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SUMMARY

The paper deals with the onset of convection in a porous layer heated from below, by considering the case
when the fluid and solid phases are not in local thermal equilibrium and when form-drag and boundary
effects are included in the analysis. Analytical progress is facilitated by taking stress-free boundaries
conditions. Asymptotic solutions for both small and large values of the scaled inter-phase heat transfer
coeffcient, H, are presented and comparisons with the numerical solutions are performed. Excellent
agreement is obtained between the asymptotic and the numerical results. Copyright # 2003 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The research presented here focuses on the porous medium version of the Bénard problem
which has been studied extensively since the pioneering works of Horton and Rogers (1945) and
Lapwood (1948) first appeared. Particular emphasis is given to the effects of including a two-
field model for heat transport through the medium where the volume averaged temperature of
the solid and fluid phases are generally different from one another. This effect is also known as
local thermal non-equilibrium since, from a macroscopic point of view, thermal equilibrium
does not occur even in steady-state convection, although it clearly must do at a microscopic
level.

The earliest analysis of such non-equilibrium effects were presented by Schumann (1929) who
considered a one-dimensional semi-infinite bed subject to a step-change in the inlet fluid
temperature. Most of the more recent studies of thermal non-equilibrium effects have considered
forced convective flows, and many of these have been reviewed in the chapters by Vafai and
Amiri (1998) and Kuznetsov (1993). However, we are interested in the onset of free convection
and the literature associated with this aspect is very limited. Combarnous (1972) performed
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finite difference calculations of the strongly non-linear flow and heat transfer in a unit square at
only one Rayleigh number. More recently Banu and Rees (2002) considered the more general
onset problem where criteria were sought to determine at what value of the Rayleigh convection
would first occur.

In the present paper we extend the work of Banu and Rees (2002) by the inclusion of
boundary effects as modelled by the Brinkman terms. Form-drag is also included, but it is
quickly shown that these terms have no effect on stability criteria since the basic state whose
stability is being analysed is one of no flow. We consider how non-LTE effects affect the onset
criterion for the case of stress-free boundaries since, for these boundary conditions, it is possible
to proceed entirely analytically as in Banu and Rees (2002). This assumption is relaxed in our
companion paper (Rees and Postelnicu, 2002). We find that in both the LTE ðh ! 1Þ and non-
LTE limits ðh ! 0Þ; the critical wave number tends towards p; but our analysis shows that at
intermediate values of h, the critical wave number is always above p:

2. ANALYSIS

We consider a layer of porous medium with depth d which is heated from below and cooled
from above, as depicted in Figure 1. The upper surface is held at a temperature Tc while the
lower one is at Thð> TcÞ: It is assumed that both form-drag and boundary effects are significant,
that the porous medium is isotropic but that local thermal equilibrium does not apply. Thus the
governing equations, i.e. the continuity equation, a suitably extended Darcy’s law and the
energy equation, subject to the Boussinesq approximation, take the forms

r � V ¼ 0 ð1Þ
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e
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Figure 1. Definition sketch of the horizontal layer.
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eðrcÞf
@Tf
@t

þ ðrcÞfV � rTf ¼ ekfr2Tf þ hðTs � Tf Þ ð3Þ

ð1� eÞðrcÞs
@Ts
@t

¼ ð1� eÞksr2Ts � hðTs � Tf Þ ð4Þ

The constants and variables used in these equations are defined in the Nomenclature. The
boundary conditions are

u ¼ 0; vy ¼ 0; T ¼ Th at y ¼ 0 ð5aÞ

u ¼ 0; vy ¼ 0; T ¼ Tc at y ¼ d ð5bÞ

where the velocity conditions correspond to the stress-free case. Equation (1)–(4) are
nondimensionalised using the transformations

*xx ¼
1

d
x; *tt ¼

ðrcÞf d
2

kf
t; *VV ¼

ekf
ðrcÞf d

V;

*pp ¼
mkf

ðrcÞfK
p; y ¼
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Th � Tc

; j ¼
Ts � Tc
Th � Tc

ð6Þ

and the governing equations become

rV ¼ 0 ð7Þ

eF1
@V

@t
þ F1V � rV ¼ �e2F1rp þ Dr2V� Vþ Ryy� F2VjVj ð8Þ
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þ V � ry ¼ r2yþ H ðj� yÞ ð9Þ

a
@j
@t

þ V � rj ¼ r2jþ gH ðy� jÞ ð10Þ

where the tildes have been omitted, for convenience of presentation. In Equations (8)–(10), the
following constants were introduced:

F1 ¼
rfkK
e2d2mf

; F2 ¼
rfkK

1=2

dmf
; D ¼

me
mf

�
K
d2
;

H ¼
hd2

ekf
; g ¼

ekf
ð1� eÞks

; a ¼
ðrcÞs
ðrcÞf

�
kf
ks

ð11Þ

and R ¼ rfgbðTh�TcÞKd
emfkf

is the Darcy–Rayleigh number based on the fluid properties. We note that
the usual Rayleigh number, which is based on the mean properties of the porous medium is
given by Rg=ð1þ gÞ: The boundary conditions (5) become

u ¼ 0; vy ¼ 0; y ¼ j ¼ 1 on y ¼ 0 ð12aÞ

u ¼ 0; vy ¼ 0; y ¼ j ¼ 0 on y ¼ 1 ð12bÞ

The basic conduction profile, whose stability is the subject of this short paper, is given
by

V ¼ 0; y ¼ j ¼ 1� y ð13Þ
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We focus our attention to the 2D case and we introduce the stream-function c , according
to

u ¼ �
@c
@y

; v ¼
@c
@x

ð14Þ

Here, u and v are the components of the velocity in the Cartesian x (horizontal) and y
(spanwise) directions. The basic conduction profile given by (13) are perturbed by setting:

c ¼ C; y ¼ 1� y þY; j ¼ 1� y þ F ð15Þ

and after linearization, we obtain

eF1
@

@t
@2C
@x2

þ
@2C
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þ
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ð16Þ
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þ gH ðY� FÞ ð18Þ

It is easy to show that system (16)–(18) obeys the principle of exchange of stabilities.
Consequently, we may set the time derivatives to zero and the problem becomes

�D
@4C
@x4
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@4C

@x2@y2
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@2Y
@x2

þ
@2Y
@y2

þ
@C
@x

þ H ðF�YÞ ¼ 0 ð20Þ

@2F
@x2

þ
@2F
@y2

þ gH ðY� FÞ ¼ 0 ð21Þ

subject to

C ¼ Y ¼ F ¼ 0;
@2C
@y2

¼ 0; on y ¼ 0 and y ¼ 1 ð22Þ

Equations (19)–(22) admit solutions in the form

C ¼ A1 cos kx sin py; Y ¼ A2 sin kx sin py; F ¼ A3 sin kx sin py ð23Þ

where k is the horizontal wave number and the A-coefficients are constants. By substituting (23)
into Equations (19)–(21), the following set of equations is obtained:�

ðk2 þ p2Þ þ Dðk2 þ p2Þ2
�
A1 þ kRA2 ¼ 0 ð24Þ

kA1 þ ðk2 þ p2 þ H ÞA2 � HA3 ¼ 0 ð25Þ

�gHA2 þ ðk2 þ p2 þ gH ÞA3 ¼ 0 ð26Þ
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The condition that this homogeneous system has non-trivial solutions leads to an eigenvalue
equation for R in terms of k; D; H and g: After some algebra, we obtain

R ¼ ðp2 þ k2Þ2½1þ Dðp2 þ k2Þ� �
p2 þ k2 þ H ðgþ 1Þ
k2ðp2 þ k2 þ gH Þ

ð27Þ

In the remainder of the paper we determine not only the variation of R with k for selected
values of H , D and g but we minimize R with respect to k in order to find the smallest Rayleigh
number at which convection may be expected. In Section 3 we consider the extreme cases of
small H (i.e. for very poor inter-phase heat transport) and large H (i.e. for the local thermal
equilibrium limit). In Section 4 we present exact numerical values for R and the minimizing
value of k:

3. ASYMPTOTIC ANALYSIS FOR BOTH SMALL AND LARGE VALUES OF H

3.1. Small H analysis

We first perform a small-H series expansion of the expression given by (27) to obtain

R ¼
1þ Dðp2 þ k2Þ

k2

�
ðp2 þ k2Þ2 þ ðp2 þ k2ÞH � gH2 þ � � �

�
ð28Þ

which is correct to OðH2Þ: The minimum value of R is found by setting @R=@k ¼ 0 in (28) and
this leads to

ð1þ Dp2Þðk4 � p4Þ þ ðp2 þ k2Þ
�
2Dk4 � H ð1þ Dp2Þ

�

þ ð1þ Dp2ÞH ðk2 þ gH Þ þ Dk4H þ � � � ¼ 0 ð29Þ

When D ¼ 0; the Darcy flow limit, Equation (29) reduces to ðk4 � p4Þ � p2H þ gH 2 þ � � � ¼ 0
which is in agreement with Eq. (13) from Banu and Rees (2002). By expanding k using the
expansion,

k ¼ k0 þ k1H þ k2H2 þ � � � ð30Þ

and inserting (30) in (29), we obtain at OðH 0Þ

ð1þ Dp2Þðk20 � p2Þ þ 2k40D ¼ 0 ð31Þ

For D ¼ 0; this equation gives k0 ¼ p immediately, in agreement with Equation (14) from
Banu and Rees (2002). Equation (31) yields the solution

k0 ¼ p
�
2ð1þ D2p2Þ

�1=2�
1þ Dp2 þ ð1þ 10p2Dþ 9p4D2Þ1=2

��1=2

ð32Þ

which is valid for all values of D:
At OðH Þ we get

k1 ¼
p2 þ Dðp4 � k40Þ

4k30ð1þ 3Dp2 þ 3k20DÞ
ð33Þ
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while at OðH 2Þ;

k2 ¼
�
6k20k

2
1 ½1þ p2ðDþ 1Þ þ k20 � þ 2k40k

2
1Dþ ð1þ Dp2Þð2k0k1 þ gÞ þ 4Dk30k1

�

� ð2k30Þ
�1

�
2ð1þ Dp2Þ þ 2ðp2 þ k20Þ þ Dk20

��1

ð34Þ

In conclusion, the critical wave number kc is given by (30), while the critical Rayleigh number
is given by (28).

3.2. Large H analysis

For large values of H ; R takes the form

R ¼
ðp2 þ k2Þ2½1þ Dðp2 þ k2Þ�

k2
�
gþ 1

g
� 1�

p2 þ k2

gðgþ 1Þ
1

H
þ

ðp2 þ k2Þ2
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1

H2
þ � � �

� �
ð35Þ

On minimizing with respect to k; we obtain

gþ 1

g

�
k2 � p2 þ Dð2k4 þ p2k2 � p4Þ

�
�

p2 þ k2

g2H

�
2k2 � p2 þ Dð3k4 þ 2p2k2 � p4Þ

�

þ
ðp2 þ k2Þ2

g3H2

�
3k2 � p2 þ Dð4k4 þ 3p2k2 � p4Þ

�
¼ 0 ð36Þ

We notice that, when D ¼ 0; Equation (36) reduces to (18) from Banu and Rees (2002). By
expanding k in terms of inverse powers of H we also obtain,

k ¼ k0 þ
k1
H

þ
k2
H2

þ � � � ð37Þ

After inserting (37) into (36) the Oð1Þ terms yield the expression.

k20 � p2 þ Dð2k40 þ p2k20 � p4Þ ¼ 0

For D ¼ 0; this equation gives also k0 ¼ p: In the general case we again have to apply (32).
At Oð1=H Þ we get

k1 ¼ ð2k0Þ
�1

�
1þ Dð4k20 þ p2Þ

��1

ðp2 þ k20Þ �
�
3Dk40 þ 2ð1þ p2DÞk20 � p2ð1þ p2DÞ

�
ð38Þ

Further, at Oð1=H 2Þ; we obtain

k2 ¼
A

2k0ð4Dk20 þ 1þ Dp2Þ
ð39Þ

where

A ¼ � k21ð12Dk
2
0 þ 1þ Dp2Þ þ

2k0k1
gðgþ 1Þ

�
2ðp2 þ k20Þ � ð3Dk

2
0 þ 1þ Dp2Þ

þ k20ðDk
2
0 þ 1þ Dp2Þ

�
�

2k20
g2ðgþ 1Þ

ðp2 þ k20Þ
2ðDk20 þ 1þ Dp2Þ

In conclusion, the critical wave number kc is given by (37), whilst the critical Rayleigh number is
given by (35).
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4. NUMERICAL RESULTS

With the aim to find the critical wavenumber, which corresponds to the minimum Rayleigh
number, we calculate @R=@k ¼ 0; and on using (27), we get�

k2 � p2 þ Dð2k4 � p4 þ k2p2Þ
��

p2 þ k2ð1þ gÞH
�

� ðp2 þ k2 þ gH Þ � k2H ðp2 þ k2Þ
�
1þ Dðp2 þ k2Þ

�
¼ 0 ð40Þ

Eq. (40) reduces, in the case when D ¼ 0; to Eq. (21) from Banu and Rees (2002). Eq. (40)
gives the critical value of k (for various values of H ; g and D), which, when inserted into (27),
provides the critical value of the Rayleigh number.

Figure 2 gives a selection of neutral curves (R against k=p) for various values of g and D with
H ¼ 100: These all follow the familiar shape for Benard-like problems with a single well-defined
minimum value. There is a general trend towards the values of R becoming smaller as D
decreases and as g increases. The size of D is related to the importance of viscous effects at the
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Figure 2. Neutral curves for H ¼ 100; g ¼ 0:001; 0.01, 1, 5, 10, 50 and 100: (a) D ¼ 10�2; (b) D ¼ 10�3;
(c) D ¼ 10�4; (d) D ¼ 0:
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Table I. Comparison of the exact and asymptotic values of the wave number and the critical Rayleigh
number for large H and g ¼ 1: ‘‘E’’ denotes the exact solution and ‘‘A’’ the asymptotic solution.

log10 H kc(E) kc(A) Rc(E) Rc(A)

D ¼ 0
1.5 3.40956 63.40428
2 3.27061 72.33957
2.5 3.18795 3.18416 76.62136 76.63087
3 3.15683 3.15645 78.19083 78.19114
3.5 3.14647 3.14643 78.71175 78.71176
4 3.14314 3.14314 78.87904 78.87904
4.5 3.14208 3.14208 78.93221 78.93221
5 3.14175 3.14175 78.94904 78.94904

D ¼ 10�6

1.5 3.40952 63.40564
2 3.27057 72.34106
2.5 3.18792 3.18412 76.62289 76.63240
3 3.15680 3.15641 78.19239 78.19269
3.5 3.14644 3.14639 78.71330 78.71331
4 3.14311 3.14310 78.88060 78.88060
4.5 3.14205 3.14204 78.93376 78.93376
5 3.14172 3.14171 78.95060 78.95060

D ¼ 10�5

1.5 3.40911 63.41791
2 3.27023 72.35445
2.5 3.18762 3.18377 76.63671 76.63922
3 3.15651 3.15606 78.20634 78.20665
3.5 3.14616 3.14604 78.72731 78.72732
4 3.14283 3.14275 78.89462 78.89462
4.5 3.14177 3.14169 78.94779 78.94779
5 3.14144 3.14136 78.96463 78.96463

D ¼ 10�4

1.5 3.40512 63.54047
2 3.26686 72.48826
2.5 3.18463 3.18019 76.77477 76.78430
3 3.15367 3.15254 78.34585 78.34616
3.5 3.14336 3.14255 78.86728 78.86730
4 3.14005 3.13927 79.03474 79.03474
4.5 3.13899 3.13822 79.08796 79.08796
5 3.13866 3.13788 79.10481 79.10481

D ¼ 10�3

1.5 3.36726 64.75793
2 3.23474 73.81881
2.5 3.15609 3.14560 78.14846 78.15857
3 3.12642 3.11852 79.73422 79.73504
3.5 3.11654 3.10880 80.26042 80.26094
4 3.11337 3.10561 80.42940 80.42991
4.5 3.11236 3.10459 80.48310 80.48362
5 3.11204 3.10427 80.50011 80.50062
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boundaries, and reductions in D decrease this effect, which allows the fluid to move more easily,
thereby decreasing the critical Rayleigh number. Large values of g mean that heat is transported
through both the solid and fluid phases, whereas small values correspond to transport primarily
through the fluid phase. Thus convection is established more readily for larger values of g when

Table II. Comparison of the exact and asymptotic values of the wave number and the critical Rayleigh
number for small H and g ¼ 1: ‘‘E’’ denotes the exact solution and ‘‘A’’ the asymptotic solution.

log10 H kc(E) kc(A) Rc(E) Rc(A)

D ¼ 0
�2 3.14239 3.14239 39.49480 39.49740
�1.5 3.14410 3.14411 39.54154 39.53844
�1 3.14944 3.14951 39.67716 39.66808
�0.5 3.16569 3.16640 40.09856 40.07684
0 3.21132 3.21756 41.36210 41.35770
0.5 3.31346 44.80466
1 3.43635 52.35964

D ¼ 10�6

�2 3.14235 3.14235 39.49918 39.49818
�1.5 3.14407 3.14407 39.54232 39.53922
�1 3.14941 3.14948 39.67795 39.66887
�0.5 3.16566 3.16636 40.09936 40.07764
0 3.21128 3.21752 41.36293 41.35854
0.5 3.31342 44.80560
1 3.43630 52.36077

D ¼ 10�5

�2 3.14208 3.14200 39.50620 39.50520
�1.5 3.14379 3.14372 39.54935 39.54625
�1 3.14913 3.14913 39.68501 39.67593
�0.5 3.16537 3.16600 40.10654 40.08480
0 3.21099 3.21716 41.37045 41.36605
0.5 3.31309 44.81400
1 3.43951 52.37099

D ¼ 10�4

�2 3.13930 3.13852 39.57635 39.57535
�1.5 3.14100 3.14024 39.61961 39.61650
�1 3.14633 3.14563 39.75564 39.74652
�0.5 3.16253 3.16248 40.17828 40.15646
0 3.20801 3.21353 41.44553 41.44108
0.5 3.30977 44.89802
1 3.43201 52.47307

D ¼ 10�3

�2 3.11267 3.10489 40.27456 40.27377
�1.5 3.11433 3.10658 40.31896 40.31598
�1 3.11952 3.11188 40.45896 40.44933
�0.5 3.13531 3.12842 40.89229 40.86980
0 3.17956 3.17853 42.19264 42.18783
0.5 3.27814 45.73351
1 3.39494 53.48720
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all other parameters are held fixed. A similar argument may be put forward for the variation in
R when H varies, since H measures the ease with which heat is transferred between the phases.

The LTE case is recovered in the large H -limit. In Table I are provided comparisons, in the
LTE limit, of the exact and asymptotic values of the critical wavenumber and the critical
Rayleigh number for large H with g ¼ 1: Agreement between the asymptotic results and the
exact solutions are very good, especially for the larger values of H : However, as the value of D
increases, agreement reduces slightly for any fixed value of H :

In Table II are presented the exact and asymptotic values of the wavenumber and the critical
Rayleigh number for small values of H (the non LTE case) with g ¼ 1: We have increasingly
good agreement as H decreases, but, for fixed values of H the agreement becomes poorer as D
increases.

In Figures 3 and 4, respectively, we summarize the behaviour of the critical Rayleigh number
and wavenumber, respectively, as functions of H and g for D ¼ 0; D ¼ 10�3 and D ¼ 1: The
variation of Rc with log10H is depicted in Figure 3. We again see the fact that Rc increases as H
increases and g decreases. When H is small all the curves asymptote to a single value which is
independent of g and given by (32). At the opposite extreme we see, from (35), that the
asymptotic values of R are such that Rg=ð1þ gÞ attains a value which is independent of g: That
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this should be so is not surprising since the constant, Rg=ð1þ gÞ precisely the Rayleigh number
which is based on the mean properties of the porous medium, rather than on the fluid properties
as given in (11).

In Figure 4 we see that kc attains the value p in both the large and small H limits. At
intermediate values of H the value of kc is larger, and increasingly so as g increases or as D
decreases. That kc should attain the value p when H is small may be understood from the fact
that Equations (19) and (20) form the standard Darcy–Brinkman stability equations (subject to
a rescaling of the Rayleigh number) and that the equation for the solid phase temperature
decouples from (19) and (20). Therefore we would expect the wave number to take that value
when there is no microscopic conduction between the phases.

5. CONCLUSIONS

In this paper we have analysed in detail the combined effects of boundary (Brinkman) and non
LTE on the onset of convection in a porous layer of infinite extent. Although we have also
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Figure 4. Variation of the critical wave number kc with log10H ; for various values of g: (a) D ¼ 0;
(b) D ¼ 10�3; (c) D ¼ 1:
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included inertia effects in the formulation, their presence does not affect the stability criterion,
since the basic state is motionless. With the aim of undertaking an analytical study, we have
considered the case of stress free boundaries. This restriction has been relaxed in Rees and
Postelnicu (2002).

The present study shows that variations in the values of H ; g and D have a significant effect on
the criterion for the onset of convection. Detailed numerical and asymptotic solutions have been
presented for Rc and kc as functions of D; H and g: As in Banu and Rees (2002), it has been
shown that LTE is recovered in the large H limit.

On the other hand, at fixed values of g and H ; the critical wave number kc reduces and the
critical Rayleigh number Rc increases as D increases. Conversely, at fixed D; the convection
onset occurs at lower values of R as H decreases or g increases.

NOMENCLATURE

b =form drag coefficient
c =specific heat
d =depth of the convection layer
D =Darcy number
F 1, F 2 =dimensionless coefficients
g =gravity
h =inter-phase heat transfer coefficient
H =scaled inter-phase heat transfer coefficient
k =wave number
K =permeability
LTE =Local thermal equilibrium
P =Pressure
R =Darcy–Rayleigh number
t =Time
u; v =fluid flux velocities
V =dimensional velocity vector
x; y =Cartesian co-ordinates

Greek letters

a =diffusivity ratio
b =coefficient of expansion
r =density
k =diffusivity
e =porosity
m =viscosity
c =streamfunction
y;Y =scaled temperature of the fluid phase
j;F =scaled temperature of the solid phase
g =porosity-scaled conductivity ratio
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Superscipts and subscripts

c =cold or critical
e =effective (viscosity)
f =fluid
h =hot
s =solid
0 =Z-derivative
0,1,2 =successive terms in series expansions
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