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Abstract. The effect of viscous dissipation on the development of the boundary layer flow from a
cold vertical surface embedded in a Darcian porous medium is investigated. It is found that the flow
evolves gradually from the classical Cheng–Minkowycz form to the recently discovered asymptotic
dissipation profile which is a parallel flow.
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1. Introduction

The viscous dissipation effect, that is, a local production of thermal energy through
the mechanism of viscous stresses, serves to modify, sometimes greatly, free, forced
and mixed convection flows in both clear viscous fluids and in fluid-saturated
porous media. From a mathematical point of view, such modifications in the be-
haviour of the flows arise because of an additional term in the energy equation
which expresses the rate of volumetric heat generation, q ′′′, by viscous dissipation,
and which (for a plane boundary layer flow) is given in these two cases by

q ′′′
clear ≡ µ

(
∂u

∂y

)2

and q ′′′
Darcy ≡ µ

K
u2 (i)

respectively. It would appear that the Expression (i) of q ′′′ for a Darcy flow was
deduced for the first time independently by Ene and Sanchez-Palencia (1982) and
Bejan (1995). Under the earlier applications of this ‘u2-model’ of viscous dissi-
pation in porous media should also be mentioned the papers of Nakayama and Pop
(1989) and Ingham et al. (1990).

From a physical point of view, the difference between the two cases originates
in the fact that u denotes the actual fluid velocity for a clear fluid flow, but denotes
a fluid flux velocity (i.e. a macroscopic, averaged quantity) for a porous medium
flow. Therefore, at microscopic levels within a porous medium, the convecting fluid
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is necessarily extruded through the pores of the solid skeleton, and local flows are
typically three-dimensional even when the overall macroscopic flow is uniform
and unidirectional. This microscopic process is what enhances the rate of heat
generation by viscous dissipation considerably. Thus, as it is seen immediately,
in a uniform forced convection flow (u = const. ≡ u∞), no heat is released by
viscous dissipation in clear fluids, but in porous media the heat generation rate
increases with u quadratically. As has been shown recently (Magyari et al., 2002)
this fact has important consequences for the far-field thermal boundary conditions
which have to be imposed for both forced and mixed convection in extended porous
media. For free convection flows Expression (i) is compatible with the uniform
asymptotic condition T (x, y → ∞) = const. = T∞ which is usually imposed on
the temperature field since u → 0 as y → ∞. But in forced and mixed convec-
tion flows in extended porous media this asymptotic thermal condition contradicts
the corresponding energy equation in which the term q ′′′

Darcy = (µ/K)u2∞ is non-
vanishing as y → ∞. Accordingly, some recent results on mixed convection flows
in extended porous media (Tashtoush, 2000; Murthy, 2001) should be reconsidered
(see Magyari et al., 2003) by taking into account suitably modified (Magyari et al.,
2002) boundary conditions on T in the far field.

Although the quantitative effect of viscous dissipation is often negligible (for
details and exceptions see Gebhart, 1962; Gebhart and Mollendorf, 1969; Nield,
2000), its qualitative effect may become significant. Indeed Magyari and Keller
(2003a) showed that, for flow over a hot vertical plate embedded in a saturated
porous medium in which a uniform horizontal flow (v = const. ≡ v0) is present,
viscous dissipation can give rise to an ascending boundary layer of constant thick-
ness. Such a phenomenon does not exist in the absence of viscous dissipation.
Very surprisingly, in such a system (i.e. with v = const. ≡ v0) the buoyancy forces
due to the heat released in the bulk of the fluid by viscous dissipation may cause
an ascending wall jet-like (i.e. uwall = u∞ = 0) free convection flow, when the
wall temperature coincides with the ambient temperature of the fluid, Tw ≡ T∞
(Magyari and Keller, 2003b). A further interesting effect of the presence of viscous
dissipation is that it breaks both the physical and mathematical symmetry which
exists otherwise between a free convection boundary layer flow ascending from a
hot plate (Tw > T∞) and its counterpart, descending from a cold plate (Tw < T∞).
For this latter case, Magyari and Keller (2003c) have shown that the (small) effect
of viscous dissipation is able to cancel the (small) transverse component of the
velocity field, thus giving rise to a strictly parallel boundary layer flow of a constant
thickness. However, in the case of a free convection flow ascending from a hot
plate, this ‘self-parallelisation’ effect due to viscous dissipation does not exist.

The main aim of the present paper is to show that this parallel flow, which is
obtained as a possible elementary analytical solution of the governing equations
(Magyari and Keller, 2003c), does exist and is nothing more than the asymptotic
configuration achieved by the natural evolution of the flow away from the classical
Cheng–Minkowycz boundary layer profile. This ‘asymptotic viscous dissipation
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profile’ may then be said to exist beyond a certain distance x∗ from the leading
edge of the plate.

2. Basic Equations

A steady free convection boundary layer from a vertical impermeable flat plate
embedded in a fluid saturated porous medium of ambient temperature T∞ is con-
sidered. The plate is maintained at the constant temperature Tw < T∞, Under
these conditions a boundary layer flowing down the plate will be formed. The
basic boundary-layer equations, subject to the Boussinesq approximation, are (see
Murthy and Singh, 1997; Nield and Bejan, 1999):

∂u

∂x
+ ∂v

∂y
= 0 (1)

∂u

∂y
= −gβK

υ

∂T

∂y
(2)

u
∂T

∂x
+ v ∂T

∂y
= α ∂

2T

∂y2
+ υ

Kcp
u2 (3)

These equations are to be solved subject to the boundary conditions

y = 0: v = 0, T = Tw; y → ∞: u→ 0, T → T∞ > Tw (4)

Here x� 0 and y� 0 are the Cartesian coordinates along and normal to the plate,
respectively, u and v are the velocity components along x and y axes, T is the fluid
temperature, K is the permeability of the porous medium, g is the acceleration due
to gravity, cp is the specific heat at constant pressure, and α, β and υ = µ/ρ

are the effective thermal diffusivity, thermal expansion coefficient and kinematic
viscosity, respectively. The positive x-axis, with its origin at the leading edge of the
plate, points vertically downwards in the direction of g.

From (2) and (4) it is straightforward to show that

u = gβK

υ
(T∞ − T ) (5)

Bearing in mind that Tw < T∞, it is convenient to write T in the form

T = T∞ − (T∞ − Tw) θ (6)

where θ is a non-negative function of x and y, which, as a consequence of Equation
(4), satisfies the boundary conditions θ = 1 on y = 0 and θ → 0 as y → ∞.

The introduction of the stream function, ψ , defined according to u = ∂ψ/∂y

and v = −∂ψ/∂x, transform the equations to

∂ψ

∂y
= gβK (T∞ − Tw)

υ
θ,

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
= α ∂

2θ

∂y2
− υ

K cp (T∞ − Tw)

(
∂ψ

∂y

)2

(7)
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Now, Equation (7) may be non-dimensionalised by the transformation (x, y, ψ)→
(ξ, Y,�) defined according to

x = Lξ, y = LRa−1/2Y, ψ = αRa+1/2�,

Ra = gβK(T∞ − Tw)L

υα
(8)

and therefore (7) becomes,

∂�

∂Y

∂2�

∂Y∂ξ
− ∂�

∂ξ

∂2�

∂Y 2
= ∂3�

∂Y 3
−Ge

(
∂�

∂Y

)2

, θ = ∂�

∂Y
(9)

where L is a reference length, Ra denotes the Rayleigh number and Ge is the
Gebhart number Ge = gβL/cp which controls the contribution of the viscous
dissipation. Since in the present problem no prescribed length scale exists, the value
of Ge may be specified arbitrarily by the choice of L. In this paper it is therefore
possible to set Ge = 1, which implies that

L = cp

gβ
(10)

is a natural length-scale based upon properties of the porous medium and the fluid
and upon gravity. The (dimensional) velocity field of the flow is thus given by

u = α

L
Ra θ, v = −α

L
Ra1/2∂�

∂ξ
(11)

3. The ‘Asymptotic Dissipation Profile’ (ADP)

In general, the velocity field of free convection boundary layer flows has both
parallel and transverse components u and v, respectively, where the transverse
component is much smaller than the parallel component. Accordingly, such flows
are called non-parallel flows. However, as shown recently by Magyari and Keller
(2003c), the (small) buoyancy forces due to heat release by viscous dissipation
are able to cancel the (small) transversal velocity component v of the free con-
vection field, thus giving rise to a strictly parallel flow. The single non-vanishing
component u of the corresponding velocity field depends only on the coordinate
y and therefore u = u(y) and this flow has a constant thickness. Such ‘self-
parallelisation’ of the velocity field in the presence of viscous dissipation can only
happen in a free convection flow which descends over a cold plate, but never in its
ascending counterpart over a hot plate (Magyari and Keller, 2003c). The reason is
that in the latter case, the buoyancy forces due to heat release by viscous dissipa-
tion assist the ‘main’ buoyancy forces sustained by the wall temperature gradient,
while in the former case of the cold plate, they oppose them (Magyari and Keller,
2003c).
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The parallel-flow solution of Magyari and Keller (2003c) can easily be re-
covered from Equation (9), by assuming that � and θ depend only on Y (but not
on ξ ). Indeed, in this case the equation for � given in Equation (9) becomes

∂3�

∂Y 3
=

(
∂�

∂Y

)2

(12)

which may be solved to obtain:

� = − 6

Y + √
6
, θ = 6

(Y + √
6)2
, u = α

L
Ra θ, v = 0 (13)

The surface heat flux of this algebraically decaying parallel flow is given by

Q0 = − ∂θ

∂Y

∣∣∣∣
Y=0

= +
√

2

3
(14)

and its 1% thickness (i.e. the value Yδ of Y for which θ(Yδ) = 0.01) by Yδ = 9
√

6.
The main concern of the present paper is to answer the question of whether the

special solution (13) of the boundary value problem (1)–(4) represents a physically
realisable state of the descending free convection flows or not. The answer, which
is presented in the next section, is that it is realisable. The parallel flow solution
given by Equation (13), which will be referred to hereafter as ADP, is attained by
a certain distance downstream of the leading edge, x∗, and this value is computed.

4. Flow Development Toward the ADP

The development of the descending free convection flow toward the ADP, as given
by Equation (13), will be examined numerically in this section. The starting point
of this investigation is the following simple physical reasoning. In the neighbour-
hood of the leading edge, where the effect of viscous dissipation is negligible, the
steady flow has the character of the classical Cheng–Minkowycz boundary layer
(see Cheng and Minkowycz, 1977) whose thickness increases with the wall co-
ordinate as x1/2. Thus, if the viscous dissipation term in the energy equation is neg-
lected, the boundary layer grows indefinitely according to the Cheng–Minkowycz
similarity solution. This holds both for an ascending free convection flow from a
hot plate as well as one descending from a cold plate. But the heat released by
viscous dissipation, however, warms up the moving fluid. This in turn accelerates
the growth of the ascending boundary layer but decelerates that of the descending
one. It is therefore expected that far enough from the leading edge, the thickness of
the cold boundary layer will be limited by the warming effect of viscous dissipation
to a constant asymptotic value. This limiting state of this boundary layer flow,
which is approached at some distance x∗ from the leading edge, should be precisely
the ADP which is described by Equation (13).

In the present numerical experiment aiming to prove the above conjecture,
it is necessary to introduce the usual Cheng–Minkowycz similarity variable for
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boundary layer flow from a uniform temperature surface in order to describe the
beginning stages of the evolution of the flow, while Equation (9) may be used
further downstream. Therefore the following transformations

η = ξ−1/2Y, � = ξ+1/2f (η, ξ) , θ = θ (η, ξ) (15)

transform Equation (9) to

f ′′′ + 1

2
ff ′′ −Ge ξf ′2 = ξ

(
f ′ ∂f

′

∂ξ
− f ′′ ∂f

∂ξ

)
, θ = f ′ (16)

where the primes denote differentiation with respect to η and where Ge = 1 is
taken, as discussed earlier. In this form of the basic equations it may be seen
explicitly that the viscous dissipation term disappears at the origin, where ξ = 0.

In the numerical simulation, Equation (16) are solved in the range 0 � ξ � 1,
and Equation (9) in the range ξ � 1. This means that the developing boundary
layer flow is well approximated near the leading edge, but that the approach to
the constant thickness ADP arises naturally within the context of Equation (9).
When ξ � 1 Equation (16) are solved subject to the boundary conditions

η = 0: f = 0, f ′ = 1; η → ∞: f ′ → 0 (17)

but when ξ > 1 Equation (9) are solved subject to

Y = 0: � = 0,
∂�

∂Y
= 1; Y → ∞:

∂�

∂Y
→ 0 (18)

The respective pairs of equations were solved by a straightforward application of
the well-known Keller box method. The solution at the leading edge (ξ = 0) is
readily seen to satisfy a pair of ordinary differential equations, and the solutions
there are same as those presented by Riley and Rees (1985). The leading edge
profiles were then marched forward in ξ . In the simulation we took constant steps of
size 0.1 in the ξ -direction, and 63 unequally spaced intervals between 0 and 100 in
the η or Y-direction. The accuracy of our numerical scheme is such that the steady
value ofQ0 is 0.816454, which has a relative error of 0.00005 on comparison with
Equation (14).

Figure 1 shows the surface rate of heat transfer in two forms as functions of ξ .
More specifically the figure depicts

Q1 = −ξ−1/2 ∂θ

∂η

∣∣∣∣
η=0

for ξ � 1, Q1 = − ∂θ

∂Y

∣∣∣∣
Y=0

for ξ � 1 (19)

and

Q2 = − ∂θ

∂η

∣∣∣∣
η=0

for ξ � 1, Q2 = −ξ+1/2 ∂θ

∂Y

∣∣∣∣
Y=0

for ξ � 1 (20)

The value Q1 shows how the surface rate of heat transfer evolves compared with
that of the uniform thickness ADP to which the flow tends as ξ → ∞. Near
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Figure 1. The variation with ξ of the rate of heat transfer as represented by Q1 and Q2,
as defined in Equations (19) and (20), respectively. The Cheng–Minkowycz value of Q2
is 0.44376 which corresponds to ξ = 0. Also shown as a dashed line is the value of Q0
corresponding to the ADP.

the leading edge the heat transfer is large simply because the boundary layer is
thin relative to the ADP. On the other hand, Q2 represents a rate of heat transfer
which is scaled in the same way as for free convection in the absence of viscous
dissipation. In this context the rate of heat transfer increases because the boundary
layer becomes relatively thin as ξ increases.

From the data from which Figure 1 was generated, the curve Q1 is found to
be within 1% of the ADP value of Q0 = +√

2/3 = 0.816496 when x = 1.79,
and therefore this value may be chosen as being the appropriate value for x∗. In
dimensional terms this is equivalent to

x ≡ x∗ = 1.79L = 1.79
cp

gβ
(21)

being the distance from the leading edge beyond which the uniform thickness ADP
solution applies. The dependence of this ‘self-parallelisation length’ of the flow
on the parameters β and cp corresponds to our physical expectation. Indeed, the
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stronger the buoyancy forces (∼ gβ&T ), the stronger the self-parallelisation effect
and accordingly the shorter must be the distance x∗. This explains why both β and
g appear in the denominator of Equation (21). Furthermore, the smaller the heat
capacity cp, the larger is the temperature increase due to the heat being released
by viscous dissipation, which again shortens the distance x∗ at which the growth
of the cold boundary layer ends. This explains the place of cp in the numerator of
Equation (21).

5. Summary and Conclusion

The objective has been to determine whether or not the ADP of Magyari and Keller
(2002c) is achievable in practice, and if so, where it may be found. The conclusion
is that such boundary layer flows do exist, but that the boundary layer displays a
smooth transition from the well-known Cheng and Minkowycz (1977) similarity
solution to the uniform thickness ADP. Equation (21) gives the minimum distance
from the leading edge where the ADP may be assumed to exist with a maximum
error (at least in terms of the surface rate of heat transfer) of 1%. It should be
stressed however, that in usual applications the order of magnitude of x∗ amounts
to several hundreds of metres so that self-parallelisation of free convection flows
due to dissipative effects is likely to occur only in geologically sized applications.
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