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SUMMARY
The onset of finite-amplitude convection in a horizontal porous layer of infinite

extent is considered. Attention is focused on the case of spatially periodic heating
and cooling on the lower and upper boundaries, respectively. In particular, we
analyse the effects of small-amplitude, symmetric, thermal modulations with a
wavelength which is large compared with the layer depth.

Weakly nonlinear theory is used to derive Landau-Ginzburg equations for the
amplitude of convection in the form of transverse and longitudinal rolls. It is found
that these patterns do not necessarily have the same spatial periodicity as the
thermal forcing and may even be spatially quasiperiodic. The most unstable
transverse roll, however, always has the same wavelength as the thermal modula-
tions. We show also that for certain ranges of values of the modulation wavenumber
the first mode to appear as the Rayleigh number is increased is, somewhat
surprisingly, a rectangular cell of large-aspect-ratio planform. This mode is a linear
superposition of two rolls equally aligned at a small angle away from the direction of
the longitudinal roll.

1. Introduction

IN THIS paper we present a study of the onset of convection in an infinite
porous layer heated non-uniformly from below. We assume that the
temperatures of the horizontal planar boundaries are subject to steady,
symmetric, small-amplitude, sinusoidal modulations about their mean
values. The modulations are taken to occur over a length scale which is
large compared with the layer depth. This analysis forms part of a
systematic examination of the effects of boundary non-uniformities on the
onset and stability of finite-amplitude convection in porous layers. In (1 to
4) we have presented analyses of configurations where the non-uniformity
has an associated wavenumber kw either equal to, near to, or far from the criti-
cal wavenumber kc for convection in the unmodulated or Lapwood problem
(after Lapwood (5) who studied in detail the criterion for instability in
plane, uniformly heated, porous layers). Weakly nonlinear theory was used
to derive evolution equations for the amplitudes of certain roll solutions. It
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was shown that there exists a variety of linearly stable cellular patterns other
than rolls; the particular ones which arise depend on the modulation wave-
number and symmetry of the imperfection. These patterns include square
cells (kw = kc), rolls with a spatially-varying amplitude and local phase or a
spatially-varying amplitude and local orientation (kw~kc), and rectangular
cells (0 < kw < 2kc) whose aspect ratio depends on kw. In this study we
extend the results of the above papers by examining the onset of convection
when kw ~ 0 ; that is, the thermal modulations at the plane boundaries occur
over a long length scale. The range of applicability of this analysis is greater
than is perhaps immediately apparent. It may be shown that, after reseating,
the amplitude equations derived here also apply to the following configura-
tions: (i) a horizontal porous layer with antisymmetric heating, (ii) a
horizontal porous layer heated isothermally with boundaries exhibiting
small-amplitude, symmetric undulations, (iii) an undulating horizontal
porous layer of constant thickness heated isothermally, and (iv) similar
fluid-layer configurations. Thus the present work is of importance in the
study of convection in porous rock strata, for example, for these often
undulate and are subject to non-uniform heating.

There are several papers which deal directly with the Rayleigh-B6nard
analogue of the present problem, namely the onset of convection in fluid
layers heated non-uniformly from below, or a uniformly heated layer with a
varying depth. Eagles (6) considered weakly nonlinear convection in a
uniformly heated layer with the lower boundary perturbed by an O(e2)
amount over a length scale which is O(e~1), where e « 1. For perturbations
with a tanh2 profile there is a finite set of Rayleigh numbers at which
corresponding eigenmodes become unstable. For that problem there is also
a continuous spectrum of values of the Rayleigh number for which further
eigenmodes become linearly unstable. However, the first mode to appear as
the Rayleigh number is increased bifurcates from the trivial solution at the
lowest value of the discrete set of Rayleigh numbers. It also appears that the
wavenumber of this mode is unique and equal to the critical wavenumber
of the unperturbed problem. In a comprehensive study of the onset of
convective Walton (7) sought to include boundary variations with 0(1)
amplitudes. Eagles's wavenumber selection and discrete critical Rayleigh
number phenomena were explained (for sinusoidal perturbations, at least)
by appealing to known properties of the solutions to Mathieu's equation. In
both these works, however, only two-dimensional convection was studied.
Later, Walton (8,9) considered finite-amplitude convection in the form of
both transverse and longitudinal rolls (note that the present definitions of
these rolls are the same as in (8) but are different from those in our previous
work (1 to 4)). Convection in an infinite layer of slowly increasing depth was
considered in (8); in this case the concept of a specific Rayleigh number at
which convection ensues becomes untenable since convection exists within
the whole layer and has an amplitude which is space-dependent. In (9) it is
shown that when the temperature drop across the layer varies monotonically
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with the maximum at an end wall, the first roll to appear is the longitudinal
roll. Although such a result is shown later also to apply here, we find that a
three-dimensional disturbance composed of two rolls equally oriented about
the longitudinal roll direction often has a still lower critical Rayleigh
number.

In §2 we present briefly the governing equations for convection of a
Boussinesq fluid in a saturated porous medium and define the precise
configuration of the porous layer in question. At subcritical values of the
Rayleigh number Ra the flow is unique, two-dimensional and driven directly
by the thermal modulations at the boundaries; this is termed the quasicon-
duction regime and is studied in §3.

Close to the critical Rayleigh number Rac for the onset of convection in
the unmodulated layer, the quasiconduction flow becomes unstable because
of the magnitude of the adverse temperature gradient across the layer. The
presence of the thermal modulations serves to modify both the spatial form
of the unstable modes and their critical Rayleigh numbers. The onset of
transverse rolls (that is, rolls aligned such that the resulting flow pattern
remains two-dimensional) is analysed in §4 and it is shown that the critical
value of the Rayleigh number is found as an eigenvalue of Mathieu's
equation.

In §5 we study the onset of longitudinal rolls; in this case the amplitude
and critical Rayleigh number are given as an eigenfunction and eigenvalue,
respectively, of a fourth-order analogue of Mathieu's equation. Oblique
rolls are analysed in §6. We first present results for rolls with an 0(1)
orientation relative to the longitudinal roll. For rolls with a small relative
orientation the equation governing the onset of convection now has spatial
derivatives identical in form to those used in describing the zig-zag
instability. Asymptotic and numerical results show that these latter 'oblique'
modes constitute the most unstable mode for the present problem but we
note that, for certain ranges of values of the thermal modulation wave-
numbers, the mode assumes the form of a rectangular cell of large-aspect-
ratio planform.

The results are discussed in §7.

2. Hie equations of motion and formulation of the problem

We consider the onset of cellular convection in an unbounded horizontal
porous layer which is heated from below. The non-dimensional equations
governing the convection of a Boussinesq fluid in a saturated medium are
(see (1))

V.q = 0, q = -VP + Ra72, T, + q . VT = V27, (1)

where i is the unit upward normal, q is the Darcy velocity vector, P is the
pressure, T is the temperature, t is the time, and Ra is the Darcy-Rayleigh
number (or, more briefly, the Rayleigh number) defined in terms of the
various fluid and medium properties. On eliminating q from the above
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equations we obtain

V2P - Ra Tz = 0, (2)

V2r = Ra TTZ - VP . VT + T,. (3)

We impose the thermal boundary conditions T = T( l + 6g(ex)) on z = ± 1 ,
and, since the horizontal boundaries are assumed to be impermeable, we
require Pz = Ra T there. The modulation function g(ex) is arbitrary at this
point and we assume that both £ and <5 are small.

It proves convenient to work relative to the conduction solution for the
Lapwood problem and therefore we set P =p - \ Ra z2 and T = 6 - z in (2)
and (3). Likewise we introduce the slow spatial scale X = ex to obtain

V2p - Ra 6t = -2EPZX - e2pxx, (4)

V20 + Ra 6 -pz = Ra 66z -Vp .16 + 6,- 2e6xX - E26XX

- e(px6x + px6x) - E2px6x, (5)

which are to be solved subject to

6=T6g(X) onz = ±l. (6)

In addition it is assumed that there is no net fluid flux along the layer (that
is, there is a zero mean horizontal pressure gradient) and that the resulting
convection patterns are either spatially periodic or quasiperiodic.

3. Quasicondaction regime

In the classical Lapwood problem (that is, a saturated plane porous layer
heated uniformly from below) the basic steady state is motionless since heat
is conducted uniformly from the lower to the upper boundary. When
thermal modulations are present they drive a weak convective motion via
baroclinic effects. This motion is two-dimensional and is most easily
described in terms of the non-dimensional streamfunction rp defined by
q = curl (V#)» where y is the unit vector in the y-direction. Since both e « 1
and 6 «1 we seek solutions by introducing a perturbation expansion of the
form

(V. f ) = n 8mE"(xpmn, 6™). (7)
rn-On-0

After some routine algebra we eventually obtain the solutions

Iz

O(6E3), (8)
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K zs z3 Iz \ /z5 z3 z \

l20-36 + 3 6 0 K - U - ^ 6 + 360)^'), (9)
where the dashes denote derivatives with respect to X. The leading-order
effect on the flow field is a circulation of magnitude 6e consisting of pairs of
vertically stacked counter-rotating cells of large aspect ratio. The lowest-
order term in the temperature profile comprises a simple modification which
is proportional to the local thermal modulation at the boundaries. In the
remainder of this paper we choose to study sinusoidal boundary modula-
tions, and therefore the leading-order correction to the mean heat transfer
across the layer arises at O(62e2), where nonlinear terms in g(X) first
appear in the expansion. We define the Nusselt number to be the mean heat
transfer across the layer per unit length in the x-direction:

,2nl<oe ,2a/a>

N U = 1 - — | d2(z = ±l)dx = l - — jo e,(z = ±l)dX, (10)

where it should be noted that account has been taken of the thermal
conduction profile (which was subtracted out when defining 6 in §2) and
that we have now assumed that the thermal modulations have the explicit
form

g(X) = cos(a)X). (11)
Using (9) we find that

and therefore thermal modulations serve to enhance the transfer of heat
across the layer.

In (4) the effects on finite-amplitude convection of small-amplitude
thermal modulations with finite, non-zero wavenumber kw were discussed
(the present problem corresponds to kw = eo) for e « 1 and a> = 0(1)). The
subcritical Nusselt number for symmetric modulations (where the boundary
conditions are 6 = ±6 cos (^HJ:) on z = T l ) was found to be given by

Nu ~ 1 + -kkw Rai [coth2 y - coth2 % + X~x coth % ~ y"1 coth y]<52, (13)

where
Y2 = kl + kwRaK X

2 = ki-kwRaK (14)

and x may take real or imaginary values. As kw-+ 0, (13) takes the form

which clearly matches with (12) as 6
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4. The onset of transverse rolls
The onset and stability of convection in uniformly heated porous layers of

infinite extent is now well known. In terms of the present non-
dimensionalization, convection ensues when Ra>Ra c = ^2, with a cor-
responding critical wavenumber kc = \x. Palm, Weber and Kvemvold (10)
using the method of Schluter, Lortz and Busse (11) determined that, for a
Boussinesq fluid, rolls constitute the only stable planform for finite-
amplitude convection (that is, when the Rayleigh number is sufficiently
close to Ra,; that convection may be described using weakly nonlinear
theory using Ra — Ra,. as the small parameter). Furthermore not all possible
wavenumbers are stable, for there exists a band of wavenumbers for which
the finite-amplitude convection is linearly stable (see (3) for quantitative
details). In a numerical study, Straus (12) extended this stability analysis
well into the strongly nonlinear regime; he found that rolls remain stable up
to Ra =* 9Rac. It is natural therefore that we study rolls at the outset.

Initially we restrict our attention to transverse rolls since the overall flow
pattern, which comprises the rolls and the weak base flow (which is
discussed in §2), remains two-dimensional. The strategy we use to deter-
mine the onset of convection is to develop a weakly nonlinear theory
thereby deriving nonlinear equations governing the amplitudes of the
convective modes. Although this is not strictly necessary for the present
problem, we hope later to extend the present work by using these equations
to analyse the stability of finite-amplitude convection.

We begin by expanding p, 0 and Ra in a power series in e, as follows:

n - 0
, 6n,Rn), (16)

where p0 = 60 = 0, Ro = Râ  = n2, and the summation is over integer values
of n. It is necessary at this point to determine a suitable scaling for e in
terms of <5, which is to be regarded as the reference small quantity in accord
with our previous work. On denning a local Rayleigh number 3?» based on
the local temperature drop across the layer, it may be shown that
92<» = Ra(l + Sg(X)). This variation in the local Rayleigh number is
consistent with a wavenumber variation of O(fii) so that the associated
length scale for variations in the x -direction is O(<5~i). It is quite natural to
equate this with the modulation length scale (O(e~')) and to assess the
ramifications a posteriori. Thus it is easily seen that e = O(6^) is the
appropriate scaling, which is identical with that considered in (6).

On substituting e = 6^ and (16) into (4) to (6) we obtain a set of linear
equations for the various unknowns. At O(e) we obtain the following
homogeneous equations for the unknowns (px, Ox):

V2
Pl-R06u = 0, (17)

V2el + R081-Pu = 0; (18)
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these are to be solved subject to the boundary conditions pu = dx = 0 on
z — ±1 . Although (17) and (18) possess an infinity of eigensolutions we
consider transverse modes of the form

(19)

where A = A(X, r) is a complex amplitude to be determined later, and
T = \,£2t is a slow time scale. We omit further details of the expansion which
is rather straightforward, but note that the O(E2) solution is given by

' - i t f c o s ( 2 * e z ) \ u > (2Q)

At third order in £ the equations do not possess a solution unless a value for
R2 is chosen such that the inhomogeneous terms are orthogonal to the O(e)
eigensolution. The application of such an orthogonality or solvability
condition, which is a standard procedure in problems of this type, yields the
following evolution equation for the transverse roll amplitude:

A% = [R2 + 4klg(X)]A + 4AXX - klA2A. (21)

In this paper we confine our attention to the onset problem and therefore
we linearize the steady form of (21). We consider sinusoidal thermal
modulations only, and so we let g{X) = cos EQX, noting that the wave-
number of the modulations is, therefore, kw = eo6^. We obtain

[R2 + 4k\ cos EoX]A + 4AXX = 0, (22)

which is the Mathieu equation, and its canonical form is recovered using the
substitutions £ = £<>A72, y = R2/el and % = jr2/2£o, giving

0. (23)

Although much of the relevant analysis of (23) for this type of problem is
contained in (8) it is worthwhile to summarize some of the results, as they
also apply here.

Solutions of (22) and (23) exist with Floquet exponent v such that

A=e»<oxn £ Ane^x = e^ £ An'7**, (24)
n — — °o n — — o°

but v is real only in certain regions of (R2, e0)- or (y, x)-space. These
regions are shown in Figs 1 and 2 respectively. Elsewhere v is complex and
the corresponding solutions grow exponentially in space and are thus
unphysical. When v is not an integer, equation (22) has two linearly
independent solutions of the form A+v(X)e'v'oXn and A_v(X)e-'VCoXf2,
where both A+y and A_Y have period 2n/e0. When v takes integer values
there are, once more, two linearly independent solutions; these have period
2JT/£0 when v is even and period 4JI/E0 otherwise.
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FIG. 1. Critical values of R2 satisfying equation (22) as a function of the
wavenumber of the thermal forcing e0, for various values of the Floquet

exponent v

For large values of e0 the most unstable disturbance, which is easily
shown to correspond to v = 0, has the form

(25)A ~ 1 + (ki/el) cos £oX + (k*o/8e4o) cos 2£oX,

and the second-order (that is, 0(6)) correction to the critical Rayleigh
number is given by

R 2 k * J l (26a)

Hence the critical Rayleigh number correct to O(6) is

(26b)
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- 2 0 -

0

FIG. 2. The stability diagram of the Mathieu equation (23) showing y as a
function of % f° r various values of v

For small values of £0, the disturbance becomes concentrated near the
regions of maximum local Rayleigh number; that is, near X = 2mnle0 for
integer m. From Abramowitz and Stegun (13) it may be shown that
/?2c'—4kl = -n2, and the critical curves corresponding to those values of v
between n and n + 1 become exponentially close. On setting £ = e^X and
R2= —n2 + R*e0 in (22) and expanding for small e0.

 w e obtain the
following equation, at leading order:

which is the parabolic-cylinder equation. The smallest value of R* for which
a solution exists is 2$kc. We obtain

/ l~exp(-V2* c £ ( ) ^
2 /4 ) , (28)

(29a)
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and therefore
(29b)

for small e0. It is worth noting that the disturbance is concentrated in the
region where £ is 0(1); that is, where X = O(EQ^), which is small compared
with the modulation length scale O(EQ ')•

For intermediate values of eo» the most unstable mode is given by v = 0
(see Fig. 1); this is a well-known result of the Floquet theory of
second-order ordinary differential equations with periodic coefficients (see
(14))-

5. Hie onset of longitudinal rolls
In order to study the onset of convection in the form of longitudinal rolls

it is necessary to abandon the e = 6^ scaling required for transverse rolls.
This is because the spatial derivative term drops out of equation (21) for
longitudinal rolls for it may be shown that the amplitude of rolls of
orientation /3, relative to the transverse roll, satisfies (21) with A x x replaced
by A x x cos2 /3. In order to obtain a balance with the next highest derivative
available we take e = O(6^) and assume that the roll eigensolution appears
at O(e2) (but note that the amplitude of the roll remains O(d^)). We set
e = 6l in what follows.

On proceeding with the £-expansion, we assume the longitudinal roll
eigensolution at O(e2),

^Y (30)

where A is now a function of X and a, and a = \eAt is the new slow time
scale. Omitting the details, the satisfaction of an orthogonality condition at
O(e6) yields

Aa = [R< + Ulg(X)]A - Axxxxlk\ - klA2A (31)

for the convective amplitude. The onset problem is now

[R4 + Ak\ cos e,X]A - Axxxxlk\ = 0, (32)

where we have set g(X) = cos e^X. It should be noted that the wave-
number of the modulations is now kw = exd^, where e, = O(l); this is
asymptotically larger than the wavenumber considered in §4. At onset,
therefore, A satisfies a fourth-order form of Mathieu's equation. In (9) a
related equation arises where the functional form g(X) = —X describes the
effects of a slowly varying fluid depth in a B6nard layer. Although (8)
predicts the form of (32) there is, to our knowledge, no literature on the
solutions to such an equation and therefore we present a brief analysis
similar in scope to that given above for equation (21).
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It would seem that a suitable canonical form for (32) is

which may be obtained with the appropriate substitutions. There exist
Floquet solutions for (32) and (33) in the form

oo oo

A = e 2J Ane = ev
 2J Ane , (34)

n — —<» n ——°°

where real values of v correspond to bounded solutions of the equations.
Using (34), equations (32) and (33) were solved using a NAG matrix-
eigenvalue problem solver to obtain curves of RA(k) and a(q) for various
values of v. These are shown in Figs 3 and 4, respectively, with successive

40

30-

20-

« 4

10-

0-

-10
0 8 10

Fio. 3. Critical values of R4 satisfying equation (32) as a function of the
wavenumber of the thermal forcing e,, for various values of v
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a/100

- 2

FIG. 4. The stability diagram for the fourth-order analogue of the Mathieu
equation (33) showing a as a function of q for various values of v

close-up views of Fig. 3 shown in Figs 5 and 6. For Mathieu's equation there
exist two values of the characteristic exponent v (±Vj, say) for every point
in (R2, eo)-space and the general solution is, therefore, a linear superposi-
tion of the two corresponding Floquet solutions. For equation (32),
however, there are four values of v (±v2, ±v3, say) for each point in
(7?4> s^-space, reflecting the higher order of the governing equation, and
thus (32) has four linearly independent solutions. This increased multiplicity
of v is readily seen in Figs 3 to 6 as the curves for real values of v cross and
intertwine, unlike the case for the Mathieu equation. Thus (R4, e^-space is
divided into three regions: (i) where both v2 and v3 are complex, (ii) where
one or the other is real, and (iii) where both are real. In terms of the
classical concept of stability of solutions to equations with periodic
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-0-4-

-0-8-

-1-2-

-1-6-

- 2 0

v=l

v=0

3-0 4 0 5-0

FIG. 5. A close-up of Fig. 3 showing in detail the first interchange process,
as £] decreases, whereby the mode with v = 1 takes over as the mode with
the smallest critical value of R4. The dashed line represents min, R4 as a

function of e,

coefficients such as Mathieu's equation, regions (i) and (ii) are unstable,
whilst region (iii) is stable. In terms of the present problem, physical
solutions exist in regions (ii) and (iii).

It is evident from Figs 3, 5 and 6 that the first mode to become unstable as
^?4 increases is not always that which corresponds to v = 0, as is the case for
the transverse mode whose amplitude satisfies Mathieu's equation. Altho-
ugh it is possible to rewrite (32) as a pair of second-order ordinary
differential equations, the general theory of Hill's equation (that is, a
second-order ordinary differential equation with periodic coefficients), such
as is expounded by Magnus and Winkler (14), obviously does not apply
here.
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-5 -O v=O

-60-

-7-0-

-7 -6
10 1-2 1-4 1-6 1-8 20

Fio. 6. A close-up of Fig. 3 showing the second interchange process
whereby the mode with v = 0 again becomes the mode with the smallest

critical value of R4

The intertwining of the critical curves has considerable importance in the
determination of the periodicity of the most unstable mode. When this
mode corresponds to a rational value of v (for example, m/n) then the
period is 4im/Ei when m is odd, and 2jr/i/e1 otherwise. For irrational values
of v the mode is spatially quasiperiodic. In Fig. 5 we also show mio, R4 as
a function of £i for 3 < £ i < 5 . Although this curve varies smoothly, the
spatial period of the solutions it represents does not. The corresponding
minimizing values, vm, of v are shown in Fig. 7, where it may be seen that
vm varies between 0 and 1. It may also be seen that the intervals in e, over
which vm is constant decrease as et decreases. Our numerical data indicate
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FIG. 7. The value of vm which minimizes R4, as a function of e,

that when vm is neither 0 nor 1 the slope of the curve is not infinite but is
very large whenever £j < 2, so that vm varies continuously.

For large values of EX it may be shown that vm = O{k~*) and the most
unstable disturbance has the form

A ~ 1 + (AkAJeX) cos exX + (k8j2e\) cos 2e1X, (35)

whilst the fourth-order (in e; that is, the O(6)) correction to the critical
Rayleigh number is given by

R^-Skt/el (36)

The disturbance again becomes concentrated about X = Tmnltx for
integral m as EX becomes small. On setting R4 = -n2 + R*e\ and (i = e\X in
(32) and expanding for small £t we obtain

(R * - 2k2
cfi

2)A - l = 0, (37)

which is a fourth-order analogue of the parabolic-cylinder equation. The
smallest value of R* for which a solution exists has been found numerically
to have the value 2-274508, and therefore the critical value of RA has the
asymptotic form

R4 ~ - JT2 + 2-2745084 (38)

for small e t. Although we have not been able to find an analytic expression
for the disturbance, which is shown in Fig. 8, its asymptotic form for large fi
is given by

A~feo/i"3exp(-aoAt3)cos(a0^ + Co), (39)

where a0 = 2~ W 3 , b0 is an arbitrary constant and c0 is unknown due to the
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-0-2
0 1 2 3 4 5

FIG. 8. The disturbance profile for small e, as a function of fi

asymptotic nature of the analysis. We note that the convection planform
corresponding to (39) actually takes the form of rectangular cells since A = 0
whenever cos (a0/^ + c0) = 0, but these should not be confused with those
described in the next section which are composed of a pair of rolls.

6. The onset of oblique rolls
At the start of §5 it was stated that, when we consider a roll of orientation

/3 relative to the transverse roll, the Axx term in (21) is replaced by
AXx cos2 p. However, as the corresponding roll-eigensolution has terms
proportional to exp(±/itc(x cos/3 — y sin/3)), it is natural to reflect the
additional y-dependence by introducing the slow spatial scale Y= ey. Thus,
for oblique rolls, equation (21) is superseded by

+ 4L4xx cos /3 — 2/1 vy cos /3 sin & +A YY sin S\ — k~AA (40)

and therefore the Ayy term, which is absent in (21), has a non-zero
coefficient when /3 = \x, that is, for longitudinal rolls. It is necessary
therefore to extend the analysis of §5 to include such ^-variations. Before
doing so, however, it is instructive to consider the onset of convection in the
form of oblique rolls when fi is not close to \n.

The onset problem for generally oblique rolls is given by the steady,
linearized form of (40). Here we return temporarily to the transverse-roll
scaling, e = fii, setting g{X) = cos (e^X). By defining slow spatial scales
perpendicular and parallel to the oblique roll axis, X* = X cos /3 — Y sin /3
and Y* = Y cos /3 + X sin /3, respectively, the steady linearized form of (40)
reduces to

A + 4Avv = 0, (41)
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where §* = X* + Y* tan /3 = X sec p and ej = ô cos /3. Hence if the critical
value of R2 for the transverse roll and its associated eigenmode are
respectively denoted by R2T(£o) and AT(e0, X) (cf. (22)) then the cor-
responding expressions for the oblique mode are

R2 = R2T(E0cos0) and A = AT(e0cosP, Xsec/3). (42)

Thus the critical Rayleigh number for oblique modes decreases as /3
increases from 0 (transverse rolls) to \n (longitudinal rolls), and so
transverse rolls do not comprise the most unstable mode. It would seem
from this simple analysis that the most unstable mode is the longitudinal roll;
we shall now examine this conjecture by studying rolls with /3 close to \n.

For such values of /3 the coefficients of the A'-derivative terms in (40) are
small, and we shall proceed by defining the slow spatial scales X = ex (in
order to recover the Axxxx term considered in §5) and Y = e2y, where we
have taken the longitudinal-roll scaling e = 6^, set g(X) = cos e^X (and
therefore the modulation wavenumber is kw = ey6^), and where the basic
roll eigensolution is the longitudinal roll. The Y-scaling may be seen to be
consistent with the O(e4) variation in the Rayleigh number allowed for in
§5. The X-scaling is also that appropriate for the study of the. ziĝ fcag
instability (see (3,15)); in the absence of thermal non-uniformities-any X
dependence in A serves to redefine the orientation of the. roll from \n to
\a - O(e).

After proceeding with the perturbation expansion the imposition' of
orthogonality conditions at O(e6) yields the amplitude equation

(43)

and therefore the required equation for the onset problem is

^-±^}2A = 0. (44)

This equation possesses solutions with the form

A = eHKY+velxa> 2 Ane^x, (45)
n = — oo

and it is straightforward to compute critical values of R4 as a function of K,
v and £,. For general values of K the critical curves behave in a manner
similar to those corresponding to the longitudinal roll, shown in Fig. 3, and
are therefore not presented. We shall now consider the spatial planform of
the most unstable mode and its critical value of R4 for large, small and
intermediate values of ex.
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6a. Onset for large values of £ t

For large values of e^ the asymptotic form for A is

T 64k41 *'«i(i+l"Pf -/«i(-i+Jv)jf

^~ V 7 T\4 4 / T\4 ^

where

and v # ± l . For rolls with a wavenu'mber greater than kc (that is, /C>0,
since the wavenumber is kc + e2k), R^ is easily seen to be minimized by
setting v = 0 in (47), in which case we obtain

\ ) f ] (48a)
L V £[ E\ £j / Z£j J

and
2 ^ (48b)

However, for rolls with a wavenumber less than kc (that is, K<0) it is
better to choose \K\ = O{e\) in order to minimize the critical Rayleigh
number. It may be shown that RA is minimized by choosing

c and v = 1, (49a)

whereupon we find that

l k 4
c 3

\ Y ^ j \ (49b)
and

R^-Vcl-lct/el (49c)

The leading-order form of (49b) may be written as \e'K-Y(e"lXI2 + e~'"xn)
and therefore this mode is the superposition of two rolls with wavevectors
( I E ^ I , kc + 6l/fm) and (-$£,$*, * e + « ! * „ ) . From (30) and (49b) the
horizontal spatial form of the O(e2) eigensolution is, to leading order,
cos (&c + 6^Km)y cos exXI2, and is, therefore, a rectangular cell with a
large-aspect-ratio planform. We note that this solution, together with the
above value of R^, matches asymptotically, as 6—»0, the rectangular
cellular planform described in (4) and its corresponding critical Rayleigh
number. In common with the analysis of (4) (at least for symmetric thermal
modulations) this mode is the most unstable mode.

6b. Onset for small values of e i
We turn now to the onset problem for small values of ex. Once more the

disturbance becomes concentrated near where the temperature drop across
the layer achieves its maxima. We also find that the spatial form of the
most unstable mode depends on the sign of K and we proceed by setting
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A = B(X)eIKY in (44) to obtain

B_
k "AA ~ k24 - AK2 - Ak2

c cos £lX)B + — BXX * £ 2 = 0. (50)

Now, for positive values of K both the second- and fourth-derivative terms in
(50) are positively diffusive. As ex is small, cos {e^X) varies over an A"-scale
which is large, therefore the fourth derivative term is small compared with
the second derivative and we can neglect it. Thus we use the transverse-roll
scaling for small et to obtain the spatial form of this mode; we set X = e^
and R4 = — jr2 + Se^, and expand for small et. We obtain

£ % = 0 (51,
at leading order, and the solution of this equation with the lowest critical

value of 5 is given by

where Sc = 4(kcK)l and so the O(d) correction to the critical Rayleigh
number is

R* ~ - J T 2 + 4(*X/C)ie1. (52b)

Obviously this solution is invalid for negative K, but it may be shown that
the asymptotic expansion breaks down when K = O(e\). This is because the
length scale over which X varies in (52a) is now e^ for O(e\) values of K
and therefore the fourth-derivative term in (50) is formally of the same
order of magnitude as the second-derivative term, and has to be included in
the analysis. We analyse the K = O(e\) regime below.

For negative values of K in (50) the second-derivative term is negatively
diffusive and must be balanced with the positively diffusive fourth deriva-
tive. Once more we proceed by setting X = e\%, but now we use a
multiple-scales analysis and expand:

" 4 c — OO + A J I 3 ] + . . . a n a u = O Q T A J £ » I + . . . ,

where Bo = B0(X, f). Details of this analysis may be found in the Appendix.
We find that the disturbance has the form

f k l-k \* 1
A ~ exp iKY + i(-2kcKpX - -j [-jfj £\X2 \, (53a)

where
R4c~-n2 + 4(-kcK)hi. (53b)

In common with the results presented above for positive K, this solution
also breaks down when K = O(E\), since the two length scales over which
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the .^-dependent terms vary in (53a) become coincident and equal to ef*. It
is important, therefore, to consider this small range of values of K since,
from (52b), (53b), R^ decreases as the range is approached.

On setting K = -KE\, R4 = -n2 + R*e\ and X = £~i/i in (50) we obtain,
at leading order,

(K'-^)fl-^-%* = 0, (54)

which is a generalization of (37). This equation has to be solved numerically
to find values of R* for which non-trivial solutions exist. We find that the
smallest value of R* is 1-940 corresponding to K = 0-3199. This disturbance,
which has a spatial profile similar to the longitudinal roll, has a critical
Rayleigh number

(55a)
when

K ~ -0-3199ef. (55b)

It is evident that this mode appears at a lower value of the Rayleigh number
than any other mode for small values of £j (see (38)).

6c. Onset for intermediate values of et

The solution of (44) for intermediate values of et has to be effected
numerically. Since we are interested in the most unstable mode it is
necessary to minimize the critical values of R4 over both v and K for each
value of gj. The easier way is to minimize first with respect to K and the
results of this procedure are shown in Figs 9, 10 and 11. In Fig. 9 we show
xxanKRA{K, elt v) and we see that these curves intersect one another.
However, unlike those shown in Fig. 3, the minimum value of R4 is taken
only by v = 0 and v = 1. Thus, there is now a simple interchange of critical
values of v rather than a continuous one. This is seen clearly in Fig. 10
where a close-up view is shown of the first point of interchange as ex

decreases. When v = 1 the disturbance consists of rectangular cells similar
to those comprising the most unstable mode for et»1 but with a spatial
amplitude modulation. However, when v = 0, the disturbance is a roll of
orientation \n, a longitudinal roll, the wavenumber of which is kc+ d^K.

In Fig. 9 we see, and it is easily proved, that the minimum values of i?4

tend to zero as £]—»°° i f 0 ^ v < l . When v = l , however, the minimum
value tends to —^n2, in agreement with (49c). In Fig. 11 we show the
minimizing values of K as a function of A and v. Numerically, we find that
these values are consistent with the above asymptotic expansions (see (49a),
(55b)). It has already been noted that certain modes with negative values of
K constitute the most unstable modes, at least for e , « : l and E , » 1 . A
comparison of Figs 3 and 9 now shows that modes with negative K comprise
the most unstable modes for all values of e^ Whenever v = 0 this mode is a
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FIG. 9. Minimum values of R4 with respect to K, as a function of e, for
various values of v

roll but when v = 1 it is a large-aspect-ratio rectangular cell. Hence the
planfonn of the most unstable mode depends on the precise value of e^

7. Conclusions
We have presented a study of the onset of convection in a porous layer

where symmetric non-uniform heating at the horizontal boundaries has an
associated length scale which is large compared with the depth of the layer.
Thus this paper complements and extends others (cf. (1 to 4)) dealing with
the effects of boundary non-uniformities with a wavelength comparable with
the layer depth. Attention here has been focused on the onset of rolls of
various orientations and, in particular, on the onset of transverse and
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-5-3

-5-4

-5 :5

-5-6-

-5-7-

-5-8-

-5-9-

-60-

- 6 - 1 •

-6-2
1-7 1-9 2-0 2-1

Fio. 10. A close-up of the first exchange process in Fig. 9 for decreasing e,,
showing the discontinuous transition between v = 0 and v = 1 as the

minimizing value of v. The second interchange is similar

longitudinal rolls. Within the thermal-modulation length scales considered,
asymptotic results for both large and small modulation wavenumbers have
been deduced. These results were confirmed and extended to intermediate
wavenumbers using numerical methods.

We have found that the appropriate order of magnitude of the modula-
tion wavenumber depends on the orientation of the roll disturbance. For
transverse rolls and oblique rolls (in general) the modulation wavenumber
was taken to be e^S^ and, for longitudinal rolls and oblique rolls at an O(6^)
orientation relative to the longitudinal roll, it was taken to be e^, which is
an asymptotically larger value. In all cases, however, the most unstable
mode has a critical Rayleigh number lying between JT2(1 — 6) and JT2.
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5 0 n
10 0-9

40-

FIG. 11. Values of K which minimize minv R4 and which correspond to the
curves shown in Fig. 9

For the transverse roll the amplitude of the disturbance, at onset, is
governed by Mathieu's equation, and therefore Floquet theory implies that
the most unstable mode of this form corresponds to the Floquet exponent
v = 0 for all values of e0. For large values of e0 the amplitude of the
disturbance is constant to leading order. As e0 decreases, however, the
amplitude develops a spatial structure which is most pronounced when e0 is
small, in which case the disturbance is concentrated near the regions of
maximum temperature drop across the layer. Furthermore, the critical value
of Ra decreases monotonically as e0 decreases.

We have shown that the onset of modes in the form of oblique rolls may
be deduced directly from the above results for the transverse roll. It is found
that, for a given value of e0, all oblique modes have a lower critical
Rayleigh number than the transverse roll. Moreover, the critical value
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decreases as the orientation relative to the transverse roll increases towards
\n, the orientation of the longitudinal roll.

The onset of convection in the form of longitudinal rolls was found to be
governed by a fourth-order form of Mathieu's equation. In this case v = 0
was no longer necessarily the value of the Floquet exponent which minimized
the critical Rayleigh number. Instead, the minimizing value of v was found
to vary smoothly between 0 and 1 as the modulation wavenumber e,
varied, with finite intervals in EX where v took one or other of its extreme
values. Since the wavelength of disturbances depends on v, the wavelength
of the most unstable mode varies discontinuously as ex varies, and the mode
is quasiperiodic whenever v is irrational. Again, the critical Rayleigh
number decreases monotonically as ex decreases.

The analysis of the onset of rolls orientated at a small angle to the
longitudinal roll was facilitated by considering the effects of the zig-zag
instability on the longitudinal roll. In effect we relaxed the assumption that
the longitudinal roll has a wavenumber precisely equal to kc, and the
departure from this value is measured by the value of K. Minimization of
the critical Rayleigh number over all values of v and K yields the rather
surprising result, in view of the results for the longitudinal roll (K = 0), that
the minimizing value of v is either 0 or 1, depending on the precise value of
£i. Another surprising result is that the most unstable mode for large values
of £] corresponds to v = 1 and therefore the mode has a large-aspect-ratio
rectangular planform. Numerical and asymptotic results show that modes
with negative values of K constitute the most unstable modes for this
problem.

All the results we have presented concerning the onset of convection for
large modulation wavenumbers may be shown to match asymptotically, as
6-*0, with the results of (4) for symmetric thermal modulations with small,
but 0(1), wavenumbers. In particular, this includes the result that
rectangular cells are the most unstable mode for large e,.

Here we have concentrated on layers of doubly-infinite horizontal extent
and it is natural to question the effects of finite dimensions in either or both
horizontal directions. We shall restrict our comments to layers with insulat-
ing end walls. For a layer which is of finite extent in the x-direction some of
the above analysis would need to be modified. For example, only certain
Floquet exponents would be realizable for the transverse-roll analysis but
the spatial form of the remaining modes and the identity of the most
unstable transverse roll remains unchanged. The spatial form of the
longitudinal roll would be modified in order to satisfy the boundary
conditions Ax = AXxx = 0 at both end walls. For a layer which is narrow in
the spanwise direction the longitudinal analysis applies if the width of the
layer is an exact multiple of kc; otherwise transverse rolls may constitute the
most unstable mode. It should be noted that unlike the corresponding
situation for a fluid layer the spatial forms of transverse rolls of finite length
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are identical to those of infinite length due to the presence of slip conditions
at boundaries.

As nonlinear amplitude equations have been derived it still remains to
calculate the effects of spatial modulations on the stability of finite-
amplitude convection. Preliminary results for two-dimensional flow indicate
that the transverse roll corresponding to v = 0 is stable (to two-dimensional
disturbances) and transports more heat than other transverse modes. All
other transverse modes are unstable at onset, although some regain stability
after one or more pitchfork bifurcations.
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APPENDIX

In this Appendix we present a brief multiple-scales analysis of equation (50):

(R4-AK2-4k2
ccos e^B+^B^-^^-^O (Al)

for negative values of K and small values of £,. We set X = £ j | and expand both R4

and B as a power series in e\:

\s, + elS2 + ..., (A2a)

B = B0 + e\B, + e,B2 + .... (A2b)

At leading order (Al) reduces to

8 %p
Kc

=0 (A3)
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and hence Bo = C(^)eIMX if M satisfies

(A4)

At O(ef) we obtain the equation

kc
 xxx k\ L ' k\ *J

All the terms on the right-hand side are multiples of the eigensolution of the
left-hand side, and therefore a solution does not exist unless S, = 0 and

M2 = -2Kkc. (A6)

In conjunction with (A4) this implies further that So = —4&2, and that Bt = 0 is a
solution of (A5).

At O(e,) we find that

-2kl^C-S-^CK], (A7)

and so the existence of a solution requires that C satisfies

(S2-2A:^2)C-^-Cje = 0. (A8)

We recall that K is negative so that the second-derivative term is positively
diffusive. Hence

and Si = 4(-kcK)i (A9)

and therefore the disturbance has the leading-order form

r k /-fc\J i
A ~ exp iKY + i(-2kcK)±X - -f (—^J e ,* 2 . (A10)


