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Abstract

We study the forced convective heat transfer from a uniform temperature cylinder placed perpendicular to an otherwise
uniform fluid stream in a porous medium. Attention is focussed on how the absence of local thermal equilibrium between the
solid and fluid phases affects the rate of heat transfer from the cylinder when the Péclet number is very large. It is found in all
cases that the surface rate of heat transfer for the fluid is always greater than that of the solid matrix. Detailed numerical results
are given for a wide range of parameter values, and these are supplemented by asymptotic analyses for both small and large
values of the inter-phase heat transfer coefficightWWhen this coefficient is small the thermal field corresponding to the solid
phase occupies a much greater region than does the thermal field of the fluid phase.
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1. Introduction

It is well accepted that the topic of convective flow in porous media is of major importance in many natural and practical
situations. Technological applications include geothermal energy systems, prevention of subsoil water pollution, thermal
insulation systems, heat exhangers and nuclear waste repositories, to name but a few. In recent times porous medium models
have also been applied in simulating more generalised situations such as flow through packed beds, liquid metal flow through
dendritic structures in alloy casting and even for obtaining approximate solutions for flow through turbomachinery. Reviews of
the huge volume of information on this subject can be found in the recent books by Ingham and Pop [1], Nield and Bejan [2] and
Vafai [3]. Despite the great quantity of work addressing various problems in porous media, there is still a need for comprehensive
and reliable methods of predicting accurately the flow and heat transfer characteristics in many cases. The inclusion of more
physical realism in the governing Darcian fluid models is important for the accurate modeling of practical problems.

Most of the analytical and numerical studies of flow and heat transfer in porous media assume the condition of local thermal
equilibrium (LTE) between the solid and the fluid materials. By this is meant that the solid and fluid phases are taken to have the
same temperature locally over length scales which are small compared with the macroscopic environment, but large compared
with the detailed microstructure of the medium. However, in applications using porous media, such as chemical reactors, thermal
energy transport/storage systems and cooling of electronic devices, a temperature discrepancy between the solid matrix and the
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saturating fluid has been observed and recognized. Correspondingly, an analysis of separate energy equations for the fluid and
the solid, that is, a local nonequilibrium model, has assumed an increasing importance.

Nield and Kuznetsov [4] have shown that there are several industrial applications where high speed flow in a saturated
porous medium leads to a significant degree of local thermal nonequilibrium. Examples of where this model applies are fixed
bed nuclear propulsion systems and nuclear reactor modelling where the temperature difference between the liquid coolant and
the solid rods is of great importance. A third example incorporates the storage of thermal energy derived from a solar energy
conversion system, where a heated fluid flows from the solar collectors into a bed rock, and energy is recovered by reversing
the flow in the bed. Other examples mentioned by Nield and Kuznetsov [4] and, more recently, by Nield et al. [5], include
storage systems which have been designed for space power supply systems, where phase change material is used to enhance the
efficiency, and the use of highly porous media (Brinkman model) in the cooling of electronic equipments.

The first studies of the convective flow through a porous medium when the fluid and the medium are not in LTE were
concerned with free convection. Combarnous [6] and Combarnous and Bories [7] investigated the Darcy—Bénard problem
using a two-temperature model. An extension of this system to forced convection flow through a porous packed bed has been
undertaken by S6zen and Vafai [8], S6zen et al. [9], Amiri and Vafai [10] and Kuznetsov [11-13]. Interest in the two-temperature
model has increased in the last few years and detailed reviews of other research have recently been given by Kuznetsov [14]
and Vafai and Amiri [15].

Nield and Bejan [2] present the basic equations which are taken to account for the use of a nonequilibrium model of
microscopic heat transfer between the fluid and the solid phase of the porous medium, but little work has been devoted to the
study of external convective flow. The most recent studies of free convection over vertical surfaces and near the stagnation point
of a cylinder surface embedded in a porous medium have been carried out by Rees and Pop [16,17] and Rees [18].

In this paper we study forced convection flow past a heated horizontal circular cylinder which is embedded in a porous
medium and adopt the two-temperature model of microscopic heat transfer. Forced convection flow past a horizontal cylinder
placed in a viscous (non-porous) or in a porous medium is probably one of the most extensively studied problem in fluid
mechanics owing to its practical significance. In fact, the present work extends that of Pop and Yan [19] to account for the
absence of local thermal equilibrium between the fluid and solid phases. (In passing it should be noted that Sano [20] has
investigated unsteady forced convection flow past a horizontal circular cylinder but that work did not incorporate the the two-
temperature flow model.)

Our problem is formulated in Section 2 while in Section 3 it is shown that at high values of the Péclet number, for which the
boundary-layer approximation is valid, the governing Darcy and energy equations reduce to a parabolic partial differential
system. Numerical solutions using the standard Keller box method are presented in Section 4 and these are followed by
asymptotic analyses for large and small values of the microscopic solid/fluid heat transfer parBimete3ections 5 and 6.

A brief discussion closes the paper.

2. Formulation of the problem

We consider the forced convection flow past a heated horizontal circular cylinder of radiwbjch is embedded in a
porous medium. We assume that the free stream velocity #&d that the temperatures of the cylinder and of the ambient
fluid are T, and T, respectively, wher&, > T,. Of prime concern in the present work is to determine how the heat transfer
characteristics of this system are altered when the fluid and solid matrix comprising the porous medium are not in local thermal
equilibrium. The governing steady two-dimensional equations for forced convection flow may be written
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see Nield and Bejan [2]. Herg and v denote the fluid seepage velocities in the radial and tangential direciicng «,
respectively. The pressurejis the temperatur@ and the other fluid and porous medium properties are the permedbjlitye

fluid viscosity i, conductivityk, densityp, specific heat and the porosity. The subscripty ands denote fluid and solid,
respectively. Of especial interest is the coefficiéntvhich is used to model the microscopic transfer of heat between the fluid
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and solid phases. The value/ofiepends not only on the nature of the porous medium and the saturating fluid, but also on the
microscopic Reynolds number; see Kuznetsov [14] and papers cited therein.
Egs. (1) may be nondimensionalised using the transformations

F=ar, (u,v) =U(u,v), (2a,b)
Ty= (T — Too)0 + Teo, Ty = (Te — Too)9 + Too, (2c,d)
and further simplification is afforded by the introduction of a streamfuncijgraccording to
181# and vz—%. (2e,)
T r da ar

After these transformations, Eqgs. (1) become
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are dimensionless constants. Egs. (3) need to be solved subject to the boundary conditions
Y=0, 6=¢=1 on r=1 and ¢ —rsinag, 0,p—0 as r— oo. (5)

In Eq. (4), H represents the dimensionless inter-phase heat transfer coefficientiqadgorosity-scaled conductivity ratio,
which we will allow to take values in the range from 1®to 10?, which covers most practical applications. Low valueg of
generally correspond to a relatively poorly conducting fluid such as air in a metallic porous medium. Lastly, tHeevalae
Péclet number based on the fluid properties and scaled with the porosity.

3. Boundary layer analysis
We shall consider forced convection at high values of the Péclet number and within this regime the heat transfer problem

reduces to boundary-layer type — otherwise fully elliptic equations must be solved (see Wong et al. [21] for further details). The
flow past the cylinder is given by the solution of Eq. (3a) and is, simply,

1
Y= <r— —)Sina; (6)
r
which returns to a uniform free stream wheris large. On substitution into (3b,c) we obtain equations for the temperature
fields;
L% + 196 + L% 1 ! cosu 99 1 + ! sin d + H(O —¢) (7a)
—_— —= _—— _—— = —_—— _— —_ —_ o— _ s
Pelor2  rdr r23a? r2 or roor3 da
1[3% 199 1 0%
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When the fluid and solid matrix are in local thermal equilibrium Pop and Yan [19] showed that the thermal field is contained
within a boundary layer which is thin compared with the radius of the cylinder wherRevisrlarge. This remains the case
when LTE no longer applies. That this is so may be seen in Fig. 1 which shows the temperature fieéds @0, # = 0.3

andy = 1 which were computed by solving Egs. (7); see Wong et al. [21] for further cases. In this figure we see that the thermal
boundary layer thickens with distance from the upstream (front) stagnation point. Also visible is the difference in the boundary
layer thickness between the fluid and solid phases. Following [19], then, we rescale the radial coordinate according to

r=1+Pe Y2, (8)

whereupon (7a,b) take the forms
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Fig. 1. Computation of the temperature field for forced convection flow past a cylinder in a porous medRer=f200, H = 0.3 andy = 1.
Fluid flows from left to right. The upstream (front) stagnation point corresponds tabeth and X = 0. The upper half shows isotherms for
the fluid phase, while the lower half corresponds to the solid phase. Isotherms are drawn at inten@s of 0

326 a6 36
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at leading order inPe. Given the form of the similarity solutions presented in [19] for the LTE case, we introduce the
transformations

n=rsinja and X =cosja, (10)
noting thatX = 0 corresponds to the upstream stagnation point on the cylinder whitel corresponds to the downstream
(rear) stagnation point where the flow detaches itself from the cylinder; see Fig. 1. We obtain

0" + 210’ =2X0x + 0 — ), (11a)

1—x2
@ —0), (11b)

Hy
1 —
¢ 1-x2
where primes denote derivatives with respecyt@he boundary conditions which are required to complete the problem are
that

f=¢=1 onp=0 and 6,90 asy— . 12

Egs. (11) form a parabolic system even though (11b) does not contain dindgeivatives. The absence of such derivatives
simply means thap adjusts instantly to changesédrasX increases, and may also be viewed as a differential constraint on the
evolution ofd. Moreover this system is well-posed as (11a) reduces to an ordinary differential equatio whenTherefore

we have a pair of ODEs to solve &t= 0 and the solution of these provides the initial conditions for the subsequent evolution
in X.
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Numerical and asymptotic solutions of (11) are presented in subsequent sections in the form of both local and global rates
of heat transfer. The local Nusselt numbers are given by

a6 ]
Nuf =~ s NuS = __d) s (13)
) or |y=1 or |,=1
and, in terms ofj, these may be expressed more conveniently as
Nuf 200 Nug a¢p
g = o9y N 98 (14)
! Pet/2sinda  9nl,=0 " PeY2sinda nly—o

The global rates of heat transfer, which are defined as the local values averaged betnw@emda = 7, are then given by

b4 1
1 a0 1 2 a0
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4. Numerical solutions

Egs. (11) constitute a parabolic partial differential system which we solved numerically by the well-known Keller box
method [22]. No substantial modification to a standard code is required except for the solution sadarAt this point we
solve the equations

Y / ” 14 ’
——2n6" =0, 4+ ——2n¢ =0 16a
el ¢ +7 o ng (16a)
subjecttod = ¢ =1 atn =0 andf, ¢ — 0 asn — oo since it is shown later tha& and¢ are identical atX = 1 and satisfy
these equations. In all cases the solutions evolve naturally to the solutions of Egs. (16) which are

y \Y2
0=¢= erfc[(m) n]. (16b)

During testing for accuracy it was found that the boundary layer thickness in termsasfes very substantially witx,
and the value ofimax chosen to obtain an accurate solutiorkat 0 sometimes induced numerical convergence problems near
X =1 where the boundary layers can be much thinner in termstio&n is the boundary layer for the solid phase néat 0.
Therefore the solution was monitored ¥svaried and the value ofmax was chosen to be such that the computed valug of
at n = nmax was held at approximately 16. A more stringent criterion yields convergence difficulties, while a more relaxed
condition affects adversely the accuracy of the solution. Apart from this additional facility, the Keller box code is as described
in other published papers; see, for example, Rees [23,24] or Rees and Pop [16,17]. In all cases we used a constant steplength
0.05 in then-direction. We also chose to use a constant steplengttD&ffor X over most of the range Q X < 1, but it was
necessary to use decreasing steps on the approach-tb since the solutions vary very rapidly whé&éhandy are small.

The computational results of the paper are summarised in Figs. 2 and 3 and in Tables 1 and 2. Fig. 2 shows how the
local rates of heat transfeyy andg;, vary with X and H for four different values of . In all cases common asymptotic values

(y/A+ y))l/z(Z/ﬁ) are achieved aY = 1, which corresponds to the rear stagnation point of the cylinder. The chief physical
reason for this feature is that the boundary layer thickness in terihgsafe Eq. (10)) increases without limit &s— 1, and
this allows the two thermal fields to equilibrate to the same values.

As X increases from 0 towards 1 the local rate of heat transfer for the fluid decreases in magnitude, but that for the solid
increases. Here, thermal diffusion effects for the solid phase are stronger relative to the fluid phase, and its thermal field spreads
out to relatively greater distances because it is not affected directly by advection on the upstream side of the cylinder; the
implication is that in all casegs < q . These phenomena are confirmed by the asymptotic analyses for both large and small
values ofH given in the next two sections.

A detailed study of the curves in Fig. 2 shows that large discrepancies between the rates of heat transfer of the fluid and the
solid occur not only whei# is relatively small, which is to be expected because this corresponds directly to cases where there
is poor transfer of heat between the phases, but also whesmall. (Fig. 2(a) in particular demonstrates this effect.) This may

9// +
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X X

Fig. 2. Variation withX of the local rates of heat transfer around the cylinder. The continuous curves correspgrehtbthe dashed curves to
gs. Curves correspond td = 0.1, 0.2, 05, 10, 20, 50 and 100; H = 10 corresponds to the lowest continuous curve and the highest dashed
curve atX = 0 in each subfigure. () =0.1; (b) y =0.2; (c) y = 2.0; (d) y = 10.0.

be explained by the fact that small valuesyo€orrespond solely to the poor transfer of heat to or from the solid phase; in turn

this enables the solid phase temperature field to be effectively independent of the fluid phase, thereby allowing heat to conduct
outwards readily to give a correspondingly small magnitude of the rate of heat transfer. On the other handiswké&tively

large, such as is shown in Fig. 2(d), then the temperature field of the solid phase is affected very strongly by the temperature of
the fluid phase. In Fig. 2(d) we see that, at such large valugs tife temperature of the fluid phase is almost independent of
both X and H. WhenH is small, then Eq. (11a) shows that the contribution to the fluid field from the solid is negligible since

the only term coupling and¢ is multiplied by H, whereas whei#{ is large, therd and¢ are nearly identical. In both cases

the term multiplyingH in (11a) is small, and therefore the fluid temperature field is almost independ&nt of
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Fig. 3. Variation withX of the local rates of heat transfer around the cylinder. The continuous curves corresggnant the dashed curves
to ¢s. Curves correspond tp = 0.01, 01, 02, 05, 10, 20, 50, 100 and 10; = 100 corresponds to the highest pair of curves in each
subfigure. () =0.1; (b) H =0.5; (c) H = 2.0; (d) H = 10.0.

Fig. 3 presents an alternative view of the numerical results by illustrating the variatjigneofdgs with X andy for various
chosen values off. In general we see substantial differences betweepg thendg; curves when either of the parametéfs
andy are small. However, whef{ is large the values of ; andgs shown in Fig. 3(d) are quite close and both are almost
independent ok . At the opposite extreme, represented by Fig. 3(a) for whick 0.1, there is a very large difference between
the heat transfer characteristics of the two phases. Once more this is due to near decoupling of Eq. (11a) from (11b). The decay
of 6 is superexponential, byt decays like exp—n./Hy) whenp is large. For small values df y the slow decay o yields
a small rate of heat transfer. However, whEnincreases, the value dfy /(1 — X?2) increases and thermal equilibrium is
approached fairly quickly a& — 1.
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Table 1
Values ofQ ¢ (defined by (15a)) as a function pfand H

H 4
0.01 01 0.2 05 1 2 5 10 100 1000

0.1 0.6055 06402 06509 06648 06750 06846 06958 07028 07156 Q07182
0.2 0.5293 05910 06102 06351 06530 06694 06877 06983 07153 Q07182
0.5 0.3825 04969 05339 05821 06159 06457 06766 06930 07152 07182
1.0 0.2571 04119 04657 05365 05858 06280 06695 06900 07151 Q07182
2.0 0.1580 03335 04017 04941 05587 06130 06641 06879 07150 07182
50 0.0961 02648 03421 04533 05331 05995 06597 06863 07150 Q07182
100 0.0815 02396 03179 04353 05216 05936 06579 06857 07150 07182

Table 2
Values of Qg (defined by (15b)) as a function ¢fand H

H 4
0.01 01 0.2 05 1 2 5 10 100 1000

0.1 0.0281 00825 01121 01648 02165 02784 03728 04486 06472 07091
0.2 0.0371 01074 01448 02098 02712 03416 04421 05160 06761 Q7135
0.5 0.0500 01438 01923 02735 03461 04241 05241 05886 06978 07163
1.0 0.0587 01695 02261 03184 03976 04779 05724 06271 07060 Q7173
2.0 0.0648 01896 02532 03550 04389 05195 06067 06524 07104 Q7177
50 0.0689 02053 02756 03868 04750 05548 06335 06708 07131 Q07180
100 0.0702 02110 02843 04000 04903 05696 06441 Q6777 07141 07181

In the next two sections we examine in detail the temperature fields and their associated rates of heat transfer irfithe large-
and smallA limits.

5. Asymptotic solution for large values of H

Large values off correspond to a high rate of heat transfer between the phases and it is to be expected that the fluid and
solid thermal fields are very similar in this limit. It proves convenient to rewrite Eqgs. (11) in terms of the varfiadheksy
where

is the temperature difference between the phases; we obtain

1 1
(1+ —)9”+2n9’—zxex =——y" (18)
14 14
and
1- X2 " "
= 0"). 19
X Hy x"+07) (19)
It is possible to make the leading order solution independeptlnf rescaling the independent variabjeaccording to
1/2
Y
- 20
¢ (1 n y) " (20)
and therefore we solve
1
and
1- x?
X (X¢e +0c¢)- (22)

THQ+y)
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The solution proceeds in terms of inverse power&lofet

©. %) = (60, x0) + H ™1 (61, x1) + -+~ (23)
and then at leading order we find that

o0
2 g2
00=erfc;“=ﬁ/e ds, (24)
¢
x0=0, (25)
while at O(H),
_ V7 [(1,3 3 2(1 1 3) 2
o= (360 3¢) #2250 3¢ [ 26)
AT o 2
X1= l+)/(1 X );“e . (27)
From these solutions we obtain
36 2 1 211
= === —— J[-3+2x)|H 1+..., 28
Wle=0 V7 ﬁ(lﬂ/)z[ ] (@9)
blo} 2

D e — A+ 4) -+ 4)XAH (29)
Wle=o VT Jml+ J/)z[ ]
We note that the @7 —1) contribution to the rate of heat transfer in the fluid phase is always less than that of the solid phase,
except at the rear stagnation poiit= 1, at which point they are identical.

The local rates of heat transfer from the cylinder are given by

qf~<ﬁ>l/z%[1+ﬁ<%+sin2%a)li1+---], (30a)
and the corresponding global rates of heat transfer are
2

We note that the leading terms in (30) and (31) yield the LTE results quoted by Pop and Yan [19] since the Péclet number used
by those authors was based on the mean properties of the porous medium, rather than on the fluid properties.

Global rates of heat transfer for the fluid and solid phases as computed by the numerical routines described in Section 4
are listed in Tables 1 and 2 respectively. In all cases the valgg,ois higher thanQ;. WhenH is large, the phases are very
nearly in local thermal equilibrium and hence both rates are very close to the leading terms in (31a,b). Tables 3 and 4 show
two comparisons between the numerical solutions obtainedZfer 100 and the one and two-term asymptotic expressions
given in (31). In both cases the addition of the second term in the asymptotic expansion yields an excellent agreement with the
numerical simulations. Thus we may use (31) for larger valugg dflowever, we note that, as the valueyofeduces, so the
quality of the agreement also reduces, althougly, &t0.01, the relative error i ¢ is approximately 1074,

Table 3
Comparisons of the numerical values and the 1-term and 2-term karge-
asymptotic representations ofy andQ; for y = 0.01

Fluid Solid
Numerical ( = 100) 72311x 1072 7.1352x 1072
1-term asymptotic 1478x 1072 7.1478x 102

2-term asymptotic 2296x 102 7.1352x 1072
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Table 4
Comparisons of the numerical values and the 1-term and 2-term karge-
asymptotic representations ofy and Qs for y =1

Fluid Solid
Numerical ( = 100) Q050943 050608
1-term asymptotic 50795 050795
2-term asymptotic 50943 050604

6. Asymptotic solution for small values of H

Now we look at the opposite asymptotic extrefiex 1 which relates to the case when there is relatively poor heat transfer
between the phases. A straightforward perturbation expansion in powéfdaifs at leading order since the equation &or
(¢” = 0; see Eq. (11b)) cannot be solved subject to both boundary conditions specified in (12). Previous experience suggests
that this indicates the presence of a very thick outer region, and this is confirmed by the numerical work. Once more, a standard
analysis involving a power series i1/2 and the method of matched asymptotic expansions is inappropriate since the inner
O(H) equation for yields a solution which grows logarithmically asncreases. The resolution of this difficulty, which was
absent in previous analyses where LTE is not present (see Rees and Pop [16] and [17]), involves an expansion of the type

0. ¢) = (60, $0) + HY2 (01, ¢1) + HINH (62, d21) + H (62, ¢2) + H¥? (63, ¢3) + - - (32)
wheny = O(1). The outer region may easily be shown to have thickn&ssl/2, and it may be studied using
6.9) = (Bg. Do) + HY2(O1, #1) + H(O, p) + HY2(03, d3) + - -, (33)
wheren = H~1/2y and the®; and®; are all functions ot'. Expansions (32), (33) when substituted into system (11) leads to
a hierarchy of equations for the coefficient functions which may be solved order by order. The zeroth order inner problem gives
o
6p = erfc(n) = 2 /e_SZd do=1 (34)
o= n) = N s, 0=
n

and the form ofpg is consistent with the fact that the numerical solutions decay very slowly for the solid phase, and it is this
which motivates the use of an outer region. Now also

N
B =0, Pp = exp[— -~y (35)
V1-Xx2
so that the solution fo®g decays to zero a8 — oo, which is as expected from a physical point of view. The solution for the
fluid phase shows that there is no leading order thermal penetration into the outer region. Clearly the soldtiphréaks
down in the limit asX — 1, and therefore the following solutions are valid only when X = O(1).
The O(HY/?) parts of (32), (33) are easily evaluated as

s Y2
n=0  o=-(11g) 1 e1=e1=0 (@)

while the terms of size (4 In H) lead to
]
b=C1f e dv =0 37)
0
for some constant’q. With this, the equation faf, becomes

n
2/J7 [ 2 A(n)
el L s ds = 38
1-—x2 € =1-x2 (38)
0

05 + 2105 — 2X0ox = —

which definesA (n) as a multiple of the error function, and then

1
62= Bo() + ZA(n In(1- X?), (39)
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where
Bl 4+ 2nBl = ——2 [ ds = —erf 40
o 41 O__ﬁ € s = —erf(n). (40)

This equation cannot easily be solved analytically Byt~ —% Inn + C2 asn — oo whereC3 is a constant which may be
obtained numerically using an outer region solution; at this stage it cannot be tied down. The correspondingddimedour
of 6 is

1 1
92~[—§Inr;+C2 —Zln(l—XZ), (41)

while ¢o may be found explicitly

$2=

- n
m n e_"z + (2772 + 1) / e_SZ dsi| . (42)
- 0

It turns out that we do not have to consider the outé HPequations before solving the inner solutions aﬂg/z). It
follows that

n

1-2x2 1 3/2
O3= Csf e ds + L)n, $3=—— (L> 7>+ Can, (43,44)
) 2./1— x2 6\1— x2

whereC3 andCy4 are constants.
6.1. Asymptotic matching

For large values of; the inner solutions re-expressed in terms of the outer variabter/ /2y are

N 1 1 1 1 o JST(A—2X2)Y 32
6 HInH[Z—I—EﬁCl]+H[—EInY+C2—ZIn(l—X) N ] +H [fc3] (45)
and
1/2 1 1 3/2
~l1=— Y - Y 2_Z(_Y 3., _r
p [1 (1—X2> Y+2<1—X2)Y 6(1_X2) vy ]+H[4(1_X2)+c4y] (46)

Now the term involvingH In H in expansion (45) may be removed by settittg= —1/(2/7) which precludes the need for
terms of QH In H) in the outer region.

We are now in a position to be able to solve th@ outer problem using (45) and (46) to inform us of the requikite- O
matching conditions.

6.2. Outer solutions at O(H)

We already have expressions f8p, ©1, @9 and®q; see Egs. (36). At (H) the equation fo® is

1 y o \Y2
/

but it is not necessary to solve this as it is possible to develop an expansion for small vatudhefresult is that

(1— 2x2)
J1-x2

for Y « 1 and theY -independent term clearly has its counterpart in Eq. (45).

02———|nY+[——|n(1 x2)+cz}+ N (48)
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Table 5
Comparisons of the numerical values and the 1-term and 2-term gmall-
asymptotic representations ofy and Qs for y =1

Fluid Solid
Numerical = 10~3) 0.71715 0029849
1-term asymptotic d1835 0031623
2-term asymptotic Ji711

6.3. Rates of heat transfer

We may now find the local and global rates of heat transfer for both phases using the above solutions in the inner region.
The local rates of heat transfer are given by

2 1
quﬁ—f—ﬁHlnH—FO(H), (49)
_ Y g2 ¥V 3/2
0= Jra g o) ”

for small values ofA. The small magnitude of the leading term in (50) reflects the fact that the solid phase boundary layer is
much thicker than that of the fluid phase.

These expressions may now be integrated according to Egs. (15) to obtain the global rates of heat transfer. This may be done
for the fluid phase, but for the solid phase the expressions for the local rate of heat transfer are not uniformly valid. Therefore
the most that may be claimed is that

4 HInH
Qf = m + W +O(H) and Q= V1/2H1/2+ O(Hl/z)' (51)

Strictly speaking it is necessary to examine in detail how the thermal field is modified in the region clbseloThe critical
region is whenX = 1 — O(H), but we do not pursue such a study in the present paper.

Table 5 shows a comparison between the computed valugscadnd Qs and the asymptotic values given by (51). The
addition of the second term f@ ; reduces the relative error from being just less thanZ0~3 to one which is of magnitude
1x 1073, The one-term approximation @, is not as good but has relative errox 80 2. Itis expected that these correlations

improve for smaller values af, but require yet smaller values &f to maintain the present accuracy when larger values of
are taken.

7. Conclusions

In this paper we have examined the steady forced convection boundary layer flow past a hot circular cylinder which is
embedded in a fluid-saturated porous medium where a two-temperature model of the microscopic heat transfer between the
solid and fluid phases has been adopted. The heat transfer coefficients for the fluid and solid phases have been computed
numerically by solving the appropriate parabolic partial differential equations. Detailed asymptotic analyses for both large and
small values off have been undertaken, the latter using the method of matched asymptotic expansions.

When the porous medium is in thermal equilibrium the local heat transfer coefficients defined in (14) do not varyimith
general, when local thermal nonequilibrium applies the developing thermal field in each phase is nonsimilar, and the local heat
transfer coefficients vary with. It was found that as the angle, decreases from = /2 (i.e., the front stagnation point or
X =0) toa = 0 (the rear stagnation point &f = 1), the local rate of heat transfer for the fluid phase decreases in magnitude,
but that for the solid phase increases and in all circumstagges Q r. Near the leading stagnation point the rate of heat
transfer in the fluid phase is relatively high as this is where advection of cold fluid towards the cylinder occurs. The solid phase
is immune to these effects, whédi is not large, and therefore heat is able to conduct more readily away from the cylinder,
which, in turn, reduces its rate of heat transfer relative to the fluid phase. Towards the rear stagnation point, on the other hand,
the boundary layer has become much thicker, and the temperature fields are able to equilibriate.

When eitherH or y are sufficiently small, then the temperature field of the fluid phase, which is dominated by a balance
between conduction and advection, has little influence on the evolution of temperature field of the solid phase. The latter grows
quite substantially ag/ or y decrease towards zero, and this reduces both the local and global rates of heat transfer very
markedly. In all cases, however, thermal equilibrium is established towards the rear of the cylinder.
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Finally we make a comment on the realisability of the flows described here. We have computed a steady flow where heat is
being lost from a hot cylinder to a cold fluid stream. At some point on the cylinder, the location of which is dependent of the
direction of the gravity vector, there will be a situation where hot fluid underlies cold fluid and there exists the possibility of
thermal instability due to an unstable temperature gradient. However it is very unlikely that instability should arise in the present
flow because the local Darcy—Rayleigh number (which must be abo%éot instability to exist in the Darcy—Bénard problem)
is proportional to the thickness of the region over which the temperature variation takes place. For the forced convection flow
considered here, the Péclet number is large, and therefore the boundary layer thickness is very small. In turn, the Darcy—
Rayleigh number is also small, and therefore the flow will be stable. Such an occurrence may not exist when the Péclet number
is finite.
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