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Abstract. It is well-known that every two-dimensional porous cavity with a conducting and impermeable bound-
ary is degenerate, as it has two different eigensolutions at the onset of convection. In this paper it is demonstrated
that the eigenvalue problem obtained from a linear stability analysis may be reduced to a second-order problem
governed by the Helmholtz equation, after separating out a Fourier component. This separated Fourier component
implies a constant wavelength of disturbance at the onset of convection, although the phase remains arbitrary.
The Helmholtz equation governs the critical Rayleigh number, and makes it independent of the orientation of the
porous cavity. Finite-difference solutions of the eigenvalue problem for the onset of convection are presented for
various geometries. Comparisons are made with the known solutions for a rectangle and a circle, and analytical
solutions of the Helmholtz equation are given for many different domains.
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1. Introduction

Thermal convection in a saturated porous medium heated from below was first investigated
by Horton and Rogers [1]. They determined the critical Rayleigh number, 4π2, for a porous
layer of infinite horizontal extent and showed that the associated convection cell is a two-
dimensional roll with square cross-section. These results for the onset of convection were
confirmed by Lapwood [2]. The above early papers assumed that the upper and lower surfaces
are impermeable and perfectly conducting, but Nield [3] supplemented their linear stability
analyses with two alternative boundary conditions: the conditions of constant heat flux and
the condition of a permeable surface subject to constant pressure; see also Nield and Bejan
[4, p. 181] who presented a table with all possible combination of permeable/impermeable
conditions and conducting/constant flux conditions at the top and bottom.

The early papers also assumed that the layer is of infinite horizontal extent so that the
horizontal eigenfunction is a pure Fourier mode. Beck [5] generalized the Horton-Rogers-
Lapwood problem to a finite rectangular box, but he assumed thermally insulating and im-
permeable lateral walls. In these cases the pure Fourier modes persist as the horizontal eigen-
functions. The first paper which presented exact analytical solutions with more complicated
horizontal eigenfunctions was written by Nilsen and Storesletten [6]. Their results were con-
firmed by Rees and Lage [7], who also extended that analysis into the weakly nonlinear
regime. These papers gave the onset criterion for two-dimensional convection in a rectangular
box with conducting sidewalls, where the temperature perturbation is zero.
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Nilsen and Storesletten [6] found two remarkable qualitative differences from the problem
considered by Beck [5]: (i) the critical Rayleigh number is a smooth monotonic function of
the aspect ratio of the box and (ii) the eigenvalue problem is degenerate for all aspect ratios.
This means that the most unstable mode of disturbance may be represented by two different
stream functions and two different temperature perturbations at onset. The streamlines from
the first mode correspond to the isotherms of the second mode, and vice versa. Lyubimov
[8] and Bratsun et al. [9] showed that this degeneracy occurs for a two-dimensional porous
medium with zero perturbation along a contour of arbitrary shape, although no solutions were
given.

Storesletten and Tveitereid [10] also found that the same degeneracy is present in the
two-dimensional onset problem for a horizontal circular cylinder. Their solution was only
numerical in terms of truncated Taylor series.

We will show that the degeneracy of the eigenvalue problem for a porous cylinder with
zero perturbation temperature along the boundary leads to a Helmholtz equation governing the
onset of convection. We will perform finite-difference simulations to illustrate the degeneracy,
and compare with analytical solutions of the Helmholtz equation.

2. Basic equations

We consider a two-dimensional porous cavity with a homogeneous and isotropic permeability
K. Cartesian coordinates x, y are introduced, where the y-axis points vertically upwards.
The temperature field is T (x, y, t), where t denotes time. A steady temperature field Ts(y) is
prescribed along the boundary of the porous medium, and from the heat equation it follows
that Ts must vary linearly in the vertical direction to achieve steady conditions, where the un-
perturbed temperature field is given by T = Ts(y) everywhere inside the porous medium. This
temperature distribution along the boundary is maintained even when the internal temperature
field has been perturbed. This means that the perturbation temperature θ(x, y, t) is assumed
to vanish along the entire boundary of the cavity, i.e.,

θ = 0 along the boundary contour. (2.1)

This thermal boundary condition is, for simplicity, called a “conducting boundary", even
though the conducting properties at such a boundary are clear only in some simple cases.
Storesletten and Tveitereid [10] showed that this condition represents a highly conducting
solid medium surrounding a circular porous cavity of much smaller conductivity. However,
we note that horizontal isotherms arise in such a circular cylinder for all conductivity ratios.
Nilsen and Storesletten [6] investigated the horizontal rectangle, where this condition repres-
ents a wall that is a much better conductor than the porous medium, but still considerably less
conductive than the top and bottom planes.

We introduce a length scale H which is usually the largest diameter of the porous cavity.
Since we are going to consider different orientations of a given porous cavity, we stress that
H is a fixed length for a given configuration and therefore the definition of H does not vary
with the orientation.

We choose the following units for dimensionless time, velocity and pressure:

(cpρ)mH 2/km, κm/H, ρ0νκm/K, (2.2)
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respectively, where cp is the specific heat at constant pressure, k is the heat conductivity, κ is
the thermal diffusivity, ν is the kinematic viscosity of the saturating fluid, and ρ0 is a reference
fluid density. The subscript m represents the mixture of solid and fluid.

The dimensionless Darcy-Boussinesq equations for convection in a homogeneous and
isotropic porous medium are given by:

v + ∇p − RaT j = 0, (2.3)

∇ · v = 0, (2.4)

∂T

∂t
+ v · ∇T = ∇2T . (2.5)

The Rayleigh number for a porous medium is given by

Ra = gβK�T H

ναm

. (2.6)

Here we have introduced �T , which is defined as the temperature difference over a vertical
distance H . This means that the temperature gradient in the basic unperturbed steady state
must be considered to be fixed when a given cavity has been rotated with respect to the gravity
field. Thus �T must not be interpreted as the temperature difference between the lowest and
highest point on a boundary. We have also introduced g as the gravitational acceleration and β

as the expansion coefficient. In Equations (2.3)–(2.5), v is the velocity, while p is the pressure,
and j is the vertical unit vector. The basic dimensionless temperature gradient is −1 and is
due to pure conduction. We perturb the basic temperature field and introduce the temperature
perturbation θ(x, y, t) as follows:

T = −y + θ(x, y, t). (2.7)

We will assume that the onset of convection is given by a stationary mode, rather than as an
oscillatory mode; the proof of exchange of stabilities is straightforward in the present context
and is omitted.

We introduce the stream function ψ and eliminate the pressure. After linearisation the
governing equations are

∇2ψ − Ra
∂θ

∂x
= 0, and ∇2θ + ∂ψ

∂x
= ∂θ

∂t
, (2.8)

where the velocity components are (−∂ψ/∂y, ∂ψ/∂x). It may be shown easily that exchange
of stabilities applies and therefore the criterion for the onset of convection may be obtained by
solving the partial differential eigenvalue problem which is found by setting to zero the time
derivative in (2.8).

A modified complex stream function � may be defined as

ψ = i
√

Ra� (2.9)

and the resulting coupled equations for θ and � are

∇2� + i
√

Ra
∂θ

∂x
= 0, and ∇2θ + i

√
Ra

∂�

∂x
= 0, (2.10)
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where the conditions
� = θ = 0 along the boundary (2.11)

correspond to impermeable and conducting boundaries. We conclude that the coupled ei-
genvalue problem is completely symmetric in � and θ . If we eliminate θ to formulate the
eigenvalue problem in terms of � alone, then this will be identical to the problem written in
terms of θ which we get by eliminating �. Such eliminations lead to

∇4� + Ra
∂2�

∂x2
= 0 and ∇4θ + Ra

∂2θ

∂x2
= 0. (2.12)

This complete symmetry in � and θ implies that the solutions must be the same, i.e.,

�(x, y) = θ(x, y), (2.13)

provided that there is a unique solution of this complex eigenvalue problem given by (2.10)
and (2.11).

Given that (2.10) and (2.11) form an eigenvalue problem, the solution is subject to an arbit-
rary complex amplitude, which we call A. Later we will see that the significance of the factor
A is to determine the precise location of the cell walls (i.e., the locations where the stream
function is zero and which divide regions of flow circulating in opposite directions). Although
the position of the cell walls will be arbitrary, since these will depend on the argument of A,
their mutual separation will be constant for any given shape of cavity.

Given that the relationship between the original streamfunction and the temperature is

ψ(x, y) = i
√

Ra θ(x, y). (2.14)

there is an inherent phase shift of π/2 between the streamlines and their associated isotherms.
It manifests itself when we take the real and imaginary parts of the complex solution. If, for
a given choice of A, an eigensolution is such that the real part is the temperature then the
imaginary part is the associated stream function. If we now replace the complex amplitude A

by iA, the imaginary part will be the temperature and the negative of the real part will be the
stream function.

We eliminate � by (2.13), and reduce the eigenvalue problem (2.10)–(2.11) to a second-
order problem:

∇2θ + i
√

Ra
∂θ

∂x
= 0, (2.15)

θ = 0 along the boundary (2.16)

It is important that θ represents the physical temperature. This requires that θ must be gov-
erned by a real eigenvalue problem. The way to achieve this, is to separate out a Fourier
component as follows:

θ = F(x, y) e−iαπx, (2.17)

where the function F(x, y) is assumed to be real. Insertion of (2.17) into the governing
equation (2.15) and the taking the real and imaginary parts leads to two equations:

∇2F − α2π2F +
√

RaαπF = 0, (2.18)

√
Ra = 2απ. (2.19)
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The eigenvalue problem for F(x, y) is now governed by the Helmholtz equation

∇2F + α2π2F = 0, (2.20)

with the boundary condition
F = 0 on the boundary. (2.21)

Now the solution F(x, y) may be made complex, but only because we could use an arbitrary
complex amplitude. The eigenvalue α is a dimensionless wavenumber which measures the
number of cells per unit horizontal length. The eigenvalue problem given by (2.20)–(2.21) will
have an infinite number of nontrivial solutions, but we will concentrate on that eigensolution
which has the smallest value of α, termed αmin, and which produces the critical Rayleigh
number

Rac = 4α2
minπ

2. (2.22)

Since the Laplacian operator is independent of orientation, the Helmholtz eigenvalue problem
is independent of the orientation of the porous cavity. This means that the critical Rayleigh
number Ra and the associated wavenumber α are the same for all orientations of a given cavity
shape in the vertical plane. The isotherm and streamline pattern, however, will change with
orientation because ψ and θ always involve the factor e−iαπx . Cell walls are therefore always
vertical, but the horizontal distance 1/α between neighbouring cells will be independent of
orientation. The complex form of the solution (2.17) ensures that the isotherm pattern has ver-
tical walls displaced a horizontal distance 1/(2α) away from the cell-walls of the streamline
pattern. Moreover, the solution is degenerate in that the isotherm and streamline patterns may
be interchanged. More generally, the location of cell walls may be regarded as being located
arbitrarily since F may have an arbitrary complex phase.

3. Numerical method

The partial differential eigenvalue problem given by Equations (2.8) was solved by first ap-
plying standard second-order accurate central-difference approximations, and then applying
the inverse-power method to obtain the eigenvalue, Ra, of smallest magnitude.

The power method and the inverse-power methods are well-known methods for obtaining
the eigenvalue of largest and smallest magnitude, respectively, of square matrices. Given a
matrix, M, an iteration scheme may be employed after choosing an initial guess, v1, for the
appropriate eigenvector. For the power method successive iterates are defined by the iteration
scheme,

vn+1 = Mvn, (3.1)

while for the inverse power method successive iterates satisfy

Mvn+1 = vn. (3.2)

Proofs that such iteration schemes give, respectively, the eigenvalue of largest and smallest
magnitudes may be found in textbooks such as Jennings and McKeown [11, Chapter 9].

In the present paper we have a pair of coupled equations for θ and ψ :

∂2ψ

∂x2
+ ∂2ψ

∂y2
= Ra

∂θ

∂x
,

∂2θ

∂x2
+ ∂2θ

∂y2
+ ∂ψ

∂x
= 0. (3.3a, b)
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The iteration scheme which is analogous to (3.2) then takes the form

∂2ψn+1

∂x2
+ ∂2ψn+1

∂y2
= ∂θn

∂x
,

∂2θn+1

∂x2
+ ∂2θn+1

∂y2
+ ∂ψn+1

∂x
= 0. (3.4)

Iterative convergence to the desired eigensolution may be monitored by evaluating what is
effectively a Rayleigh quotient,

Ran+1 =
∫ ∫

�2
n dx dy∫ ∫

�n�n+1 dx dy
, (3.5)

where the integrations take place over the whole computational domain. The speed of conver-
gence of the method is well-known to depend on the relative sizes of the two smallest eigen-
values. While it is possible to speed up the convergence process by ‘shifting the eigenvalue’,
it was not found to be necessary for the cases we solved.

An initial iterate, θ1, displaying a desired symmetry, or perhaps no symmetry at all, is
chosen. Equations (3.4) were solved using a straightforward multigrid correction scheme
algorithm, as described in Briggs et al. [12]; this ensures a particularly rapid evaluation of
successive iterates. After evaluation of Ran+1, as given by (3.5), the current iterate for θ ,
namely θn+1, was rescaled in order to avoid successively smaller amplitudes as the iteration
procedure continues. Iterative convergence was then deemed to have taken place when suc-
cessive values of Ran first differ by less than 10−8. Very accurate values of Ra were obtained
by using different grids (e.g., 16 × 16, 32 × 32, 64 × 64, · · · ) and employing Richardson’s
Extrapolation. Typically we obtain values of Ra which are correct to four decimal places.

Apart from various configurations which are easily described within a Cartesian coordin-
ate system, we have also considered circular, semicircular, annular and elliptically shaped
domains. In the first three cases we may transform Equations (3.3) into the appropriate polar
coordinate form. In the third case we employed a pseudo-polar system defined by

x = ar cos φ, y = r sin φ. (3.6)

Here the ellipse, which is defined by 0 ≤ r ≤ 1
2 , has diameters a in the x-direction and 1 in

the y-direction. Equation (3.3a) becomes,

(cos2 φ + a2 sin2 φ)
∂2ψ

∂r2
+ (a2 − 1)

sin 2φ

r

∂2ψ

∂r∂φ
+ (sin2 φ + a2 cos2 φ)

r2

∂2ψ

∂φ2

+(sin2 φ + a2 cos2 φ)

r

∂ψ

∂r
+ (1 − a2)

sin 2φ

r2

∂ψ

∂φ
= Ra

[
a cos φ

∂θ

∂r
− a2 sin φ

r

∂θ

∂φ

]
, (3.7)

with an equivalent form replacing Equation (3.3b).
In some of the cases we present in the next section we also rotate the x- and y-axes in order

to remove certain symmetries. This will, of course, make the governing equations slightly
more complicated, and we omit presentation of such modifications for the sake of brevity.

4. Numerical results and further analysis

Using the above numerical method we computed streamlines and isotherms corresponding
to the onset of convection for a large number of differently shaped domains, but we restrict



The Helmholtz equation for convection 187

Figure 1. Streamlines and isotherms in various domains: (a) a unit square; (b) an inclined unit square; (c) an
L-shaped region formed from a unit square; (d) a 3 × 1 rectangle. Continuous lines and dashed lines represent
computed streamlines or the isotherms, respectively, or vice versa – this also applies to Figures 2 to 4. The critical
Rayleigh number for both the square boxes is 8π2, while that for the L-shaped domain is 154·3012, and for the
rectangular domain it is 40

9 π2 � 43·8649.

attention to 14 cases and these are displayed in Figures 1 to 4. Contours are drawn at 20 equally
spaced intervals in the range −�e ≤ � ≤ �e, where �e = maxij |�ij | is the maximum
absolute value of the appropriate dependent variable, ψ or θ , over the numerical grid.

In Figure 1 we display the onset pattern for (a) a unit square, (b) a unit square rotated
through 45◦, (c) an L-shaped domain formed by excising a 1

2 × 1
2 square from a corner of

a unit square, and (d) a 3 × 1 rectangle, which is plotted at a different scale from the other
shapes. In all cases the streamlines and isotherms may be exchanged for one another, and the
final solution obtained by the inverse-power method depends on the symmetry of the initial
iterate. For example, for the unit square, the initial iterate for θ displays an odd symmetry,
and this is maintained during the iterations. An even initial iterate yields an even converged θ

field.
The critical Rayleigh numbers for cases (a) and (d) are consistent with those given by

the analytical solutions for a rectangle given in [6] and [7]. Let us present the results in the
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framework of the Helmholtz equation (2.20). Assume that the rectangle has length L and
height H in dimensional variables. Furthermore H is the unit of dimensionless length. The
aspect ratio is a = L/H , and we consider the domain 0 < x < a, 0 < y < 1 with F = 0
along the entire boundary. The solution of the Helmholtz equation with the lowest eigenvalue
is a simple sine both in x and y,

F(x, y) = sin
πx

a
sin πy, (4.1)

which immediately produces the following eigenvalue and the corresponding critical Rayleigh
number

α =
√

1

a2
+ 1, Rac = 4π2

(
1

a2
+ 1

)
. (4.2a, b)

In terms of the present formulation we have, for case (a), where a = 1 implying α = √
2,

ψ = sin πx cos
√

2πx sin πy, θ =
( 1

2
√

2π

)
sin πx sin

√
2πx sin πy, (4.3)

with Rac = 8π2. In case (d), for which a = 3 and hence α = √
10/9,

ψ = cos
π

3
x cos

√
10

9
πx sin πy, θ =

( 1

2π

√
9

10

)
cos

π

3
x sin

√
10

9
πx sin πy, (4.4)

with Rac = 40
9 π2. The respective critical values of Ra have been reproduced numerically to

more than 4 decimal places and therefore we have confirmation that the numerical code works
correctly for these cases.

The restriction brought about by the removal of part of the unit square in case (c) causes a
substantial rise in the critical Rayleigh number. But even in this case, which displays no sym-
metry with respect to either the horizontal or vertical directions, there is the same degeneracy
with respect to the eigensolutions.

Returning to the two unit squares, we note firstly that they correspond to precisely the same
critical Rayleigh number (and, from our computations, this is also true of any other rotation of
the unit square), and secondly each pair of vertical streamlines displayed in Figures 1a and 1b
are of precisely the same distance apart, which was a motivation behind the substitution used
in equations (2.17). We note that a solution for case (b) is

ψ = cos
(
π

(x + y)√
2

)
cos

(
π

(y − x)√
2

)
cos

√
2πx, (4.5a)

θ = 1

2
√

2π
cos

(
π

(x + y)√
2

)
cos

(
π

(y − x)√
2

)
sin

√
2πx. (4.5b)

This was obtained by rotating F(x, y) given in (4.1) by 45◦ about the origin.
Figure 2 displays two different 1

2 × 1 rectangular domains and two triangles forming half
of a unit square. These are placed in the same figure because all four cases have the critical
Rayleigh number 20π2. Moreover, a close inspection of the vertical streamlines also suggests
that they are the same distance apart in all four cases — this was noted as a general feature in
the analysis above which led to the derivation of the Helmholtz equation (2.20). These features
suggest that the triangular solutions must be related to the rectangular solutions.
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Figure 2. Streamlines and isotherms in various domains: (a) a 1
2 × 1 rectangle; (b) an inclined 1

2 × 1 rectangle;
(c) a right-angled triangle with unit lengths sides; (d) a rotated right-angled triangle. The critical Rayleigh number
in all four cases is 20π2.

The appropriate form of the solution given in (4.1) and (4.2) for a 1
2 × 1 rectangle lying in

the range 0 ≤ x ≤ 1
2 , which is shown in Figure 2a, is,

ψ = sin 2πx cos
√

5πx sin πy, θ = 1

2
√

5π
sin 2πx sin

√
5πx sin πy. (4.6)

The eigenvalue α is
√

5, and Rac = 20π2. In terms of the Helmholtz equation (2.20), we have
that

F = sin 2πx sin πy, i.e., ψ = sin 2πx cos
√

5πx sin πy (4.7)

corresponds to the vertical rectangle in Figure 2a. We may also rotate freely the coordinate
directions since the Helmholtz equation (2.20) is invariant under rotation, so that an alternative
solution given by

F = sin 2πy sin πx, i.e., ψ = sin πx cos
√

5πx sin 2πy (4.8)

corresponds to a 1 × 1
2 rectangle. The rectangle which is inclined at 45◦ in Figure 2b now

corresponds to

F = sin
2π(x + y)√

2
sin

π(y − x)√
2

,
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i.e. ψ = sin
2π(x + y)√

2
cos

√
5πx sin

π(y − x)√
2

, (4.9)

which is formed by rotating by 45◦ the axes of the solution for F given in (4.7).
In all three cases given by (4.7) to (4.9) the solutions for F are identical and are related

solely by rotation. On the other hand, the corresponding solutions for ψ all contain the term
cos

√
5πx which accounts for the vertical streamlines. In this way we see why the critical

Rayleigh number for any chosen shape does not depend on the angle of orientation of that
shape, for each solution is given by the product of a function in the x-direction and one which
may be rotated freely with the domain.

As the Helmholtz equation (2.20) is linear, we may now construct the solution for the
triangle given in Figure 2c by adding those solutions given in (4.7) and (4.8). After some
standard manipulations it is possible to show that the appropriate solution for ψ is

ψ = sin πx sin πy cos
π

2
(x + y) cos

π

2
(x − y) cos

√
5πx. (4.10)

Once more, that part of (4.10) which multiplies cos
√

5πx may be rotated at will to give
solutions for similar triangles at all other orientations.

Figure 3 shows our numerical solutions for a circle and a semicircle, both of unit diameter.
The Helmholtz equation (2.20) may be written in polar coordinates as,

∂2F

∂r2
+ 1

r

∂F

∂r
+ 1

r2

∂2F

∂φ2
+ α2π2F = 0. (4.11)

The solution for F which gives the smallest value of α (and hence of Ra) in a unit diameter
circle is

F = J0(2λ0r) with α = 2λ0, (4.12)

where λ0 = 2·404826 is the smallest root of the zeroth order Bessel function. This yields
Ra = 16λ2

0 = 92·5310 to four decimal places, which is in perfect accord with our numer-
ical solutions using the inverse-power method on the full linearised equations, and with the
numerical series solutions of Storesletten and Tveitereid [10]. Thus the full solution for the
circle is

ψ = J0(2λ0r) cos(2λ0x), θ = J0(2λ0r) sin(2λ0x). (4.13)

A similar analysis shows that the corresponding solution for the semicircle is

ψ = J1(2λ1r) sin φ cos 2λ1x, θ = J1(2λ1r) sin φ sin 2λ1x, (4.14)

where λ1 = 3·8317 is the first root of the first-order Bessel function, J1. Hence Ra = 16λ2
1 =

234·912 in this case. In the case where a circular domain has a fin extending from its centre to
the circumference (at φ = 0, say), then we may write ψ in terms of J1/2(2πr), or as

ψ = r−1/2 sin(2πr) sin(φ/2) cos(2πx) (4.15)

with Ra = 16π2. We may also write down solutions for other, more general, segments of
a circle using Bessel functions of fractional order; see Courant and Hilbert [13, p. 391], for
example.

We may also derive the solution for annuli of unit outer diameter and an inner diameter, ε.
The φ-independent solution of the Helmholtz equation (4.11) is

F(r) = AJ0(απr) + BY0(απr), (4.16)
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Figure 3. Streamlines and isotherms in the following domains: (a) a circle; (b) a semicircle; (c) an annulus
with ε = 0·5; (d) an annulus with ε = 0·1. The respective critical Rayleigh numbers are, 16λ2

0 = 92·5310,

16λ2
1 = 234·912, 624·212 and 176·715.

where A and B are constants of integration and Y0 is the zeroth-order Bessel function of the
second kind. The boundary conditions are

F

(
1

2

)
= F

(
1

2
ε

)
= 0. (4.17)

The requirement of zero determinant of the coefficient matrix gives the condition for nontrivial
eigensolutions:

J0(λ)Y0(ελ) − J0(ελ)Y0(λ) = 0. (4.18)

As in the circle case above we have 2λ = απ and Ra = 16λ2. We have computed the case
where the inner diameter is half the outer diameter (ε = 0·5) and found that λ = 6·24606,
α = 3·97637 and Ra = 624·212, which is more than six times the Rayleigh number for
a full circle. This case is illustrated in Figure 3c. We see that a conducting core is strongly
stabilizing, since it takes away buoyancy in the middle of the porous medium where buoyancy
is most important for promoting the instability. The presence of many streamlines near the
inner boundary of Figure 3d, for which ε = 0·1, shows how strong the effect is of having even
a small hole in the circular disk. Even when ε = 1/1000 we find a 20 per cent increase in the
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Figure 4. Streamlines and isotherms in elliptical domains of different orientations. The ellipses have major and
minor axes of lengths 2 and 1. All three cases have the critical Rayleigh number 57·073.

Rayleigh number over that of the circle. The inner diameter needs to be less than 10−100 for
the Rayleigh number to increase by less by than one per cent.

Finally we present three cases involving ellipses at various orientations in Figure 4. A full
solution involves either an infinite series of sines and/or cosines in φ, or a product of Mathieu
functions when elliptical coordinates are used (see Gladwell and Willms [14], for example),
but will nevertheless retain the same cosine or sine dependence in the x-direction, as shown
again by the vertical streamlines. Yet again all three have the same critical Rayleigh number.

5. Conclusions

It is known that the eigenvalue problem for the onset of convection in a two-dimensional
porous cavity with zero perturbation temperature along impermeable walls is degenerate [8].
The degeneracy involves two linearly independent eigensolutions. The stream function in the
first solution corresponds to the temperature perturbation in the second solution and vice versa.

The present paper explores this degeneracy further by showing that the eigenvalue prob-
lem itself degenerates into a second-order problem governed by the Helmholtz equation.
The Helmholtz equation is the result of separating out a horizontal Fourier component. This
separation implies that all convection cells have vertical internal cell walls. The width of
each convection cells is constant, provided there are at least three cells so a cell width can
be defined as the distance between two internal cell walls. The Helmholtz equation gives a
critical Rayleigh number which is independent of the orientation of the porous cavity.

The wave number α of the convection cells is represented as the eigenvalue of the Helm-
holtz equation. The smallest possible eigenvalue for α determines the critical Rayleigh number
4α2π2. This means that the onset of convection in a porous cavity with conducting walls takes
place for the greatest possible wavelength. This is different from the case of a porous rectangle
with insulating sidewalls [5].

We have confirmed the degeneracy of the eigenvalue problem numerically in variously
shaped domains, and compared them with exact analytical solutions. New analytical solutions
have been derived for right-angled triangular, circular and semicircular cavities.

It is clear from the analysis leading to our main result that the degeneracy of the eigenvalue
problem applies exclusively to flows governed by Darcy’s law. The degeneracy does not apply
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to Darcy-Brinkman flows or to flows in pure fluids governed by the Navier-Stokes equation.
The reason for this is that the linearised equations for ψ and θ are no longer identical for
these flows, and the present results rely on the fact that the stream function and perturbation
temperature are multiples of one another. Preliminary work by the authors indicates that the
degeneracy persists into the steady, strongly nonlinear regime, at least for rectangular cavit-
ies, but that this. However, we are quite certain that degeneracy does not exist generally in
three-dimensional contexts; that this is so for the horizontal circular cylinder has already been
demonstrated by Storesletten and Tveitereid [10]. Likewise, any other temperature distribution
such as would be obtained by rotating the gravity vector, for example, would cause a basic
flow to arise and this too destroys degeneracy. Finally, preliminary work on the use of the
two-temperature model shows that the critical Rayleigh number depends on the symmetry of
the disturbance for convection in rectangular cavities.
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