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Abstract

The present investigation deals with the effect of surface mass flux on mixed convective flow past a heated vertical flat perme
with thermophoresis. A nonuniform surface mass flux through the permeable surface has been considered. The governing equatio
to local nonsimilarity boundary layer equations using suitable transformations, have been integrated employing an implicit finite d
method together with the Keller-box technique (Keller [Annual Rev. Fluid Mech. 10 (1978) 417–433]). Perturbation techniques are e
to obtain the solutions near the leading edge as well as far from it. The perturbation solutions are compared with the finite difference
and found to be in excellent agreement. For fluids having the Prandtl numberPr = 0.7 and Schmidt numberSc = 10.0, numerical values o
physical quantities, such as the local skin-friction coefficient, the local Nusselt number and the local Stanton number, are presente
form for different values of the thermophoretic parameterτ against the local buoyancy parameterξ for impermeable surfaces. Profiles of t
dimensionless velocity, temperature and concentration distributions as well as the local skin-friction coefficient, local Nusselt nu
the local Stanton number are shown graphically for various values of suction parameter,fw, Schmidt number,Sc and the thermophoreti
parameterτ .
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Thermophoresis is a phenomenon by which submic
sized particles suspended in a nonisothermal gas acqu
velocity relative to the gas in the direction of decreas
temperature. The velocity acquired by the particles is ca
the thermophoretic velocity and the force experienced
the suspended particles due to the temperature gra
is known as the thermophoretic force. The magnitude
the thermophoretic force and velocity are proportiona
the temperature gradient and depend on many factors
thermal conductivity of aerosol particles and the car
gas. They also depend on the thermophoretic coeffic
the heat capacity of the gas and the Knudsen num
Thermophoresis causes small particles to deposit on
surfaces. Repulsion of particles from hot objects also ta
place and a particle-free layer is observed around hot bo
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t

.

A common example of this phenomenon is blackening
the gas globe of a kerosene lantern. The temperature g
ent developed between the flame and the gas globe d
the carbon particles produced in the combustion proces
wards the globe, where they deposit. There are several
practical situations where we come across this phen
enon, like gas “clean up”, the corrosion of heat exchang
with attendant reduction of the heat transfer coefficient,
fouling of gas turbine equipment, the coagulation of c
densing/evaporating aerosols. It also arises in determi
particle trajectories in the exhaust gas from combustion
vices and in the transpiration cooling of gas turbine blad
etc. Thermophoresis is considered to be the dominant m
transfer mechanism in the modified chemical vapour dep
tion process as currently used in the manufacturing of gra
index optical fiber preforms. Thermophoretic deposition
radioactive particles is considered to be one of the impor
factors causing accidents in nuclear reactors.

The initial study of thermophoretic transport involv
simple one-dimensional flows for the measurement of
sevier SAS. All rights reserved.
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Nomenclature

C species concentration in the boundary
layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−2

Cfx dimensionless local skin-friction coefficient
Cp specific heat due to constant

pressure . . . . . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

Cm,Cs,Ct ,C1,C2,C3 constants in Eq. (7)
C∞ species concentration of the ambient fluid
D chemical molecular diffusivity
f dimensionless stream function
fw dimensionless nonuniform surface mass flux
g acceleration due to gravity . . . . . . . . . . . . . m·s−2

Grx local Grashof number for thermal diffusion
Js rate of transfer of species

concentration . . . . . . . . . . . . . . . . . . . kg·m−2·s−1

k thermophoretic coefficient defined by Eq. (7)
Kn Knudsen number
Nux local Nusselt number
Pr Prandtl number
qw rate of heat transfer . . . . . . . . . . . . . . . . . . . . . . W
Rex local Reynolds number
Sc Schmidt number
Stx local Stanton number
T temperature of the fluid in the boundary layer K
T∞ temperature of the ambient fluid . . . . . . . . . . . K
Tw temperature at the surface . . . . . . . . . . . . . . . . . K

U∞ free stream velocity . . . . . . . . . . . . . . . . . . . m·s−1

u,v thex- andy-components of the velocity
field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

V (x) transpiration velocity
VT thermophoretic velocity
x, y axis in direction along and normal to the

plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

β volumetric expansion coefficient of temperature
ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ψ stream function. . . . . . . . . . . . . . . . . . . . . . m2·s−1

η non-dimensional pseudo-similarity variable
ξ the local buoyancy parameter
ν kinematic coefficient of viscosity . . . . . . m2·s−1

µ fluid viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . Pa·s
τw surface shear-stress . . . . . . . . . . . . . . . . . . . . . . P
θ dimensionless temperature function
φ dimensionless species concentration function
λg,λp thermal conductivity of gas and diffused

particles, respectively
τ thermophoretic parameter defined by Eq. (8)
κ thermal conductivity . . . . . . . . . . . . W·m−1·K−1
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thermophoretic velocity and was undertaken by Goldsm
and May [2]. Talbot et al. [3] solved numerically for the v
locity and temperature fields in the laminar boundary la
adjacent to a heated plate. Using several available theo
cal expressions for the thermophoretic force, they calcul
the trajectory of a particle entering the boundary layer. M
surements of the thickness of the particle-free layer nex
the heated plate were compared with the calculated traje
ries and it was found that the theory of Brock [4], modifi
slightly to fit the data for very small particles, gave the b
overall agreement with the measurements. The first ana
of thermophoretic deposition in a geometry of engineer
interest appears to be that of Hales et al. [5]. They solved
laminar boundary layer equations for simultaneous aer
and steam transport to an isothermal vertical surface
uated adjacent to a large body of an otherwise quies
air-steam-aerosol mixture. Thermophoresis in laminar fl
over a horizontal flat plate has been studied theoretic
by Goren [6] where the analysis covered both cold and
plate conditions. The laminar tube flow solution for th
mophoretic deposition of small particles has been repo
by Walker et al. [7]. The external transverse flow situat
past a circular cylinder was analyzed by Homsy et al.
with the help of the Blasius series. Gokoglu and Rosner
arrived at a correlation for deposition rates in forced conv
tion systems with variable properties, transpiration coo
-

-

t

and viscous dissipation. The thermophoretic depositio
the laminar slot jet on an inclined plate for hot, cold and a
abatic plate conditions with viscous dissipation effect w
presented by Garg and Jayaraj [10]. Verms [11] has stu
the deposition rates in cooled and uncooled turbines
cades. It was found that temperature difference betwee
wall and the gas could cause a 15-fold increase in dep
tion rate as compared with the case of adiabatic casc
Shen [12] analyzed the problem of thermophoretic dep
tion of small particles on to cold surfaces in two-dimensio
and axisymmetric cases and this is illustrated with ex
ples of thermophoretic deposition of particles in flow pas
cold cylinder and a sphere. Gokoglu and Rosner [13] s
ied the effect of particulate thermophoresis in reducing
fouling rate advantage of effusion cooling in gas turbin
Correlation has been developed to predict thermopho
cally enhanced diffusional deposition rates, including
effects of transpiration cooling. Garg and Jayaraj [14] st
ied the thermophoretic transport of aerosol particles thro
a forced convection laminar boundary layer in cross fl
over a cylinder for hot, cold and adiabatic wall conditions

In the present paper we consider the effect of surf
mass transfer on mixed convection flow past a heated ver
flat permeable surface in the presence of thermophor
Previous work on this topic includes papers by Eps
et al. [15], who carried out a thermophoretic analy
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of small particles in a free convection boundary la
adjacent to a cold vertical surface, and Mills et al. [1
and Tsai [17], who reported correlations for the deposi
rate in the presence of thermophoresis and wall suc
in laminar flow over a flat plate. Jia et al. [18] al
investigated numerically the interaction between radia
and thermophoresis in forced convection laminar bound
layer flow and natural convective laminar flow over a c
vertical flat plate in the presence of thermophoresis
solved numerically by Jayaraj [19] and Jayaraj et al. [20]
constant and variable properties, respectively. Finally, Ch
[21] analyzed the effect of thermophoresis on submic
particle deposition from a forced laminar boundary la
flow on to an isothermal moving plate through similar
solutions and this analysis was extended by Chiou
Cleaver [22] convection from a vertical isothermal cylind

In this investigation the combination of thermophore
and a nonuniform surface mass flux through the perme
surface has been considered. Solutions of the mome
and energy equations yield the velocity and temperature
tributions in the boundary layer, and these are used in
coupled concentration equation to calculate the rates of
ticle deposition. The governing partial differential equatio
are reduced to locally nonsimilar partial differential form
adopting transformations which are applicable to the for
convection, free convection and the intermediate mixed c
vection regimes. Solutions of the equations for both
forced and free convective cases are obtained by applyin
perturbation method, while those for the mixed convec
regime are obtained using the Keller-box technique (Ke
[1]). Our results are presented in terms of the skin-frict
coefficient,Cfx ; the rate of heat transfer,Nux ; and the rate
of species concentration,Stx in tabular form showing the
effect of varying the governing dimensionless paramet
including the local buoyancy parameter,ξ = Grx/Re2

x . So-
lutions obtained for the forced and free convective regim
are found to be in excellent agreement with the approp
limits of the mixed convection regime solutions. Graphi
presentations of the velocity, temperature and concentra
profiles in addition to the skin-friction coefficient, the rate
heat transfer and the rate of species concentration are
given in order to show the effects of varying the permea
ity or suction/injection parameter,fw , Schimdt number,Sc
and the thermophoretic parameter,τ . Throughout the study
Prandtl number is kept constant at 0.7 which represent
at 293 K and 1 atmosphere of pressure.

2. Formulation of the problem

Let us consider the two-dimensional steady lami
mixed convective flow of a viscous incompressible flu
along a heated vertical flat permeable plate in the pres
of thermophoresis. The permeability is taken to be a varia
depending on the distance measured from the leading e
The external flow takes place in the direction parallel to
o

.

Fig. 1. The flow configuration and the coordinate system.

plate and has the uniform velocityU∞. The temperature o
the surface is held uniform atTw which is higher than the
ambient temperatureT∞.

The species concentration at the surface is mainta
uniform at Cw , which is taken to be zero and that
the ambient fluid is assumed to beC∞. The effects of
thermophoresis are being taken into account to help
the understanding of the mass deposition variation on
surface. The flow configuration and the coordinate sys
are as shown in Fig. 1.

We further assume:

(i) that the mass flux of particles is sufficiently sm
so that the main stream velocity and temperat
fields are not affected by the thermophysical proces
experienced by the relatively small number of particl

(ii) that, due to the boundary layer behaviour, the temp
ture gradient in they-direction is much larger than tha
in the x-direction and hence only that thermophore
velocity component which is normal to the surface is
importance,

(iii) that the fluid has constant kinematic viscosity and th
mal diffusivity, and that the Boussinesq approximat
may be adopted for steady laminar flow, and

(iv) the particle diffusivity is assumed to be constant, a
the concentration of particles is sufficiently dilute
assume that particle coagulation in the boundary la
is negligible.

Under the above assumptions, the equations for m
momentum, energy and species conservation take the
lowing form:

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u + v

∂u = ν
∂2u

2 + gβT (T − T∞) (2)

∂x ∂y ∂y
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∂T

∂x
+ v

∂T

∂y
= ν

Pr

∂2T

∂y2
(3)

u
∂C

∂x
+ v

∂C

∂y
= ν

Sc

∂2C

∂y2 − ∂

∂y
(VT C) (4)

The boundary conditions for the present problem are
follows:

u= 0, v = ±V (x), T = Tw, C = Cw = 0 aty = 0

u→ U∞, T → T∞, C →C∞ asy → ∞ (5)

where u and v are the fluid velocity components alon
the x- and y-axes (which are parallel and normal to t
plate respectively),g is the gravitational force due t
acceleration,β is the volumetric coefficient of therma
expansion,T is the temperature of the fluid in the bounda
layer. Cp is the specific heat due to constant press
C is the species concentration in the boundary layerν,
α and D being the kinematics coefficients of viscosi
thermal diffusivity and molecular diffusivity of the speci
concentration respectively.Pr (= ν/α) is the Prandtl numbe
and Sc (= ν/D) is the Schmidt number. In Eq. (5),V (x)
represents the permeability of the porous surface w
its sign indicates suction(<0) or injection (>0). Here we
confine our attention to the suction of fluid through t
porous surface and for these we also consider that
transpiration function variableV (x) is of the order ofx−1/2.
In the present study we have neglected stratification, vis
dissipation and other additional effects.

The effect of thermophoresis is usually prescribed
means of an average velocity which a particle will acqu
when exposed to a temperature gradient. In boundary l
flow, the temperature gradient in they-direction is very
much larger than in thex-direction, and therefore onl
the thermophoretic velocity iny-direction is considered
As a consequence, the thermophoretic velocityVT , which
appears in Eq. (4), may be expressed in the following fo

VT = −kν
T

∂T

∂y
(6)

where T is some reference temperature, the value ofkν

represents the thermophoretic diffusivity, andk is the ther-
mophoretic coefficient, which ranges in value from 0.2 to
as observed by Batchelor and Shen [23] and is defined
the theory of Talbot et al. [3] by:

k = 2Cs(λg/λp +Ct Kn)[1+ Kn(C1 +C2e
−C3/Kn)]

(1+ 3CmKn)(1+ 2λg/λp + 2Ct Kn)
(7)

where C1, C2, C3, Cm, Cs , Ct are constants,λg and
λp are respectively the thermal conductivities of gas
diffused particles, andKn is the Knudsen number. A
previously introduced by Mills et al. [16] and Tsai [17], th
thermophoretic parameter,τ , is given by:

τ = −k(Tw − T∞)
T

(8)

Typical values ofτ are 0.01, 0.1 and 1.0 correspondi
to approximate values of−k(Tw − T∞) equal to 3, 30 and
300 K for a reference temperature ofT = 300 K.
In order to obtain a system of equations applicable
the entire regime of mixed convection, we now introdu
the following continuous transformations to initiate t
integration from forced to free convection regime as:

ψ = ν Re1/2
x (1+ ξ)1/4f (ξ, η)

T − T∞ = (Tw − T∞)θ(ξ, η), C = C∞φ(ξ, η) (9)

ξ = Grx,T /Re2
x, η= y

x
Re1/2

x (1+ ξ)1/4

whereψ is the stream function that satisfies the conti
ity equation (1) and defined in the usual manner such
u= ∂ψ/∂y andv = −∂ψ/∂x. f (ξ, η) is the dimensionles
stream function,θ(ξ, η) is the dimensionless temperature
the fluid in the boundary layer region,φ(ξ, η) is the dimen-
sionless species concentration of the fluid in the bound
layer region,η is the pseudo-similarity variable. The loc
buoyancy parameterξ is small near the leading edge whe
the forced convection dominates and large in the do
stream where free convection dominates;Grx (= gβT (Tw −
T∞)x3/ν2), andRex (= U∞x/ν) are, respectively, the loca
Grashof number for thermal diffusion and the local Reyno
number.

The transformations given in Eq. (9) are motivated by
forms of the forced and free convection similarity solutio
of the equivalent convection problem. After substituti
these transformations into Eqs. (2)–(4) one obtains
following non-similarity equatiuons:

f ′′′ + p1ff
′′ − p2f

′2 + p3θ = ξ

(
f ′ ∂f ′

∂ξ
− f ′′ ∂f

∂ξ

)

(10.1)
1

Pr
θ ′′ + p1f − θ ′ = ξ

(
f ′ ∂θ
∂ξ

− θ ′ ∂f
∂ξ

)
(10.2)

1

Sc
φ′′ + p1f φ

′ − τ
(
θ ′φ′ + θ ′′φ

)

= ξ

(
f ′ ∂φ
∂ξ

− φ′ ∂f
∂ξ

)
(10.3)

The corresponding boundary conditions transform into:

f (ξ,0)= 2fw
(1+ ξ)3/4

(2+ 3ξ)
, f ′(ξ,0)= 0

f ′(ξ,∞)= (1+ ξ)−1/2, θ(ξ,0)= 1 (11)

θ(ξ,∞)= 0, φ(ξ,0)= 0, φ(ξ,∞)= 1

where

p1 = (2+ 3ξ)

4(1+ ξ)
, p2 = ξ

2(1+ ξ)
, p3 = ξ

(1+ ξ)

(12)

In the above Eqs. (10.1)–(10.3) and in the boundary c
ditions (11), primes denote differentiation of the functio
with respect toη andfw (= (2xV (x)/ν)Re−1/2

x ) is the di-
mensionless nonuniform surface mass flux, which is term
as the suction or injection parameter according to wheth
is greater than or less than zero.
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The quantities of physical interests are the surface sh
stress (τw), the rate of heat transfer (qw) and the rate o
transfer of species concentration (Js ) at the surface which
may be obtained in terms of the local skin-friction coe
cient, Cfx ; the local Nusselt number,Nux ; and the local
Stanton number,Stx , respectively. They may be obtaine
from the following relations:

CfxRe1/2
x = τw

ρU2∞
= (1+ ξ)3/4f ′′(ξ,0) (13.1)

NuxRe−1/2
x = qwx

(Tw − T∞)κ
= −(1+ ξ)1/4θ ′(ξ,0) (13.2)

StxRe1/2
x = − Js

U∞C∞
= 1

Sc
(1+ ξ)1/4φ′(ξ,0) (13.3)

where

τw = µ

(
∂u

∂y

)
y=0

, qw = −κ
(
∂T

∂y

)
y=0

Js = −D
(
∂C

∂y

)
y=0

(14)

The system of Eqs. (10.1)–(10.3) and (11) have b
solved by using the Keller-box. According to this metho
the system of partial differential equations (10.1)–(10
are first converted to a system of seven first order
tial differential equations by introducing new functions
η derivatives. This system is then expressed into fin
difference form and the resulting nonlinear system of
gebraic equations is then linearized by the use of Newt
quasi linearization technique. The resulting linear differe
equations along with the boundary conditions are fin
solved by an efficient block-tridiagonal factorization meth
introduced by Keller [1]. For a givenξ , the iterative pro-
cedure was stopped to give the final velocity, tempera
and concentration distribution when the difference in co
puting these functions in the next procedure becomes
than 10−5, i.e.,|δf i | � 10−6, where the superscripti denotes
the iteration number. For these computations, a non-unif
grid in theη direction has been used by consideringηj =
sinh{(j−1)/a}, wherej = 1,2,3, . . . , J . HereJ = 251 and
a = 100 had been chosen in order to obtain quick con
gence and thus save computational time and memory sp
In the present investigation scheme, values ofξ are increased
with the increment.ξ = 0.01 until the asymptotic value
for the skin-friction, heat transfer rate and species con
tration rate were reached for every variation of the pertin
parameterτ , fw andSc for Pr = 0.7.

Results obtained by this method are presented in Tab
and 3 and compared with the solutions obtained by o
methods. Also the effect of varying the different govern
parameters is discussed later.

Table 1 present a comparison of the local Stanton num
(StxRe1/2

x

√
2) obtained in the present investigation a

those obtained earlier by Mills et al. [16] and Tsai [1
It is clearly observed that good agreement between
results exists. This lends confidence in the present nume
method.
-

.

l

Table 1
Comparison ofStxRe1/2

x

√
2 with those of Mills et al. [16] and Tsai [17] fo

different τ = 0.01, 0.1, 10.0 andfw = 0.0, 0.5, 1.0 atξ = 0.0, Sc = 1,000
andPr = 0.7

τ fw Mills et al. [16] Tsai [17] Present work

0.01 1.0 0.7091 0.7100 0.6964
0.01 0.5 0.3559 0.3565 0.3500
0.01 0.0 0.0029 0.0029 0.0030
0.1 1.0 0.7265 0.7346 0.7307
0.1 0.5 0.3767 0.3810 0.3738
0.1 0.0 0.0277 0.0275 0.0279
1.0 1.0 0.8619 0.9134 0.9340
1.0 0.5 0.5346 0.5598 0.5979
1.0 0.0 0.2095 0.2063 0.2096

Table 2
Numerical values of the local skin-friction coefficient,CfxRe1/2

x ; and

the local Nusselt number,NuxRe−1/2
x obtained by different methods fo

τ = 0.0, Pr = 0.7, Sc = 10.0, fw = 0.0 against different values ofξ

ξ CfxRe1/2
x NuxRe−1/2

x

Finite diff. Small & largeξ Finite diff. Small & largeξ

0.0 0.33333 0.33266s 0.29538 0.29429s

0.1 0.44909 0.44606s 0.31646 0.31526s

0.15 0.50299 0.49703s 0.32552 0.32321s

0.2 0.55084 0.54298s 0.33298 0.32866s

0.25 0.60016 0.58146s 0.34040 0.33011s

0.5 0.81885 0.36944
1.0 1.20174 0.41090
2.0 1.85598 1.83413a 0.46620 0.46318a

3.0 2.43236 2.41953a 0.50559 0.50427a

4.0 2.96220 2.95300a 0.53693 0.53654a

5.0 3.45957 3.45615a 0.56327 0.56347a

s For smallξ .
a For largeξ .

3. Results and discussion

For this present problem numerical computations h
been carried out by employing the finite difference meth
known as the Keller-box method for allξ , and the perturba
tion series solution method for small and largeξ .

A comparison of the local Stanton number (StxRe1/2
x

√
2)

obtained in the present work and those obtained ea
by Mills et al. [16] and Tsai [17] has been shown earl
in Table 1. Comparison also taken for the values of
local skin-friction coefficient and the local Nusselt numb
obtained in the present work with that of Merkin [24] for t
case of small and largeξ with Pr = 1. It is clearly seen tha
there is excellent agreement between the respective res

In the forced convection regime, relatively near t
leading edge, i.e., for smallξ , the functions given in
Eqs. (12) take the following form:

p1 = 1

2
, p2 = 0, p3 = ξ (15)

As ξ is small, the solutions of the governing equatio
of this regime may be obtained by using the perturba
method treatingξ as the perturbation parameter. Hence
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Table 3
Numerical values of the local Stanton number,StxRe1/2

x obtained by different methods against different values ofξ for τ = 0.1, 0.5, 1.0 andPr = 0.7,
Sc = 10.0, fw = 0.0

ξ StxRe1/2
x

Finite diff. Small & largeξ Finite diff. Small & largeξ Finite diff. Small & largeξ

τ = 0.1 τ = 0.5 τ = 1.0

0.0 0.08690 0.08680s 0.14955 0.14836s 0.22660 0.22598s

0.1 0.09545 0.09525s 0.16166 0.16062s 0.24267 0.24224s

0.15 0.09905 0.09840s 0.16690 0.16515s 0.24971 0.24824s

0.2 0.10200 0.10050s 0.17112 0.16804s 0.25533 0.25206s

0.25 0.10494 0.10091s 0.17536 0.16515s 0.26182 0.25233s

0.5 0.11631 0.19167 0.28289
1.0 0.13227 0.21833 0.31387
2.0 0.15312 0.15267a 0.24479 0.24351a 0.35496 0.35150a

3.0 0.16773 0.16763a 0.26812 0.26595a 0.38417 0.38186a

4.0 0.17923 0.17928a 0.28293 0.28351a 0.40742 0.40576a

5.0 0.18883 0.18896a 0.29704 0.29814a 0.42697 0.42573a

s For smallξ .
a For largeξ .
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expand the functionsf (ξ, η), θ(ξ, η) andφ(ξ, η) in powers
of ξ and solutions of those equations are obtained by u
the Natscheim–Swigert iteration technique together w
the sixth order implicit Runge–Kutta–Butcher initial val
solver. Here we integrated the equations up to order O(ξ4).

Once the values of the functionsfi(η), θi(η) andφi(η)
for i = 0,1,2, . . . and their derivatives atη = 0 are known,
the quantitiesCfx , Nux and Stx can now be calculate
respectively from the following expressions:

CfxRe1/2
x = f ′′(ξ,0)= f ′′

0 + ξf ′′2
0 + ξ2f ′′3

0 + · · · (16.1)

NuxRe−1/2
x = −θ ′(ξ,0)

= −[
θ ′

0 + ξθ ′2
0 + ξ2θ ′3

0 + · · ·] (16.2)

and

StxRe1/2
x = 1

Sc
φ′(ξ,0)= 1

Sc

[
φ′

0 + ξφ′2
0 + ξ2φ′3

0 + · · ·]
(16.3)

The resulting values of the local skin-friction coefficie
the local Nusselt number and the local Stanton num
are entered in Tables 2 and 3, and compared with
corresponding values obtained from the finite differe
solution.

For example, forPr = 1.0, fw = 0.0, andτ = 0.0, the
numerical values of the local skin-friction coefficient a
the local Nusselt number for different values ofξ can be
obtained from the following expression:

CfxRe1/2
x = [

(0.3325)+ ξ(1.1454)+ ξ2(−0.8947)+ · · ·]
(17.1)

NuxRe−1/2
x = −[

(−0.3325)+ ξ(−0.2706)

+ ξ2(0.4608)+ · · ·] (17.2)

According to Merkin [24] the skin-friction coefficient an
the heat transfer coefficient forPr = 1.0 are:
Cfx = [
(0.3321)+ ξ(1.1466)+ ξ2(−0.8979)+ · · ·] (18.1)

Nux = [
(0.3321)+ ξ(0.2711)+ ξ2(−0.4627)+ · · ·] (18.2)

It can be seen that the relations (17.1), (17.2) and (18
(18.2) are in excellent agreement.

In the free convection regime, i.e., at largeξ , the functions
given in Eqs. (12) take the following form:

p1 = 3

4
, p2 = 1

2
, p3 = 1 (19)

In this case, we expand the functionsf (ξ, η), θ(ξ, η) and
φ(ξ, η) in powers ofξ−i/4 and the solution methodolog
applied in solving above sets of equations is same as fo
small ξ equations. Here we integrated the equations u
order O(ξ−2/4).

As before, when we know the values of the functio
fi(η), θi(η) and φi(η) for i = 0,1,2, . . . and their deriv-
atives atη = 0, we may calculate the local skin-frictio
coefficient,Cfx ; the local Nusselt number,Nux ; and the lo-
cal Stanton numberStx in the downstream regime from th
following relations:

CfxRe1/2
x = ξ3/4f ′′(ξ,0)

= ξ3/4[f ′′
0 + ξ−1/4f ′′2

0 + ξ−2/4f ′′3
0 + · · ·] (20.1)

NuxRe−1/2
x = −ξ1/4θ ′(ξ,0)

= −ξ1/4[θ ′
0 + ξ−1/4θ ′2

0 + ξ−2/4θ ′3
0 + · · ·] (20.2)

StxRe1/2
x = 1

Sc
ξ1/4φ′(ξ,0)

= 1

Sc

[
φ′

0 + ξ−1/4φ′2
0 + ξ−2/4φ′3

0 + · · ·] (20.3)

These asymptotic solutions are compared with the s
tion of the finite difference method in Tables 2, 3.

For Pr = 1.0, fw = 0.0, and τ = 0.0, the asymptotic
values of the local skin-friction coefficient and the loc
Nusselt number for different values ofξ can now be obtaine
from the following expression:
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n-
CfxRe1/2
x = [

(0.9010)+ ξ−2/4(0.1345)+ · · ·] (21.1)

NuxRe−1/2
x

= −[
(−0.4024)+ ξ−2/4(−0.0499)+ · · ·] (21.2)

According to Merkin [24] the asymptotic values of th
local skin-friction coefficient and the heat transfer coeffici
for Pr = 1.0 are:

Cfx = [
(0.9082)+ ξ−2/4(0.1173)+ · · ·] (22.1)

Nux = [
(0.4010)+ ξ−2/4(0.0503)+ · · ·] (22.2)

The above set of expressions (21.1), (21.2) and (22
(22.2) are also in good agreement.

In Table 2 we have entered the numerical values of
local skin-friction coefficient and the local Nusselt numb
that are found by the above mentioned three methods w
corresponds to an impermeable surface condition(fw = 0.0)
for fluids having Prandtl numberPr = 0.7, Schmidt numbe
Sc = 10.0 and the thermophoretic parameterτ = 0.0 against
different values ofξ ∈ [0,5]. Sinceτ is significant for the
local Stanton number, so in Table 3 we have depicted the
merical value of the local Stanton number and compare
other methods for three values of thermophoretic param
τ = 0.1, 0.5, 1.0 with the same parameter cases as co
ered in Table 2. We observe that whenξ increases, the loca
skin-friction coefficient, the local Nusselt number and
local Stanton numbers also increase in a manner consi
with a free convection boundary layer. Also, from Table
and 3, it may be seen clearly that both the small and la
ξ solutions compare very well with the Keller box compu
tions at intermediate values ofξ , thereby lending confidenc
to the accuracy of our results.

Values of dimensionless velocity, temperature and c
centration distributions are shown in Figs. 2(a)–(c), resp
tively, for values of the local buoyancy parameterξ = 0.0,
0.5, 1.0, 2.0 and 5.0 whilePr = 0.7, Sc = 1000.0, fw =
0.0, andτ = 0.1. From Fig. 2(a), it can be observed th
whenξ = 0, the velocity profile corresponds to pure forc
convection, but whenξ > 1, free convective effects hav
become sufficiently strong to produce a well-defined m
iumum velocity, which is higher than that of the free strea
At large values ofξ forced convection effects are negligib
From Fig. 2(b) we see that the boundary layer becomes
ner asξ increases. This is due to the fact that the streamw
velocity increases asξ increases, which means that hea
less able to conduct away from the surface. For hot surfa
thermophoresis tends to blow the concentration boun
layer away from the surface since a hot surface repels
sub-micron sized particles from it, thereby forming a re
tively particle-free layer near the surface. As a conseque
the species concentration distribution is formed just o
side the particle-free layer. This is of particular benefit
processes that require extreme cleanliness of the sur
Fig. 2(c) shows that the particle-free layer thickness
creases as the buoyancy parameterξ increases.
-

t

,

,

.

(a)

(b)

(c)

Fig. 2. (a)–(c): Dimensionless velocity, temperature and concentra
profiles, respectively, forξ = 0.0, 0.5, 1.0, 2.0 and 5.0, forPr = 0.7,
Sc = 1000.0, fw = 0.0, andτ = 0.1.

Figs. 3(a)–(c) illustrate the effect of varying the stren
of the suction of fluid through the permeable surface(fw >

0) on the velocity, temperature and concentration profi
respectively. The imposition of wall fluid suction(fw > 0)
for this problem has the effect of reducing both the thi
nesses of the temperature and concentration boundary
thicknesses, and reducing the streamwise velocity at
finite value ofη. The decreasing thickness of the conc
tration layer is caused by two effects: (i) the direct act
of suction, and (ii) the indirect action of suction causi
a thinner thermal boundary layer, which corresponds
higher temperature gradients, a consequent increase i
thermophoretic force and higher concentration gradie
Figs. 4(a)–(c) show the corresponding effect of varyingfw

on the skin-friction coefficientCfxRe1/2
x (f ′′(0)), the wall

heat transferNuxRe−1/2
x (−θ ′(0)) and the wall deposition

flux StxRe1/2
x (φ′(0)), respectively. These figures also co
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Fig. 3. (a)–(c): Effect of different values offw on velocity, temperature an
concentration profiles, respectively, forfw = 0.0, 2.0 and 5.0 whileξ = 5.0,
Sc = 1000.0, Pr = 0.7, andτ = 0.1.

firm that asfw increases, the skin-friction coefficient, th
wall heat transfer and the wall deposition flux all increas

In Figs. 5(a) and 6(a) we have shown typical concen
tion profiles for various values of the Schmidt numberSc
and the thermophoretic parameterτ , respectively, in the ab
sence of surface suction. It is clear from Fig. 5(a) that
concentration layer thickness decreases as the Schmidt
berSc increases; this is analogous to the effect of increa
the Prandtl number on the thickness of a thermal boun
layer. For the parametric conditions used in Fig. 6(a),
effect of increasing the thermophoretic parameterτ is lim-
ited to increasing slightly the wall slope of the concentrat
profile for η < 1.0 but decreasing the concentration for v
ues ofη > 1.0. Of more importance is the surface mass fl
and the separate effect of varyingSc andτ on the wall de-
position flux coefficient are shown in Figs. 5(b) and 6(
respectively. In Fig. 5(b) we see that increasing values oSc
decrease the surface mass flux for all values ofξ ; this effect
-

(a)

(b)

(c)

Fig. 4. (a)–(c): Effect of different values offw on the skin-friction, wall
heat transfer and wall deposition flux, respectively, as a function ofξ for
fw = 0.0, 2.0 and 5.0 whileSc = 1000.0, Pr = 0.7, andτ = 0.1.

is particularly strong. Conversely, the increase of the sur
mass flux with variations inτ are relatively small.

4. Conclusions

The effect of surface mass transfer on mixed conv
tion flow past a heated vertical flat permeable plate w
thermophoresis has been investigated theoretically. The
similar equations which govern the flow in the intermedi
mixed convection regime, the forced convection regime
the free convection regime are obtained by using approp
transformations. Solutions for the forced convection reg
and the free convection regime have been obtained u
perturbation methods and have been compared favou
with the solution for the mixed convection regime obtain
by the Keller-box method. The numerical results have b
provided in terms of the local skin-friction coefficient, loc
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Fig. 5. (a) Effect of different values ofSc on the concentration profiles fo
Sc = 10.0, 100.0 and 1000.0, withPr = 0.7, ξ = 5.0, τ = 0.1 andfw = 0.0.
(b) Effect of different values ofSc on the wall deposition flux as a functio
of ξ for Sc = 10.0, 100.0 and 1000.0, withPr = 0.7, τ = 0.1 andfw = 0.0.

(a)

(b)

Fig. 6. (a) Effect of different values ofτ on the concentration profiles fo
τ = 0.0,0.5 and 1.0, withSc = 1000.0, ξ = 5.0, Pr = 0.7, andfw = 0.0.
(b) Effect of different values ofτ on the wall deposition flux as functions o
ξ for τ = 0.0, 0.5 and 1.0, withSc = 1000.0, Pr = 0.7, andfw = 0.0.
Nusselt number and local Stanton number with imperme
surface condition for fluids having Prandtl numberPr = 0.7,
Schmidt numberSc = 10.0 and for different values of ther
mophoretic parameterτ as functions of the local buoyanc
parameterξ ∈ [0,5]. Excellent agreement has been obser
between the results obtained by the two different metho

From the present investigation the following conclusio
may be drawn:

• In the mixed convection regime the values of the lo
skin-friction coefficient, the local Nusselt number a
the local Stanton number increase when the value o
local buoyancy parameterξ increases.

• As ξ increases both the temperature and concentra
boundary layers decrease in thickness.

• Wall suction was found to decrease the strength of
streamwise flow and to decrease both the thermal
concentration boundary layer thicknesses.

• As the Schmidt numberSc increases, the concentratio
boundary layer becomes thinner and the surface m
flux increases.

• As the thermophoretic parameter,τ , increases, the
surface mass flux increases.
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