the wall is a much better heat
T,. We will perturb this state of pure conduction, but the conductor than the saturated porous medium. Still the heat
temperatures at the top and bottom surfaces are kept cofonductivity of the wall must be considerably smaller than
stant. This means that the perturbation temperaixgy,t) ~ that of the top and bottom planes.
is assumed to vanish at the top and bottom of the porous box. Ve assume the right-hand end of the porous rectangle to
The top and bottom surfaces are assumed to be impermeabl%e. thermally insulating and open:

We choose the following units for dimensionless time, oy a0
velocity, and pressure: x = x =0 at x=a. (11

2
(Cop)mHTken, /H. - povien/K, @ an open boundary means that the porous medium is in con-

respectively, where, is the specific heat at constant pres- tac_t with a neighboring hyd_rostatic reservoir where the satu-
sure,k is the heat conductivitys is the thermal diffusivityy ~ rating fluid can flow freely in and out.

is the kinematic viscosity of the saturating fluid, apgis a Our aim in introducing the thermal boundary condition
reference fluid density. The subscriptrepresents the mix- N (11) is primarily mathematical, for the nontraditional
ture of solid and fluid, and the subscripwill represent the ~boundary conditions given i(L0) give rise to degeneracy at
saturating fluid. onset when they apply to both sidewalls; the proof of degen-

Our dimensionless Darcy-Boussinesq equations for cor€racy given by Rees and Tyvafidelies on the boundary

vection in a homogeneous and isotropic porous medium aréonditions fory and ¢ being identical. Therefore we have

given by used identical boundary conditions fgrand 6 in (11) for the
_ right-hand sidewall. Intuitively it seems contradictory that a
v+ Vp-Rar=0, (20 boundary can be open to mass flux and closed to heat flux.
So let us demonstrate how these conditigiig arise as limit
V.v=0, (3) cases of the general conditions valid at the boundary between
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two porous media, according to linear theory. We conside(11) of an open boundary where the porous medium leads
one porous mediungA) for x<L and another porous me- into a hydrostatic reservoir for its saturating fluid.»&tL the
dium (B) for x>L, and return to the dimensional variables fluid mass will flow freely in and out from the porous me-
for a moment. These porous media have permeabiliies dium, while heat transfer through this boundary will be ef-
andKg and thermal conductivitiek,, » andk,g, respectively. fectively impeded.

The dynamic condition combined with Darcy’s law gives Another possibility of satisfying conditiorill) is to
1opn 1 s have a porous medium made of nonmetallic s¢didj., poly-
e P = I styreng for x>L. It will have much smaller conductivity

Ka 9 Kg ox than the metal medium. In order to have much greater per-

We take the limitk ,/Kg — 0 which is the correct description mMeability than the metal medium, the grain size of the non-
if the porous medium ends atL and there is pure fluid for Metallic solid must be much more coarsely grained than the

x>L. The result is metal medium. _ - . _
From now on we again work with dimensionless vari-

0= 5_¢:O x=L ables. Equationg7) and (8) may be simplified by setting

X both ¢ and # to be proportional to siary, since we may

introduce such a Fourier decomposition in the vertical direc-

valid in medium(A), which confirms conditior{11). i dt o), | der to allow th ibility of
The dimensional heat equation for two-dimensional con-|1|0n’f %r.]f 0 I?Xp wt ' Intorl etr l?'l'? 01‘% ef possi ”ybot'tat
vection in a porous medium % opf bifurcation at neutral stability. Therefore we substitute

(pc)md0 AT 90 a0 y=f(Xsin(my)e®, 6=g(x)sin(my)e*", (12
Epmzr = i = 2

(pcy)f at H " uax " Uay = KmV 0. and sof andg satisfy the equations,

The second term vanishes at the boundery. becausey f'-7*f=Rg, ¢' - n’g=-1f"+iwg, (13

=0 there. We consider linearized theory, which implies thatynq are subject to
the third and fourth terms are neglected everywhere in the
fluid. The remaining equation is f(0)=9g(0)=0, f'(a)=g'(a) =0. (14
(pCo)m 96 5 From a historical_ pqint of yiew it is worth noting at this
_p_(pc )f Tt = KmVO stage that the substitutiofi2) is somewhat unusual in the
P context of Bénard convection since the Fourier decomposi-
valid in both media(A) and(B), at their common interface tion takes place in the vertical direction, rather than in the
x=L. However, this is the equation of thermal conduction inhorizontal direction. Similar substitutions have been used in
a solid medium, without influence of the fluid flow. Conser- the papers by Nilsen and StoreslettéRees and Lag¥ and
vation of energy is then expressed directly by Fourier law aRees and Tyvantf, but these papers share with the present

a condition of continuity in conductive heat flux, paper the fact that the boundary conditions on each vertical
surface are identical for botly and 6. The ramification of
TN d0g . ) . :
kmAE = kmBE, x=L. this is that the horizontal component of the eigenfunctions at

onset are not pure sines or cosines, but are more complicated

This condition is independent of time since the interface doe&Inctions.

not have any heat capacity. Here we see how the thermal

condition (11) arises_ in the limit of great conductivity_con— IIl. NUMERICAL SOLUTIONS

trast between mediunA) and medium(B). The required

conductivity limit k,,a> kg is very well approximated if the Equations(13) subject to(14) were solved using the

solid is a metal and the saturating fluid is nonmetallic. Fromclassical fourth-order Runge—Kutta scheme with the shooting

the Science Data Bodkwe find typical conductivities of method. The equations were decomposed into real and

metals ranging from lead at 35 Sl uni@/ m™*K™) to cop-  imaginary parts withf =f,+if; andg=g, +ig;, and two extra

per at 385 Sl units. This is indeed much greater than thdrst-order equations defined as

typical values of thermal conductivities for nonmetallic lig- R=0 =0

. ) . . =0, o' =0. (15)

uids, ranging from turpentine at 0.136 Sl units to water at

0.591 Sl units. Most gases have still smaller conductivitiesThe boundary conditions given if14) were supplemented

as the value for air at standard atmospheric pressure aray the normalization conditions

temperature is only 0.024 Sl units. FRK L the effective Ay — Ay —

conductivity of this mixture of metal solid and nonmetallic 9,(0=1, g{(0)=0. (16)

fluid will be of the same order of magnitude as the metalThus the full system is now of tenth order with a total of 10

solid, provided the porosity of the porous medium is smallboundary conditions.

enough for Darcy’s law to be valigheglecting the Brinkman The only free parameter is the aspect ratio of the cavity

correction terms and thereby excluding high-porosity media and this was varied between 0.02 and 20. Figures 1 and 2
Now we have shown how a confined porous mediumshow how the critical Rayleigh number and the angular fre-

made of metal with moderate porosity and saturated with @uency vary with the cavity aspect ratio. The critical Ray-

nonmetallic fluid will approximate very well the condition leigh number decreases towards?4as a increases, but in-
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! FIG. 2. Critical angular frequency as a function of aspect rat@ Also
FIG. 1. Critical Rayleigh number as a function of aspect ratialso shown shown as dashed lines are the 1-term asymptotic curves for both small and
as dashed curves are the smetisymptotic curve and the 1-term, 2-term, 'arge values of.
and 3-term largex asymptotic curveglabeled 1, 2, and 3, respectively

zeros which interleave—these correspond to the locations of
creases substantially as— 0. The value of 42 corresponds cell walls at different times, namely, whest is a multiple of

to the classical Lapwood—Horton—Rogers stability criterion7 and when it is7/2 greater than a multiple of, respec-

in an unbounded horizontal layer, and therefore the verticalively. Thus the cells move in the positivedirection.
boundaries have a diminishing effect as the cavity increases As aincreases it is evident that two spatial scales domi-
in horizontal extent. A detailed analysis of the valuesRgf  nate. One is roughly of unit length while the other is com-
some of which are given in Table |, indicates that they satisfyparable with the length of the cavity. This observation forms
R.=4m*+0(a? when a>1 and R,.=0(a™® when a<1; the basis for the larga-asymptotic analysis found in the
both of these trends are confirmed and quantified in the folfollowing section. However, we note that the solution given
lowing section. As in Ref. 14 the variation & is smooth in Fig. 3(d) is almost identical to that given by Rees and
and monotonic, unlike the situation where the sidewalls ard@yvand where the sidewalls are both conducting and imper-
impermeable and insulatgdee Refs. 10 and 1ivhereR.  meable. In the present case there is a slight adjustment in the
displays an infinite series of minima ®=4m? between solution nearx=a in order to satisfy the zero derivative
which the number of cells increases suddenly by 1. boundary conditions.

In all cases the wave speed of the convection cells is  Figure 4 shows streamlines and perturbation isotherms at
positive and, likeR;, it is a monotonically decreasing func- equally spaced time intervals over a quarter of a period for
tion of a. The detailed values ab indicate thatw=0(a"3) convection in a box of aspect rat@=3. The continuous
whena>1 andw=0(a™?) whena<1. lines represent streamlines and the dashed lines perturbation

Figure 3 shows the computed variationfaindg with x ~ isotherms, but they may also be taken the other way around.
for four choices of cavity aspect ratia=1,a=2,a=5, and The precise location of the streamlines in the first frame of
a=20. In all cases the real and imaginary partsfdiave Fig. 4 is identical to the isotherms in the last frame. This

TABLE |. Variation of R, and w with a. Also shown are suitable asymptotic values for the linaits 0 and

a— oo,

a R R.a® (R—4m?)a? 1) wa?® wa®

0.0 20.5344 12.1875

0.1 2120.7916 21.2079 1212.607 1 12.1261

0.2 579.5466 23.1819 298.7111 11.9484

0.5 142.1563 35.5391 43.7151 10.9288

1 71.1982 71.1982 31.7198 8.8710 8.8710 8.8710
2 48.6690 36.7623 14312 11.4496
5 41.0387 39.0075 0.099 05 12.3813
10 39.8720 39.36 0.012 52 12.52

0 39.4784 12.5664
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FIG. 3. Real and imaginary parts bfandg forming solutions of Eqs(13) and(14). In each part continuous lines correspond to the real part of the solution
while the dashed lines correspond to the imaginary part. The two curves with the largest amplitudes correspdnéial Ref). The parts are for domains
with (a) a=1; (b) a=2; (c) a=5; (d) a=20.

figure shows clearly the manner in which the convectingA. Small aspect ratios

cells travel towards the open insulated boundary. Although \\on the aspect ratio is small the numerical solutions

the value ofw is constant, the fact that the zeros in, shy, indicate that bottR and w are of O(a2). Given thatg’(0)
and f; are not equally spaced means that cell walls do not

i | at i dt ds the right-hand sid “—1 is the normalizing condition and thatO(a) within the
ravel at a uniform speed towards the nght-nand sidewa cavity, it is straightforward to show thgt=0(a). An order of
That this is so may be seen in the first four frames of Fig.

. . ) agnitude analysis confirms the above statements regarding
where the right-hand vertical streamline accelerates towar

the right-hand boundary. Likewise we see that the length o e sizes oR ando, .and we also find thaft=0(1). We may
: . ! . . ow rescale according to

the cells is not uniform but varies over time and wih

while the central cell in the last frame of Fig. 4 has aspect

ratio of almost exactly 1, the right-hand cell is stretched hori- ~ X=¢a, R=9a% wo=0/a% f(x)=F(&), g(x) =aG(¢).

zontally so that bothy and @ satisfy Neumann conditions. (17)

Equations(13) become
IV. ASYMPTOTIC ANALYSIS

In this section we supplement the above numerical re- F"=SG, G"+F’'=iQG, (18
sults by undertaking analyses in limits of both small and
large aspect ratios. subject to
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R~ 20.5344#4%, o ~ 12.18754° (21)

asa— 0. Both these expressions compare very well indeed
with the data given in Table | and displayed in Figs. 1 and 2.

Clearly the angular frequency appears to increase without
bound as the cavity becomes thinner, but we note that,
should the Rayleigh number be based upon the width of the
cavity, rather than on its height, then the Rayleigh number
and the angular frequency would tend towards the respective
constants given itg20).

B. Large aspect ratios

When the cavity has a large aspect ratio the eigensolu-
tions display two very distinct length scales. One of these is
commensurate with the length of the cavity and the other is
roughly equal to 1. Thus the solution given in Figdgfor
a=20 indicates that the solutions consist of the product of
€™ and si{rx/a) at least to leading order. There is also a
minor adjustment near to=a where the stream function and
temperature fields, which are/2 out of phase in the bulk of
the cavity, are forced to obey the same boundary conditions.
It is not entirely clear from Fig. @) that the main cellular
pattern has a wave number of preciselybut any changes
from this are likely to be asymptotically small whenis
large, and therefore such small wave number changes are
assumed to be accounted for using multiple scales theory.

The full equations foif andg are

f"-mf=Rg, ' - 7m°g=—f +iwg, (22

subject tof(0)=g(0)=0, g’(0)=const andf’(a)=g’(a)=0.
We sete=1/a as the asymptotically small parameter, and
will assume that bottf andg are proportional to expmx).
We therefore introduce the following substitutions:

f=2aF(X) €™, g=iG(X)é™, (23
where
X=ex, =€), R=47°S. (24)
The solution proceeds in powers efand therefore we also
introduce the expansions
F(X) =Fo(X) + eF1(X) + €Fp(X) + -+, (25
: G(X) = Go(X) + €G,(X) + €Gy(X) + -+, (26)

FIG. 4. Streamlines and isotherms at equally spaced time intervals oveand
one-quarter of a period for convection in a cavity of aspect @ti8 at the _
critical Rayleigh number. Time increases downwards. S=5+ ES16282 T (27)

All of the above expansions and substitutions transform Eqgs.
(22) into the following forms:

ie ie
F0)=G(0)=0, G'(0)=1, F()=G'(1)=0. (19 (S+eSi+eS+ "')G‘”(w)FX‘(w)GX(“f&

These equations were solved numerically using the same +ES,+ "')+<62)Fxx:0 (28)
Runge—Kutta scheme to obtain the values L
and
S=20.5344, () =12.1875, (20
F-0)+ %G —F)+iG AL (29
and therefore we have a2 X a2 T
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At O(1) we obtain

SGo—-Fp=0, Fo—Gy=0, (30
from which we deduce that
$=1, Fp=Gy=A(X), (31

where A(X) is to be obtained below ab(e?). Given the
boundary conditions fof andg at x=0 it is essential that
A(0)=0. At x=a, however, botH, andg,, which are propor-
tional to [iwA(X) + eAyx(X)]€™, must have zero derivatives.
This means that the second boundary condition Aois
A(1)=0; theO(e) term is accounted for at higher order.

At O(e) Eqgs.(28) and(29) yield

G1-F1=-5Gy F1-G;=0. (32

A simple solvability condition for this pair of equations is
obtained by adding them together, in which case we obtain

$=0, F;=G;=B(X),

whereB(X) is found atO(€3).
At O(€?) we have

(33

1 1
G- F==-5Gy— ﬁFoxx, F,-Gy=- ZWZGOXX1
(34

which, after addition and substitution usiig0), yields the
solvability condition
Agx+ TSA0=0.

Above we derived the boundary conditiors0)=A(1)=0,
and therefore the smallest possible valu&goivhich yields a
nonzero solution iS,=1 and therefore we have

(39)

A(X) =sinwX. (36)
Equations(34) may now be solved:
F2(X) = C(X) + 5 sinmX, G,(X)=C(X), (37)

where C(X) is an unknown function oX. Thus far in the
analysis we hav®~ 47%(1+1/a?) which is not only correct
to O(€?) but is identical to the value dR obtained by Rees
and Tyvand’ for the cavity with a fully impermeable and

conducting boundary. It is at the next order that the first
difference is found between their solutions and the preser"r:t

solutions.
At O(€) the equations become

i i
G3—F3==5Gg—5G; - ;sz + ;(sz +S,Gox)

1
‘ﬁlexa (383
Fym G =~ (Gax—Fax) ~ —Gixx— -2 Gy, (38D)
37 Gs= = —(Gox = Fax) = 536k~ 5 3Co-

Substitution forG,, F4, G4, F,, andG,, and addition of the
two equations eventually yield

D. A. S. Rees and P. A. Tyvand

iQ
Byx + 7B = — 7S, sin wX + i7r? coswX — > sin 7X.

(39

The functionB also satisfies a zero boundary condition at
X=0, but the condition aK=1 requires more care. On writ-
ing g(x) to O(e) we haveg=i[A(X)+eB(X)]¢™, and there-
fore dg/dx atx=a is

&—;(a) =i{imA(L) + A1) +imBL)] + --- }™,  (40)

where we have set=2N+ 6 as the length of the cavity, and
whereN>1 and 0< §<2. The O(e) term in (40) must be
zero and therefore

B(1)=-i.
The full solution of(39) is

(41)

i i
B= iTX sinmX + (7—783 + —Q)X coswX+csinmX,
2 2 4

(42)

wherec is an arbitrary constant. Biigdl) must be satisfied
and therefore

v | .

(ES3+ZTQ> =i, (43
from which we obtain

$;=0, Q=47. (44
The wave speed of the cells is, therefore,

w ~ 4mlad, (45)
which also accords very well with the data given in Table |
and Fig. 2.

We omit details of the analysis &t(e*) but the solvabil-
ity condition yieldsS,=-3/42 but no correction to the wave
speed. Therefore the critical Rayleigh number is

1 3
R~4772|:1+;—@:|.

The first two terms of this expression are graphically indis-
tinguishable from the exact solution whear>3 as opposed
to a> 2 for all three terms. In fact46) has a relative error of
lightly more than 10" even whera is as small as 3.

(46)

V. CONCLUSIONS

In this paper we have performed a linearized stability
analysis of the onset of convection in a porous cavity which
exhibits what we term nontraditional boundary conditions:
The left-hand boundary is impermeable and thermally con-
ducting, while the right-hand boundary is open and thermally
insulating. In an earlier papgRees and Tyvartd) we stud-
ied convection in a cavity with the first type of nontraditional
condition (impermeable and conductipngssumed valid ev-
erywhere. This had the effect of causing degeneracy in the
onset problem, first demonstrated by Lyubinjlf)‘Moreover,
convection may take place with any phase relative to the
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location of the sidewalls. In the present problem the cavity isconditions applied at horizontal as well as vertical bound-
asymmetric with respect to the sidewall boundary conditionsaries. Nield solved the problem with all varieties of condi-
This causes the onset problem to be of Hopf type with cellgions (I)~(IV) at top and bottom, but he implicitly assumed
traveling towards the open, insulated sidewall. traditional lateral conditions as he considered infinite hori-
Detailed numerical solutions have been presented angzontal extent. Nield and Bejé‘ﬁ(TabIe 6.1, page 147has
supplemented by separate asymptotic analyses valid fa@iven a systematic overview of these conditighs(IV) ap-
small and large cavity aspect ratios. It was found that bottplied at the top and bottom, counting 10 nontrivial combina-
the critical Rayleigh number and angular frequency decreas&ons. Tyvana1 (Table 4.1, page 94as given a similar over-
monotonically as the aspect ratio increases. view of all varieties of the conditione)—(d) applied at the
Both this paper and the preceding one, Rees anthteral walls, again identifying ten nontrivial combinations.
Tyvand!® are concerned with the effect of nontraditional The present problem appeared in this table as the only un-
boundary conditions on two-dimensional convection. Atsolved case. Again the simplest traditional conditibrwas
present it is not clear whether the findings of these papers, iapplied at the other boundariésp and bottom
particular degeneracy and time-dependent onset, carry over The present work completes the picture of all possible
to three-dimensional cavities. The only hint of which we areidealized conditionga)—(d) at lateral walls;' as a counter-
aware is the analysis of Storesletten and Tveitéfaid con-  part to all possible idealized conditions at top and bottdm.
vection in a horizontal cylinder where the critical Rayleigh Furthermore, we open up a variety of some solved and many
numbers corresponding to the first two modes of instabilityunsolved two-dimensional Rayleigh—-Bénard problems: A
tend to a common limit as the axial wave number tends tol0X 10 matrix of eigenvalue problems arises from the 10
zero. Thus the degeneracy noted by Rees and T)}\‘}asd nontrivial combinations of top and bottom conditions taken
recovered. Work is currently in progress to investigate bottiogether with the 10 nontrivial combinations of left-hand and
this aspect and the effects of strongly nonlinear posteriticalight-hand wall conditions. The published tafe8 com-
convection. prise 19 out of these 100 eigenvalue problgit8=10+10
The present work adds to the developing understanding 1 since there is one overlapping caseome of the remain-
of the Rayleigh—-Bénard problem for a two-dimensional po-ing 81 cases are straightforward to deduce from the tables of
rous box, starting with the work by BedR.He restricted results;®?'yet no results are known for any eigenvalue prob-
himself to the traditional conditions of insulating sidewalls lem with nontraditional conditions being posed at the hori-
and conducting top and bottom, with all walls impermeable zontal as well as the vertical boundaries. The common math-
Let us define a traditional condition as one allowing a singleematical difficulty for such eigenvalue problems is that they
Fourier eigenmode for the temperature and stream functior'€ not separable in theandy directions, and it will not be
Accordingly, these are the possible traditional conditionsstraightforward to find any closed-form analytical solutions.

Traditional conditions at top and bottom: APPENDIX: A PROOF THAT THERE ARE NO STEADY

) ) EIGENSOLUTIONS
(1)  conducting and impermeable,

(I insulating (heat flux given and open (constant We consider the steady-state version of the governing
pressurg equations. We introduce a modified complex stream function
¥ by the definition

Traditional conditions at sidewalls: =
Yy=iVRW. (A1)
(@) insulating and impermeable,

(b) conducting and open. The resulting coupled equations férand ¥ are

. . . . . =00
All these conditions are idealized in the sense that the V2V +iyR— =0, (A2)
boundary is either completely closed or completely open X
with respect to throughflow of heat and mass. The remaining

possibilities are the nontraditional conditions: V20 + i\;’ﬁﬁ—a =0, (A3)
dX

Nontraditional conditions at top and bottom: where the conditions

(1) Insulating(heat flux given and impermeable, ¥ = 9=0 along the boundary (A4)

(IV) conducting and ope(constant pressuye
correspond to impermeable and conducting boundaries, valid

Nontraditional conditions at sidewalls: along the bottom(y=0) and top(y=1) as well as the left-
(© Conducting and impermeable, han(cji_tyvall (x=0). Along the right-hand wall we have the
(d) insulating and open. conditions
av 96
A striking fact is that the two conditions that are tradi- - =~ = 0 at x=a. (AS5)

tional at the top and bottom appear as nontraditional when
applied on the sidewalls, and vice versa. So far, no solutioWe conclude that the coupled eigenvalue problem is com-
exists for the Rayleigh—Bénard problem with nontraditionalpletely symmetric i and 6. If we eliminated to formulate
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the eigenvalue problem in terms ¥falone, then this will be  nary parts of Eq(A13). However, this value oR makes the
identical to the problem written in terms éfwhich we get  eigenfunctions linearly dependent becalgeR,. For this
by eliminating¥. This complete symmetry i and 6 im- value ofR, the characteristic equation has a double root, and

plies that the solutions must be the same, i.e., the correct solution will be

P(x,y) = 0(xy), (AB) g(x) = (A+Bx)e™. (A14)
provided that there ?s a unique solution of this complex eirha condition g(0)=0 implies A=0, and the condition
genvalue problem given b{A2)AS). g’'(a)=0 implies B=0. Then the eigenfunctionAl14) be-

Inserting Eq.(A6) into the second governing EGA3) comes zero, which means that nontrivial eigenfunctions do
reduces the problem from a fourth-order problem 10 &y, exist. wWe have thus proven that there are no steady-state
second-order problem, solutions of the eigenvalue problem. This means that oscil-

. =06 latory modes of convection are the only possible solutions.

V26 + IVFR& =0, (A7)
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