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The onset of convection in a two-dimensional porous cavity is investigated where the cavity is
subject to asymmetric boundary conditions at the lateral walls: one vertical wall is thermally
conducting and impermeable, while the other is thermally insulating and open. At the open boundary
the saturating fluid flows freely in and out from a hydrostatic reservoir in contact with the porous
medium. The top and bottom of the box are impermeable and perfectly conducting. It is shown that
the mode for onset of convection is oscillatory in time. This corresponds to a disturbance traveling
as a wave through the box from the impermeable wall to the open wall. The preferred eigensolution,
its oscillation frequency, and critical Rayleigh number are calculated numerically for different
aspect ratios of the porous box, and these values are confirmed by means of suitable asymptotic
analyses. ©2004 American Institute of Physics. [DOI: 10.1063/1.1781160]

I. INTRODUCTION

The classical problem of the onset of convection in a
porous layer heated from below is nonoscillatory.1,2 The
Horton–Rogers–Lapwood problem assumes impermeable
and perfectly conducting top and bottom planes. These con-
ditions were generalized by Nield3 to include the cases of
constant pressure and constant heat flux. Despite these al-
tered conditions the single-diffusive onset of convection is
governed by strictly nonoscillatory modes of instability.

Straus4 investigated the stability of finite-amplitude con-
vection in the Horton–Rogers–Lapwood problem. The pre-
ferred modes of secondary instability in a layer of infinite
horizontal extent are also nonoscillatory. This means that the
first oscillations may appear at third level in a hierarchy of
instabilities, which will require highly supercritical Rayleigh
numbers.

In a finite box, oscillatory instability may set in some-
what earlier as a secondary instability.5 In a two-dimensional
square box this oscillatory instability takes place at a Ray-
leigh number of order 10 times that of the onset of convec-
tion. Accurate computations of the triggering of oscillatory
convection were performed by Aidun and Steen6 and
Kimura, Schubert, and Straus.7 Kimura, Schubert, and
Straus8 investigated three-dimensional oscillatory convection
in a cube. They found oscillations as a secondary instability
occurring at a Rayleigh number somewhat higher than that of
two-dimensional flow. In these papers, the lateral walls are
taken as thermally insulating.

Oscillatory convection in the presence of a single-
diffusive component is acknowledged as a nonlinear phe-
nomenon, appearing at Rayleigh numbers one order of mag-
nitude above the threshold for onset. One would not expect
oscillations to take place in a linearized Horton–Rogers–
Lapwood problem for a finite box.

A first analysis of the linear theory for a finite porous
box was performed by Wooding,9 who considered the
asymptotic limit of tall porous cylinders. His results were
complemented by exact results for the rectangular box de-
rived by Beck10 and the circular cylinder derived by Zebib.11

Again no oscillations were found, but this was physically
reasonable because of the traditional boundary conditions ap-
plied at the lateral walls. These wall conditions are identical
to those which are valid at the internal cell walls, and corre-
spond to the wall being impermeable and thermally insulat-
ing. The above-mentioned studies of finite porous boxes can,
in general, be constructed from superposing modes of con-
vection for an porous layer of infinite extent, once we specify
the appropriate wave numbers which fit in with the geometry.

The physics changes somewhat when the conditions ap-
plied at the lateral wall of a finite box are nontraditional.
Nontraditional wall conditions are those which do not corre-
spond to the conditions at internal cell walls. Yet one would
expect only quantitative changes to take place when nontra-
ditional lateral conditions are introduced. However, the
present paper shows that it is possible to introduce oscilla-
tions at the onset of convection by means of asymmetric
nontraditional lateral conditions.

The first exact analysis of the onset of convection in a
box with nontraditional lateral conditions was performed by
Nilsen and Storesletten.12 They assumed impermeable and
conducting lateral walls, and their analysis was confirmed by
Rees and Lage.13 Since both lateral walls were identical, the
onset mode could be given as a superposition of one sym-
metric mode and one antisymmetric mode with respect to the
middle of the box. These symmetries do not allow traveling
waves to occur.

The condition of an impermeable and conducting wall
can be called the first nontraditional wall condition. There is
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a second nontraditional wall condition: the case where the
wall is hydrostatic(free horizontal throughflow of the satu-
rating fluid) and thermally insulating. By considering the first
nontraditional condition valid at the left-hand wall in combi-
nation with the second nontraditional condition valid at the
right-hand wall, we obtain a configuration without left/right
symmetry. The left-hand boundary allows heat transfer with-
out mass transfer. The right-hand boundary allows mass
transfer without heat transfer. This type of physical antisym-
metry implies no mathematical symmetry, and it induces a
wave traveling from left to right at the onset of convection,
as will be shown by the analysis below. These nontraditional
boundary conditions do not allow the mathematical solution
to be extended outside the porous box. This is in contrast to
the traditional conditions corresponding to cell walls, where
a symmetric extension outside a boundary describes a pos-
sible neighboring cell in a larger cavity.

The present physical problem gives an astonishingly
simple mechanism of generating oscillations in a porous me-
dium. We believe that it is the simplest possibility available
for oscillatory convection in a porous medium. It is a simpler
mechanism for oscillations than the standard one, which was
first identified by Horne and O’Sullivan.5

II. BASIC EQUATIONS

We consider a two-dimensional porous medium with a
homogeneous and isotropic permeabilityK. Cartesian coor-
dinatesx,y are introduced, where they axis points vertically
upwards. The porous medium occupies a rectangular box
with lengthL in the x direction and heightH in the y direc-
tion.

The temperature field isTsx,y,td, wheret denotes time.
There is an undisturbed state of pure conduction where the
lower planey=0 is kept at a constant temperatureT0+DT
and the upper planey=H is kept at a constant temperature
T0. We will perturb this state of pure conduction, but the
temperatures at the top and bottom surfaces are kept con-
stant. This means that the perturbation temperatureusx,y,td
is assumed to vanish at the top and bottom of the porous box.
The top and bottom surfaces are assumed to be impermeable.

We choose the following units for dimensionless time,
velocity, and pressure:

scprdmH2/km, km/H, r0nkm/K, s1d

respectively, wherecp is the specific heat at constant pres-
sure,k is the heat conductivity,k is the thermal diffusivity,n
is the kinematic viscosity of the saturating fluid, andr0 is a
reference fluid density. The subscriptm represents the mix-
ture of solid and fluid, and the subscriptf will represent the
saturating fluid.

Our dimensionless Darcy–Boussinesq equations for con-
vection in a homogeneous and isotropic porous medium are
given by

vI + = p − RaTjI = 0, s2d

= ·vI = 0, s3d

]T

]t
+ vI · = T = ¹2T. s4d

The Rayleigh number for a porous medium is given by

Ra =
gbKDTH

nam
. s5d

We have introducedg as the gravitational acceleration andb
as the expansion coefficient. In Eqs.(2)–(4), vI is the velocity,
while p is the pressure, andjI is the vertical unit vector. The
basic dimensionless temperature gradient is −1 and is due to
pure conduction. We perturb the basic temperature field and
introduce the temperature perturbationusx,y,td as follows:

T = 1 −y + usx,y,td. s6d

We introduce the stream functionc and eliminate the
pressure. The governing equations are

¹2c − R
]u

]x
= 0, s7d

¹2u +
]c

]x
=

]u

]t
. s8d

The velocity components aresu,vd=s−]c /]y,]c /]xd.
As boundary conditions in the vertical direction we take

the standard conditions of impermeable and conducting top
and bottom planes:

c = u = 0 at y = 0, y = 1. s9d

These are the conditions that are applied in the classical
Horton-Rogers-Lapwood problem. The lateral wall condi-
tions are nontraditional, however. At the left-hand end we
assume an impermeable and conducting wall:

c = u = 0 at x = 0. s10d

Physically this means that the wall is a much better heat
conductor than the saturated porous medium. Still the heat
conductivity of the wall must be considerably smaller than
that of the top and bottom planes.

We assume the right-hand end of the porous rectangle to
be thermally insulating and open:

]c

]x
=

]u

]x
= 0 at x = a. s11d

An open boundary means that the porous medium is in con-
tact with a neighboring hydrostatic reservoir where the satu-
rating fluid can flow freely in and out.

Our aim in introducing the thermal boundary condition
in (11) is primarily mathematical, for the nontraditional
boundary conditions given in(10) give rise to degeneracy at
onset when they apply to both sidewalls; the proof of degen-
eracy given by Rees and Tyvand14 relies on the boundary
conditions forc and u being identical. Therefore we have
used identical boundary conditions forc andu in (11) for the
right-hand sidewall. Intuitively it seems contradictory that a
boundary can be open to mass flux and closed to heat flux.
So let us demonstrate how these conditions(11) arise as limit
cases of the general conditions valid at the boundary between
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two porous media, according to linear theory. We consider
one porous medium(A) for x,L and another porous me-
dium (B) for x.L, and return to the dimensional variables
for a moment. These porous media have permeabilitiesKA

andKB and thermal conductivitieskmA andkmB, respectively.
The dynamic condition combined with Darcy’s law gives

1

KA

]cA

]x
=

1

KB

]cB

]x
, x = L.

We take the limitKA/KB→0 which is the correct description
if the porous medium ends atx=L and there is pure fluid for
x.L. The result is

v =
]c

]x
= 0, x = L

valid in medium(A), which confirms condition(11).
The dimensional heat equation for two-dimensional con-

vection in a porous medium is15

srcpdm

srcpdf

]u

]t
− v

DT

H
+ u

]u

]x
+ v

]u

]y
= km¹2u.

The second term vanishes at the boundaryx=L becausev
=0 there. We consider linearized theory, which implies that
the third and fourth terms are neglected everywhere in the
fluid. The remaining equation is

srcpdm

srcpdf

]u

]t
= km¹2u

valid in both media(A) and (B), at their common interface
x=L. However, this is the equation of thermal conduction in
a solid medium, without influence of the fluid flow. Conser-
vation of energy is then expressed directly by Fourier law as
a condition of continuity in conductive heat flux,

kmA
]uA

]x
= kmB

]uB

]x
, x = L.

This condition is independent of time since the interface does
not have any heat capacity. Here we see how the thermal
condition (11) arises in the limit of great conductivity con-
trast between medium(A) and medium(B). The required
conductivity limit kmA@kmB is very well approximated if the
solid is a metal and the saturating fluid is nonmetallic. From
the Science Data Book16 we find typical conductivities of
metals ranging from lead at 35 SI unitssW m−1 K−1d to cop-
per at 385 SI units. This is indeed much greater than the
typical values of thermal conductivities for nonmetallic liq-
uids, ranging from turpentine at 0.136 SI units to water at
0.591 SI units. Most gases have still smaller conductivities,
as the value for air at standard atmospheric pressure and
temperature is only 0.024 SI units. Forx,L the effective
conductivity of this mixture of metal solid and nonmetallic
fluid will be of the same order of magnitude as the metal
solid, provided the porosity of the porous medium is small
enough for Darcy’s law to be valid(neglecting the Brinkman
correction terms and thereby excluding high-porosity media).

Now we have shown how a confined porous medium
made of metal with moderate porosity and saturated with a
nonmetallic fluid will approximate very well the condition

(11) of an open boundary where the porous medium leads
into a hydrostatic reservoir for its saturating fluid. Atx=L the
fluid mass will flow freely in and out from the porous me-
dium, while heat transfer through this boundary will be ef-
fectively impeded.

Another possibility of satisfying condition(11) is to
have a porous medium made of nonmetallic solid(e.g., poly-
styrene) for x.L. It will have much smaller conductivity
than the metal medium. In order to have much greater per-
meability than the metal medium, the grain size of the non-
metallic solid must be much more coarsely grained than the
metal medium.

From now on we again work with dimensionless vari-
ables. Equations(7) and (8) may be simplified by setting
both c and u to be proportional to sinpy, since we may
introduce such a Fourier decomposition in the vertical direc-
tion, and to expsivtd, in order to allow the possibility of a
Hopf bifurcation at neutral stability. Therefore we substitute

c = fsxdsinspydeivt, u = gsxdsinspydeivt, s12d

and sof andg satisfy the equations,

f9 − p2f = Rg8, g9 − p2g = − f8 + ivg, s13d

and are subject to

fs0d = gs0d = 0, f8sad = g8sad = 0. s14d

From a historical point of view it is worth noting at this
stage that the substitution(12) is somewhat unusual in the
context of Bénard convection since the Fourier decomposi-
tion takes place in the vertical direction, rather than in the
horizontal direction. Similar substitutions have been used in
the papers by Nilsen and Storesletten,12 Rees and Lage,13 and
Rees and Tyvand,14 but these papers share with the present
paper the fact that the boundary conditions on each vertical
surface are identical for bothc and u. The ramification of
this is that the horizontal component of the eigenfunctions at
onset are not pure sines or cosines, but are more complicated
functions.

III. NUMERICAL SOLUTIONS

Equations(13) subject to (14) were solved using the
classical fourth-order Runge–Kutta scheme with the shooting
method. The equations were decomposed into real and
imaginary parts withf = f r + i f i andg=gr + igi, and two extra
first-order equations defined as

R8 = 0, v8 = 0. s15d

The boundary conditions given in(14) were supplemented
by the normalization conditions

gr8s0d = 1, gi8s0d = 0. s16d

Thus the full system is now of tenth order with a total of 10
boundary conditions.

The only free parameter is the aspect ratio of the cavity
and this was varied between 0.02 and 20. Figures 1 and 2
show how the critical Rayleigh number and the angular fre-
quency vary with the cavity aspect ratio. The critical Ray-
leigh number decreases towards 4p2 as a increases, but in-
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creases substantially asa→0. The value of 4p2 corresponds
to the classical Lapwood–Horton–Rogers stability criterion
in an unbounded horizontal layer, and therefore the vertical
boundaries have a diminishing effect as the cavity increases
in horizontal extent. A detailed analysis of the values ofRc,
some of which are given in Table I, indicates that they satisfy
Rc=4p2+Osa−2d when a@1 and Rc=Osa−2d when a!1;
both of these trends are confirmed and quantified in the fol-
lowing section. As in Ref. 14 the variation ofRc is smooth
and monotonic, unlike the situation where the sidewalls are
impermeable and insulated(see Refs. 10 and 17) whereRc

displays an infinite series of minima atR=4p2 between
which the number of cells increases suddenly by 1.

In all cases the wave speed of the convection cells is
positive and, likeRc, it is a monotonically decreasing func-
tion of a. The detailed values ofv indicate thatv=Osa−3d
whena@1 andv=Osa−2d whena!1.

Figure 3 shows the computed variation off andg with x
for four choices of cavity aspect ratio:a=1, a=2, a=5, and
a=20. In all cases the real and imaginary parts off have

zeros which interleave—these correspond to the locations of
cell walls at different times, namely, whenvt is a multiple of
p and when it isp /2 greater than a multiple ofp, respec-
tively. Thus the cells move in the positivex direction.

As a increases it is evident that two spatial scales domi-
nate. One is roughly of unit length while the other is com-
parable with the length of the cavity. This observation forms
the basis for the large-a asymptotic analysis found in the
following section. However, we note that the solution given
in Fig. 3(d) is almost identical to that given by Rees and
Tyvand where the sidewalls are both conducting and imper-
meable. In the present case there is a slight adjustment in the
solution nearx=a in order to satisfy the zero derivative
boundary conditions.

Figure 4 shows streamlines and perturbation isotherms at
equally spaced time intervals over a quarter of a period for
convection in a box of aspect ratioa=3. The continuous
lines represent streamlines and the dashed lines perturbation
isotherms, but they may also be taken the other way around.
The precise location of the streamlines in the first frame of
Fig. 4 is identical to the isotherms in the last frame. This

FIG. 2. Critical angular frequencyv as a function of aspect ratioa. Also
shown as dashed lines are the 1-term asymptotic curves for both small and
large values ofa.

FIG. 1. Critical Rayleigh number as a function of aspect ratioa. Also shown
as dashed curves are the small-a asymptotic curve and the 1-term, 2-term,
and 3-term large-a asymptotic curves(labeled 1, 2, and 3, respectively).

TABLE I. Variation of Rc and v with a. Also shown are suitable asymptotic values for the limitsa→0 and
a→`.

a Rc Rca
2 sRc−4p2da2 v va2 va3

0.0 20.5344 12.1875

0.1 2120.7916 21.2079 1212.607 1 12.1261

0.2 579.5466 23.1819 298.711 1 11.9484

0.5 142.1563 35.5391 43.715 1 10.9288

1 71.1982 71.1982 31.7198 8.871 0 8.8710 8.8710

2 48.6690 36.7623 1.431 2 11.4496

5 41.0387 39.0075 0.099 05 12.3813

10 39.8720 39.36 0.012 52 12.52

` 39.4784 12.5664
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figure shows clearly the manner in which the convecting
cells travel towards the open insulated boundary. Although
the value ofv is constant, the fact that the zeros in, say,f r

and f i are not equally spaced means that cell walls do not
travel at a uniform speed towards the right-hand sidewall.
That this is so may be seen in the first four frames of Fig. 4
where the right-hand vertical streamline accelerates towards
the right-hand boundary. Likewise we see that the length of
the cells is not uniform but varies over time and withx:
while the central cell in the last frame of Fig. 4 has aspect
ratio of almost exactly 1, the right-hand cell is stretched hori-
zontally so that bothc andu satisfy Neumann conditions.

IV. ASYMPTOTIC ANALYSIS

In this section we supplement the above numerical re-
sults by undertaking analyses in limits of both small and
large aspect ratios.

A. Small aspect ratios

When the aspect ratio is small the numerical solutions
indicate that bothR and v are of Osa−2d. Given thatg8s0d
=1 is the normalizing condition and thatx=Osad within the
cavity, it is straightforward to show thatg=Osad. An order of
magnitude analysis confirms the above statements regarding
the sizes ofR andv, and we also find thatf =Os1d. We may
now rescale according to

x = ja, R= S/a2, v = V/a2, fsxd = Fsjd, gsxd = aGsjd.

s17d

Equations(13) become

F9 = SG8, G9 + F8 = iVG, s18d

subject to

FIG. 3. Real and imaginary parts off andg forming solutions of Eqs.(13) and(14). In each part continuous lines correspond to the real part of the solution
while the dashed lines correspond to the imaginary part. The two curves with the largest amplitudes correspond to Resfd and Imsfd. The parts are for domains
with (a) a=1; (b) a=2; (c) a=5; (d) a=20.
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Fs0d = Gs0d = 0, G8s0d = 1, F8s1d = G8s1d = 0. s19d

These equations were solved numerically using the same
Runge–Kutta scheme to obtain the values

S= 20.5344, V = 12.1875, s20d

and therefore we have

R, 20.5344/a2, v , 12.1875/a2 s21d

as a→0. Both these expressions compare very well indeed
with the data given in Table I and displayed in Figs. 1 and 2.
Clearly the angular frequency appears to increase without
bound as the cavity becomes thinner, but we note that,
should the Rayleigh number be based upon the width of the
cavity, rather than on its height, then the Rayleigh number
and the angular frequency would tend towards the respective
constants given in(20).

B. Large aspect ratios

When the cavity has a large aspect ratio the eigensolu-
tions display two very distinct length scales. One of these is
commensurate with the length of the cavity and the other is
roughly equal to 1. Thus the solution given in Fig. 3(d) for
a=20 indicates that the solutions consist of the product of
eipx and sinspx/ad at least to leading order. There is also a
minor adjustment near tox=a where the stream function and
temperature fields, which arep /2 out of phase in the bulk of
the cavity, are forced to obey the same boundary conditions.
It is not entirely clear from Fig. 3(d) that the main cellular
pattern has a wave number of preciselyp, but any changes
from this are likely to be asymptotically small whena is
large, and therefore such small wave number changes are
assumed to be accounted for using multiple scales theory.

The full equations forf andg are

f9 − p2f = Rg8, g9 − p2g = − f8 + ivg, s22d

subject to fs0d=gs0d=0, g8s0d=const andf8sad=g8sad=0.
We sete=1/a as the asymptotically small parameter, and
will assume that bothf and g are proportional to expsipxd.
We therefore introduce the following substitutions:

f = 2pFsXdeipx, g = iGsXdeipx, s23d

where

X = ex, v = e3V, R= 4p2S. s24d

The solution proceeds in powers ofe and therefore we also
introduce the expansions

FsXd = F0sXd + eF1sXd + e2F2sXd + ¯, s25d

GsXd = G0sXd + eG1sXd + e2G2sXd + ¯, s26d

and

S= S0 + eS1e2S2 + ¯. s27d

All of the above expansions and substitutions transform Eqs.
(22) into the following forms:

sS0 + eS1 + e2S2 + ¯ dG − F + S ie

p
DFX − S ie

p
DGXs1 + eS1

+ e2S2 + ¯ d + S e2

2p2DFXX = 0 s28d

and

sF − Gd +
ie

p
sGX − FXd +

e2

2p2GXX +
e2iV

2p2 G = 0. s29d

FIG. 4. Streamlines and isotherms at equally spaced time intervals over
one-quarter of a period for convection in a cavity of aspect ratioa=3 at the
critical Rayleigh number. Time increases downwards.
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At Os1d we obtain

S0G0 − F0 = 0, F0 − G0 = 0, s30d

from which we deduce that

S0 = 1, F0 = G0 = AsXd, s31d

where AsXd is to be obtained below atOse2d. Given the
boundary conditions forf and g at x=0 it is essential that
As0d=0. At x=a, however, bothfx andgx, which are propor-
tional to fipAsXd+eAXsXdgeipx, must have zero derivatives.
This means that the second boundary condition forA is
As1d=0; theOsed term is accounted for at higher order.

At Osed Eqs.(28) and (29) yield

G1 − F1 = − S1G0, F1 − G1 = 0. s32d

A simple solvability condition for this pair of equations is
obtained by adding them together, in which case we obtain

S1 = 0, F1 = G1 = BsXd, s33d

whereBsXd is found atOse3d.
At Ose2d we have

G2 − F2 = − S2G0 −
1

2p2F0XX, F2 − G2 = −
1

2p2G0XX,

s34d

which, after addition and substitution using(30), yields the
solvability condition

AXX + p2S2A0 = 0. s35d

Above we derived the boundary conditions,As0d=As1d=0,
and therefore the smallest possible value ofS2 which yields a
nonzero solution isS2=1 and therefore we have

AsXd = sinpX. s36d

Equations(34) may now be solved:

F2sXd = CsXd + 1
2 sinpX, G2sXd = CsXd, s37d

where CsXd is an unknown function ofX. Thus far in the
analysis we haveR,4p2s1+1/a2d which is not only correct
to Ose2d but is identical to the value ofR obtained by Rees
and Tyvand14 for the cavity with a fully impermeable and
conducting boundary. It is at the next order that the first
difference is found between their solutions and the present
solutions.

At Ose3d the equations become

G3 − F3 = − S3G0 − S2G1 −
i

p
F2X +

i

p
sG2X + S2G0Xd

−
1

2p2F1XX, s38ad

F3 − G3 = −
i

p
sG2X − F2Xd −

1

2p2G1XX −
iV

2p2G0. s38bd

Substitution forG0, F1, G1, F2, andG2, and addition of the
two equations eventually yield

BXX + p2B = − p2S3 sinpX + ip2 cospX −
iV

2
sinpX.

s39d

The functionB also satisfies a zero boundary condition at
X=0, but the condition atX=1 requires more care. On writ-
ing gsxd to Osed we haveg= ifAsXd+eBsXdgeipx, and there-
fore dg/dx at x=a is

]g

]x
sad = ihipAs1d + efAXs1d + ipBs1dg + ¯ jeipd, s40d

where we have seta=2N+d as the length of the cavity, and
whereN@1 and 0ød,2. The Osed term in (40) must be
zero and therefore

Bs1d = − i . s41d

The full solution of(39) is

B =
ip

2
X sinpX + Sp

2
S3 +

i

4p
VDX cospX + c sinpX,

s42d

wherec is an arbitrary constant. But(41) must be satisfied
and therefore

Sp

2
S3 +

i

4p
VD = i , s43d

from which we obtain

S3 = 0, V = 4p. s44d

The wave speed of the cells is, therefore,

v , 4p/a3, s45d

which also accords very well with the data given in Table I
and Fig. 2.

We omit details of the analysis atOse4d but the solvabil-
ity condition yieldsS4=−3/p2 but no correction to the wave
speed. Therefore the critical Rayleigh number is

R, 4p2F1 +
1

a2 −
3

p2a4G . s46d

The first two terms of this expression are graphically indis-
tinguishable from the exact solution whena.3 as opposed
to a.2 for all three terms. In fact,(46) has a relative error of
slightly more than 10−4 even whena is as small as 3.

V. CONCLUSIONS

In this paper we have performed a linearized stability
analysis of the onset of convection in a porous cavity which
exhibits what we term nontraditional boundary conditions:
The left-hand boundary is impermeable and thermally con-
ducting, while the right-hand boundary is open and thermally
insulating. In an earlier paper(Rees and Tyvand14) we stud-
ied convection in a cavity with the first type of nontraditional
condition (impermeable and conducting) assumed valid ev-
erywhere. This had the effect of causing degeneracy in the
onset problem, first demonstrated by Lyubimov.18 Moreover,
convection may take place with any phase relative to the

3712 Phys. Fluids, Vol. 16, No. 10, October 2004 D. A. S. Rees and P. A. Tyvand

Downloaded 23 Jun 2006 to 138.38.32.83. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



location of the sidewalls. In the present problem the cavity is
asymmetric with respect to the sidewall boundary conditions.
This causes the onset problem to be of Hopf type with cells
traveling towards the open, insulated sidewall.

Detailed numerical solutions have been presented and
supplemented by separate asymptotic analyses valid for
small and large cavity aspect ratios. It was found that both
the critical Rayleigh number and angular frequency decrease
monotonically as the aspect ratio increases.

Both this paper and the preceding one, Rees and
Tyvand,16 are concerned with the effect of nontraditional
boundary conditions on two-dimensional convection. At
present it is not clear whether the findings of these papers, in
particular degeneracy and time-dependent onset, carry over
to three-dimensional cavities. The only hint of which we are
aware is the analysis of Storesletten and Tveitereid19 on con-
vection in a horizontal cylinder where the critical Rayleigh
numbers corresponding to the first two modes of instability
tend to a common limit as the axial wave number tends to
zero. Thus the degeneracy noted by Rees and Tyvand14 is
recovered. Work is currently in progress to investigate both
this aspect and the effects of strongly nonlinear postcritical
convection.

The present work adds to the developing understanding
of the Rayleigh–Bénard problem for a two-dimensional po-
rous box, starting with the work by Beck.10 He restricted
himself to the traditional conditions of insulating sidewalls
and conducting top and bottom, with all walls impermeable.
Let us define a traditional condition as one allowing a single
Fourier eigenmode for the temperature and stream function.
Accordingly, these are the possible traditional conditions:

Traditional conditions at top and bottom:

(I) conducting and impermeable,
(II ) insulating (heat flux given) and open (constant

pressure).

Traditional conditions at sidewalls:

(a) insulating and impermeable,
(b) conducting and open.

All these conditions are idealized in the sense that the
boundary is either completely closed or completely open
with respect to throughflow of heat and mass. The remaining
possibilities are the nontraditional conditions:

Nontraditional conditions at top and bottom:

(III ) Insulating(heat flux given) and impermeable,
(IV ) conducting and open(constant pressure).

Nontraditional conditions at sidewalls:

(c) Conducting and impermeable,
(d) insulating and open.

A striking fact is that the two conditions that are tradi-
tional at the top and bottom appear as nontraditional when
applied on the sidewalls, and vice versa. So far, no solution
exists for the Rayleigh–Bénard problem with nontraditional

conditions applied at horizontal as well as vertical bound-
aries. Nield3 solved the problem with all varieties of condi-
tions (I)–(IV ) at top and bottom, but he implicitly assumed
traditional lateral conditions as he considered infinite hori-
zontal extent. Nield and Bejan20 (Table 6.1, page 147) has
given a systematic overview of these conditions(I)–(IV ) ap-
plied at the top and bottom, counting 10 nontrivial combina-
tions. Tyvand21 (Table 4.1, page 94) has given a similar over-
view of all varieties of the conditions(a)–(d) applied at the
lateral walls, again identifying ten nontrivial combinations.
The present problem appeared in this table as the only un-
solved case. Again the simplest traditional condition(I) was
applied at the other boundaries(top and bottom).

The present work completes the picture of all possible
idealized conditions(a)–(d) at lateral walls,21 as a counter-
part to all possible idealized conditions at top and bottom.20

Furthermore, we open up a variety of some solved and many
unsolved two-dimensional Rayleigh–Bénard problems: A
10310 matrix of eigenvalue problems arises from the 10
nontrivial combinations of top and bottom conditions taken
together with the 10 nontrivial combinations of left-hand and
right-hand wall conditions. The published tables20,21 com-
prise 19 out of these 100 eigenvalue problems(19=10+10
−1 since there is one overlapping case). Some of the remain-
ing 81 cases are straightforward to deduce from the tables of
results,20,21yet no results are known for any eigenvalue prob-
lem with nontraditional conditions being posed at the hori-
zontal as well as the vertical boundaries. The common math-
ematical difficulty for such eigenvalue problems is that they
are not separable in thex andy directions, and it will not be
straightforward to find any closed-form analytical solutions.

APPENDIX: A PROOF THAT THERE ARE NO STEADY
EIGENSOLUTIONS

We consider the steady-state version of the governing
equations. We introduce a modified complex stream function
C by the definition

c = iÎRC. sA1d

The resulting coupled equations foru andC are

¹2C + iÎR
]u

]x
= 0, sA2d

¹2u + iÎR
]u

]x
= 0, sA3d

where the conditions

C = u = 0 along the boundary sA4d

correspond to impermeable and conducting boundaries, valid
along the bottomsy=0d and topsy=1d as well as the left-
hand wall sx=0d. Along the right-hand wall we have the
conditions

]C

]x
=

]u

]x
= 0 at x = a. sA5d

We conclude that the coupled eigenvalue problem is com-
pletely symmetric inC andu. If we eliminateu to formulate
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the eigenvalue problem in terms ofC alone, then this will be
identical to the problem written in terms ofu which we get
by eliminatingC. This complete symmetry inC andu im-
plies that the solutions must be the same, i.e.,

Csx,yd = usx,yd, sA6d

provided that there is a unique solution of this complex ei-
genvalue problem given by(A2)–(A5).

Inserting Eq.(A6) into the second governing Eq.(A3)
reduces the problem from a fourth-order problem to a
second-order problem,

¹2u + iÎR
]u

]x
= 0, sA7d

with the boundary conditions

u = 0 at y = 0, y = 1, x = 0, sA8d

]u

]x
= 0, x = a. sA9d

As in the main text, we separate out the vertical dependence:
u=gsxdsinspyd. The eigenfunctiongsxd is governed by the
boundary value problem

g9 + iÎRg8 − p2g = 0, sA10d

gs0d = g8sad = 0. sA11d

The general solution is

g = A expS i

2
R1xD + B expS i

2
R2xD , sA12d

where we have introducedR1=−ÎR+ÎR−4p2 and R2

=−ÎR−ÎR−4p2. This is the correct solution providedR1

ÞR2 so that there are two linearly independent eigenfunc-
tions. The left-hand boundary condition atx=0 gives B
=−A, so that we may write

g = C expS−
iÎRx

2
DsinSxÎR

4
− p2D ,

whereC is a redefined amplitude. The right-hand boundary
condition atx=a gives the complex equation

CFiÎRsinSaÎR

4
− p2D + ÎR− 4p2 cosSaÎR

4
− p2DG = 0.

sA13d

There are two possibilities of satisfying the right-hand
boundary condition: The first option is the trivial solution
C=0. The second option is the relationshipR=4p2, which is
the only nontrivial way of satisfying both the real and imagi-

nary parts of Eq.(A13). However, this value ofR makes the
eigenfunctions linearly dependent becauseR1=R2. For this
value ofR, the characteristic equation has a double root, and
the correct solution will be

gsxd = sA + Bxdeipx. sA14d

The condition gs0d=0 implies A=0, and the condition
g8sad=0 implies B=0. Then the eigenfunction(A14) be-
comes zero, which means that nontrivial eigenfunctions do
not exist. We have thus proven that there are no steady-state
solutions of the eigenvalue problem. This means that oscil-
latory modes of convection are the only possible solutions.
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