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Abstract We consider the flow, which is induced by dif-
ferential heating on the boundaries of a porous cavity
heated from below. In particular we allow the sidewalls to
have the same cold temperature as the upper surface, and
thus the problem is a variant of the Darcy-Bénard con-
vection problem, but one where there is flow at all non-
zero Grashof numbers. Attention is focused on how the
flow and heat transfer is affected by variations in the cavity
aspect ratio, the Grashof number and the Darcy number.
The flow becomes weaker as the Darcy number decreases
from the pure fluid limit towards the Darcy-flow limit. In
addition the number of cells which form in the cavity
varies primarily with the aspect ratio and is always even
due to the symmetry imposed by the cold sidewalls.

Keywords Natural convection flow, Fluid-saturated
porous medium, Cavity

Nomenclature
A Aspect ratio
Cp Specific heat at constant pressure (J kg–1 K–1)
Da Darcy parameter
g Gravitational acceleration (m/sec)
Gr Grashof number
H Enclosure height (m)
K Permeability of the porous medium (m2)
p Fluid pressure (Pa)
Pr Prandtl number
t Time (s)
T Temperature (�C)
T0, T1 Boundary temperatures
u, v Velocity in the x- and y-directions (m/s)
U, V Dimensionless velocities
x, y, z Cartesian coordinates (L)

X, Y Dimensionless co-ordinates
a Thermal diffusivity
b Coefficient of thermal expansion of fluid (K–1)
h Dimensionless temperature
m Effective kinematic viscosity (l/q)
q Fluid density at reference temperature (Tc)
s Dimensionless time
w Streamfunction (m2/s)
c Inverse Darcy number
W Dimensionless vorticity

1
Introduction
Bénard convection in cavities filled with a porous medium
is a mathematically interesting but practically relevant
problem because of its application to geothermal phe-
nomena and the safe disposal of nuclear waste, for
example. There now exist a very large number of papers
which are devoted to this topic, and many of these have
been reviewed recently by Rees [1]. Part of the reason for
this voluminous literature lies with the fact that there are
many models describing different types of porous med-
ium. For example He and Georgiadis [2] and Rees [3], by
bringing into account the quadratic inertia terms in the
momentum equation, have investigated the effect of inertia
on the onset and weakly nonlinear development of con-
vection. Kladius and Prasad [4] have studied the influence
of Darcy and Prandtl numbers for fluid flow in a porous
medium. Lage et al. [5, 6] conducted a series of numerical
investigations on the effect of Prandtl number on Benard
convection in an infinite porous fluid layer. Recently, Jue
[7] considered enclosures of various aspect ratios filled
with a porous medium and examined the effect of
Brinkman resistance in detail for the aspect ratios 1, 2, and
4. Khanafer and Chamkha [8] have also investigated
numerically the Brinkman-extended Darcy unsteady
mixed convection flow in an enclosure, but with the
addition of internal heat generation and the inclusion of
the convective terms in the governing equations. Finally
the problem of natural convection flow of a fluid in a
square cavity filled with porous medium and subject to
internal heat generation and non-uniformly heated side-
walls has been investigated by Hossain and Wilson [9].

In this paper we follow the analysis of Jue [7] but with
different boundary conditions. It is frequently the case
that the vertical sidewalls of a convecting cavity are taken
to be insulating. This has the effect that at sufficiently
low Darcy-Rayleigh numbers the basic state is one of
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conduction through the porous medium with no flow. In
the present paper the lower surface is held at a uniform
but relatively hot temperature, but the other three
surfaces are maintained at the same relatively cold
temperature. The presence of the cold sidewalls causes
flow to exist at all nonzero Rayleigh numbers. The
present work is a preliminary investigation of the effect of
such a boundary condition on the ensuing flow and heat
transfer.

2
Mathematical formalism
We consider the two-dimensional natural convective flow
of a viscous incompressible fluid in an isotropic and rigid
porous cavity contained between two horizontal plates at
y = 0 and y = H and two vertical sidewalls at x = 0 and
x = 2AH, where 2A is the aspect ratio of the cavity. The
fluid is taken to have the uniform temperature, T0 at time
t = 0. The temperature of the lower plate is then raised
suddenly to T1 and thereafter maintained uniform.
Figure 1a represents the physical model along with the
boundary conditions.

Under the above assumptions the governing equations
for the two-dimensional flow of a viscous incompressible
fluid for natural convection flow in a rectangular porous
cavity are as follows:
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where u and v are the x- and y-components of the velocity
field, respectively, K is the permeability of the porous
medium, g is the acceleration due to gravity, bT is the
volumetric expansion coefficients for temperature and a is
the thermal diffusivity. Further, T is the temperature of the
fluid flow and the time is t. In this study we have neglected
stratification, viscous dissipation and other additional
effects such as local thermal nonequilibrium.

In equations (2) and (3) K is the measure of perme-
ability of the porous medium, H is a reference length, m/H
is reference velocity, and T1 – T0 is a reference temperature
difference. Based on these reference quantities, the fol-
lowing dimensionless variables are constructed:
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By introducing the above dimensionless dependent and
independent variables in the governing equations the
following equations are obtained
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is the vorticity directed in the z direction, and w is the
stream function defined by

U ¼ @w
@Y

; V ¼ � @w
@X

ð9Þ

In the above equations

Gr ¼ gbTðT1 � T0ÞH3

m2
; c ¼ 1=Da; Pr ¼ m

a
ð10Þ

are, respectively, the Grashof number due to thermal
diffusion, the inverse of the Darcy number, and the
Prandtl number.

The cavity we study is symmetric above the vertical
mid-plane and therefore we consider only the left half
of the flow region shown in Fig. 1a in order to reduce
computational time. However, we note that some
computations over the whole fluid domain were

Fig. 1. (a) The flow configuration and the coordinate system.
(b) Schematic representation of the cavity depicting the mesh
used in the numerical simulations and the boundary conditions
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undertaken in a deliberate attempt to find solutions which
break this symmetry, but were unsuccessful, and therefore
we are confident that the solutions given here are reali-
sable in practice. We note that the computations of Banu
et al. [10] have yielded asymmetric flows, but in that case
all four boundaries were held at the same temperature; in
the present configuration the cold sidewalls seem to act to
impose symmetry artificially.

At time s = 0, the temperature satisfies h = 0 every-
where except for h = 1 on the lower plate. As time in-
creases the temperature field develops but the values on
the horizontal and vertical bounding surfaces are main-
tained at their initial values. We apply the boundary
conditions w = 0 and ¶h/¶X = 0 on X = AH as required by
the symmetry of the cavity. The other boundary conditions
are shown in Fig. 1b.

An upwind finite-difference method, together with
successive over relaxation iteration technique has been
employed to integrate the model equations (6) to (8)
governing the flow. Except for the non-linear terms, all
spatial dervatives in the governing differential equations
are approximated at the interior grid points using second
order central difference approximations. In the present
computations convergence was assumed when the maxi-
mum absolute point-wise change over one iteration was
less than 0.0001.

Meshes of size h · h were chosen for the numerical
work, and the computational region uses m vertical and n
horizontal grid lines as shown in Fig. 1b above. Since the
dimensionless distance between the parallel plates is H, the
grid size h has the value H/(n – 1) as we use H = 3 and n =
31 equally spaced intervals. In the present computations
we consider the aspect ratios A = 1, 2, 3, 4 and 5 and
therefore the meshes were taken to be 31 · 31, 61 · 31, 91 · 31,
121 · 31 and 151 · 31, respectively. To see the effect of mesh
size on the numerical results, computations were carried out
till thesteady-statereachedforthe flowinarectangularcavity
with Gr = 200, Pr = 0.7 and 1/Da = 0.0 using three mesh sizes:
51 · 26, 61 · 31 and 81 · 41 with H =3. The results in terms of
maximum and minimum values of w are entered in Table 1,
which shows the differences due to grid size are no more
than 1 percent. Thus all the results reported here are based
on the mesh sizes mentioned above.

Finally, the numerical code was run until the flow
attained a steady state. Some of the solutions obtained are
presented below in terms of streamlines and isotherms.
We have allowed the Grashof number to vary up to 200
and the aspect ratio to take unit values between 1 and 5.
The Darcy parameter, c (= 1/Da), takes values between 0
and 20.

3
Results and discussion
We now present a selection of our computational results in
Figs. 2, 3, 4, 5, 6, 7. In Fig. 2 we show how the streamlines
and isotherms vary with Grashof number for a square
cavity. Here we have taken c = 0, which corresponds to a
pure fluid, rather than a porous medium with Brinkman
effects. There is flow at all nonzero Grashof numbers due
to the fact that the temperature field cannot consist of
horizontal isotherms because of the boundary conditions.
As Gr increases the one-cell flow (i.e. two cells in the full-
cavity) which is characteristic of the near-zero Gr situation
and which is caused by fluid being forced to flow down the
sidewalls, gradually gives way to a two-cell flow where fluid
flows down the middle of the cavity. The associated vari-
ation in the isotherms near X = 0.6 shows not only this
developing second cell but its increasing strength. The left
hand cell always remains slightly stronger than the right
hand cell as it is assisted by the downward buoyancy
forced from the cold sidewall.

The aiding effect of the cold sidewall is also seen clearly
in Fig. 3 where we concentrate on how the flow varies with
increasing cavity aspect for Gr = 200, again for the pure
fluid case. In all these cases the number of cells in the half-
cavity is precisely the same as the value of A. It is
important to emphasise that it is possible to obtain dif-
ferent numbers of cells in many cases, but only by modi-
fying substantially the initial conditions to ones
resembling closely the desired solution, such as a 4-cell
flow in the A = 5 cavity. The overall strength of the left-
hand cell increases slightly as A increases, reflecting the
fact that the cavity is becoming less restrictive. We also see
the beginnings of a sixth cell in the A = 5 cavity.

We turn now to Darcy-Brinkman convection where the
presence of a solid matrix begins to make its presence felt.
In Fig. 4 we show how increasing values of c affect the flow
when Gr = 200, and these subfigures may be supplemented
by the A = 2 subfigure in Fig. 3 for which c = 0. The main
effect is that the overall strength of the induced fluid
motion is reduced due to the increasing resistance of the
porous matrix. This causes the isotherms to become more
like the low Gr case shown in Fig. 2, and also causes the
2-cell structure shown in Fig. 3 to transform gradually
back to a 1-cell flow.

Finally, local Nusselt number or the heat transfer has
been calculated at the bottom heated surface from the
following non-dimensional expression:

Nu ¼ � @h
@Y

� �
Y¼0

ð11Þ

where Nu is the Nusselt number. In Figs. 5 to 7, we show
the surface rate of heat transfer along the lower surface of
the cavity; these figures correspond to the detailed
streamline and isotherm plots given in Figs. 2, 3, 4,
respectively. Figure 5 shows how increasing values of the
Grashof number affects the heat transfer. Over the range of
Gr considered the local heat transfer increases only slightly
with Gr although the induced flow increases in strength
quite markedly (see Fig. 2). The reason for this is that
the temperature profile is still dominated by conductive

Table 1. Gr = 200, Pr = 0.7, s = 10.0, H = 3.0, h = H/(n – 1)

M · n wmax wmin

51 · 26 6.09464849068 –4.98374856545
61 · 31 6.15286631932 –5.08676619877
81 · 41 6.22401243172 –5.18554954971
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temperature profile, as shown in Fig. 2a, and although the
flow increases greatly in strength, it is not yet sufficiently
strong to achieve a large change in the temperature profile
near the lower surface.

Figure 6 gives the heat transfer curves for A = 2 for
various values of 1/Da. As 1/Da increases, the resistance to
flow also increases, which means that the temperature field
approximates more closely to the equivalent conductive
state. Therefore we see from this figure that we require

1/Da to be somewhat less than about 10 in order for
convective effects to make their presence felt in terms of
the lower surface rate of heat transfer.

Figure 7 shows the lower surface rate of heat transfer
corresponding to the detailed flow-field and isotherms
shown in Fig. 3 for the various aspect ratios considered
there. In the region X < 0.1, there is little difference be-
tween the various curves, which suggests that the tem-
perature field remains dominated by the presence of the

Fig. 2. (a) Streamlines and (b) isotherms for different
Gr: Gr = 20, 50, 100 and 200 while Pr = 0.71 at steady
state situation that reached at s = 3 with aspect ratio 2.
Throughout 1/Da = 0.0 (Pure fluid)
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cold sidewall. As the aspect ratio increases the heat
transfer curves oscillate with increasing number of max-
ima and minima. Once there are two cells in the cavity,
each new cell which is added as A increases by 1 adds a
new extremum to the heat transfer curve. However, each
new maximum (or minimum) corresponds to a rate of
heat transfer which is almost exactly the same as the

previous one, and this indicates that the effect of the cold
sidewall is quite local to that sidewall.

4
Conclusions
This has been very much a preliminary study of the effect
of cold sidewalls on convection in a internally heated

Fig. 3. (a) Streamlines and (b) isotherms with aspect
ratio A = 1, 2, 3, 4 and 5 at steady state situation that
reached at s = 5 while Gr = 200 and Pr = 0.71.
Throughout 1/Da = 0.0 (pure fluid)
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porous cavity heated from below. The main difference
between this case and those of the standard Darcy-Bénard
problem (which has insulated sidewalls) and the infinitely-
conducting case considered by Rees and Lage [11], is that
there remains flow at all nonzero values of the Grashof
number (or equivalently the Rayleigh number). Thus the
resulting flow field is dominated by the presence of this

sidewall, and especially so for the range of Grashof num-
bers considered here. As the aspect ratio of the cavity in-
creases the interior cells become much less affected by the
sidewall boundary conditions.

Although we have studied two-dimensional flow in this
paper, there is no guarantee at this stage that the flow will
remain two-dimensional at fairly large values of the

Fig. 3. (Contd.)

Fig. 4. Streamlines and isotherms for different values
of 1/Da: (a) 1/Da = 1.0, (b) 1/Da = 10.0 (c) 1/Da = 20.0
while Pr = 0.7, Gr = 200 at the steady state siltuation
that reaches at s = 5 with A = 2
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Grashof number. In other contexts, namely those involv-
ing thermal ‘imperfections’ of the upper and lower
surfaces (see, for example [12] and [13]) also give rise to
two-dimensional flows at low Rayleigh numbers, but these
patterns give way to strongly three-dimensional steady
convection at moderate Rayleigh numbers. It will therefore
be important to investigate the physical realisability of the
present flows.
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Fig. 5. Local heat transfer against X/A for different Gr at the
bottom surface while A = 2, Pr = 0.7 and 1/Da = 0.0

Fig. 6. Local heat transfer against X/A for different 1/Da at the
bottom surface while A = 2, Pr = 0.7 and Gr = 200.0

Fig. 7. Local heat transfer against X/A for different A at the
bottom surface while Gr = 200, Pr = 0.7 and 1/Da = 0.0
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