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Vertical free convective boundary–layer flow in a porous
medium using a thermal nonequilibrium model: Elliptical
effects

D. A. S. Rees

Abstract. In this paper we study the effect of adopting a two–temperature model of microscopic
heat transfer on the classical Cheng & Minkowycz [1] vertical free convection boundary–layer flow
in a porous medium. Such a model, which allows the solid and fluid phases not to be in local
thermal equilibrium, is found to modify substantially the behaviour of the flow relatively close to
the leading edge. A companion paper deals with the (parabolic) boundary–layer theory, but the
present work investigates in detail how elliptical effects are manifested. This is undertaken by
solving the full equations of motion, rather than the boundary–layer approximation. In general,
it is found that at any point in the flow, the temperature of the solid phase is higher than that
of the fluid phase, and therefore that the thermal field of the solid phase is of greater extent
than that of the fluid phase. The microscopic inter–phase heat transfer is characterised by the
coefficient, H, and it is shown that these thermal non–equilibrium effects are strongest when H
is small.
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Introduction

Free convective boundary–layer flow from a vertical heated surface was considered
first by Cheng & Minkowycz [1] who considered various cases where the flow is
self–similar. Their analysis, in common with many others which appeared later,
assumed that Darcy’s law applies, that the Boussinesq approximation is valid, and
that the solid and fluid phases comprising the porous medium are in thermal equi-
librium locally. In this, and the companion paper, Rees & Pop [2], we investigate
the effect of lifting the restriction of local thermal equilibrium between the phases.

Rees & Pop [2] looks at those cases where the boundary–layer approximation
is valid, and it is shown there that the boundary–layer splits into two distinct
sublayers near the leading edge: a relatively thin sublayer where the fluid temper-
ature adjusts to the ambient temperature, and a relatively thick sublayer where
the temperature of the solid phase adjusts to the ambient. The present work ex-
tends that boundary–layer analysis by considering flows which are very close to
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the leading edge, and this is undertaken by solving the full equations of motion,
rather than the boundary–layer approximation to those equations.

Rees & Bassom [3] showed that vertical convection in a semi–infinite medium
may be described exactly in terms of the solution of a set of ordinary differential
equations if the full equations are written in parabolic coordinates and if local
thermal equilibrium is assumed. A later numerical investigation given in Rees [4]
into the stability of this flow used the parabolic coordinate system as part of the
numerical strategy to simulate unsteady flow. The results of Rees [4], together
with those of Lewis, Bassom & Rees [5], indicate very strongly indeed that the
vertical free convective flow described in Rees & Bassom [3] is stable. Therefore
the present paper is also an extension of Rees [4] into the effects of local thermal
nonequilibrium on the stability of the flow, although our main emphasis is on the
description of the resulting steady–state flow.

Equations of motion

The equations governing Darcy–Boussinesq convection in a saturated porous medium
are usually studied by first invoking the assumption that the solid and fluid phases
of the medium are in local thermal equilibrium. In this paper we study one par-
ticular case where a two–temperature model of microscopic heat transfer applies.
The governing two–dimensional equations are

ux + vy = 0, (1a)

u = −K

µ

∂p

∂x
+

ρfgβK

µ
(Tf − T∞), v = −K

µ

∂p

∂y
, (1b, c)

ε(ρc)f
∂Tf

∂t
+ (ρc)fu.∇Tf = εkf∇2Tf + h(Ts − Tf ), (1d)

(1− ε)(ρc)s
∂Ts

∂t
= (1− ε)ks∇2Ts − h(Ts − Tf ); (1e)

see Nield & Bejan [6]. Here, u and v are the fluid flux velocities in the streamwise
(upwards) and cross–stream (horizontal) directions, x and y, respectively, and t is
the time. The pressure is p and the temperature is T , where the f and s subscripts
denote the fluid and solid phases, respectively. The following are the other fluid
and medium properties: K is the permeability, µ the fluid viscosity, ρ density, c
the specific heat, β the coefficient of cubical expansion, ε the porosity and k the
thermal conductivity. In (1d) and (1e) h is a coefficient which is used to model
the microscopic transfer of heat between the fluid and solid phases.

In this paper we shall consider the unsteady two–dimensional flow which is
induced by a vertical heated surface held at the constant temperature, Tw, and
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embedded in a porous medium with ambient temperature, T∞, where Tw > T∞.
The pressure may be eliminated by defining a streamfunction, ψ, according to

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2)

and equations (1) reduce to the following

∂2ψ

∂x2
+

∂2ψ

∂y2
=

ρfgβK

µ

∂Tf

∂y
(3a)

ε(ρc)f
∂Tf

∂t
+(ρc)f

(∂ψ

∂y

∂Tf

∂x
− ∂ψ

∂x

∂Tf

∂y

)
= εkf

(∂2Tf

∂x2
+

∂2Tf

∂y2

)
+h(Ts−Tf ), (3b)

(1− ε)(ρc)s
∂Ts

∂t
= (1− ε)ks

(∂2Ts

∂x2
+

∂2Ts

∂y2

)
− h(Ts − Tf ). (3c)

These equations need to be nondimensionalised in a different way from that
of Rees & Pop [2] as we do not invoke the boundary–layer approximation. If we
define R to be

R =
(ρc)fρfgβK(Tw − T∞)

[(1− ε)ks + εkf ]µ
, (4)

where we note that the term in square brackets in the denominator is the equivalent
conductivity of the saturated medium, then R multiplied by a lengthscale is a
porous medium Rayleigh number. In (4) Tw is the uniform wall temperature and
T∞ is the ambient fluid temperature where Tw > T∞. Now we introduce the
scalings,

x = x/R, y = y/R, t =
(ρc)f

R2kf
t, (5a, b, c)

ψ =
εkf

(ρc)f
ψ, Tf = (Tw − T∞)θ + T∞, Ts = (Tw − T∞)φ + T∞, (5d, e, f)

into equations (3) to yield,

∂2ψ

∂x2
+

∂2ψ

∂y2
=

(
1 +

1
γ

)∂θ

∂y
, (6a)

∂θ

∂t
=

∂2θ

∂x2
+

∂2θ

∂y2
+

∂ψ

∂x

∂θ

∂y
− ∂ψ

∂y

∂θ

∂x
+ H(φ− θ), (6b)

α
∂φ

∂t
=

∂2φ

∂x2
+

∂2φ

∂y2
− γH(φ− θ). (6c)

In equations (6) the three parameters, H, γ and α, are given by

H =
h

εkfR2
, γ =

ε

1− ε

kf

ks
, α =

kf

ks

(ρc)s

(ρc)f
. (7)
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H is a scaled microscopic inter–phase rate of heat transfer which was assumed
in Rees & Pop [2] to be asymptotically small, γ is a porosity–scaled conductivity
ratio, and α is a diffusivity ratio.

Following Rees [4] we transform equations (6) into parabolic coordinates using

x = (ξ2 − η2)/4, y = ξη/2, (8)

to obtain
∂2ψ

∂ξ2
+

∂2ψ

∂η2
=

(
1 +

1
γ

)[ξ

2
∂θ

∂η
+

η

2
∂θ

∂ξ

]
, (9a)

(ξ2 + η2)
4

[∂θ

∂t
+ H(θ − φ)

]
=

∂2θ

∂ξ2
+

∂2θ

∂η2
+

∂ψ

∂ξ

∂θ

∂η
− ∂ψ

∂η

∂θ

∂ξ
, (9b)

(ξ2 + η2)
4

[
α

∂φ

∂t
+ γH(φ− θ)

]
=

∂2φ

∂ξ2
+

∂2φ

∂η2
. (9c)

One of the chief results of [2] is that all boundary layer flows approach a self–
similar form at very large distances from the leading edge, and that they all have
identical thickness. The present nondimensionalisation is such that the large–ξ
steady solutions of equations (9) are likewise of equal thickness, and this allows
different cases to be compared easily.

The boundary conditions required to complete the specification of the problem
are that ψ = 0, θ = φ = 1 on η = 0; ψ = θξ = φξ = 0 on ξ = 0; ψη = θ = φ = 0
on η = ηmax; and ψξ = θξ = φξ = 0 on ξ = ξmax.

Numerical methodology

The solution of equations (9) was undertaken using a suitably modified version
of the method described in [3]. The equations were discretised in both the ξ
and η directions using second–order accurate central differences and the nonlinear
terms in (9b) were approximated using Arakawa’s formulation, see [7], one which
is ideally suited to long–term evolution studies. However, a first-order accurate
backward difference in time was used to obtain an fully implicit scheme. This
scheme is unconditionally stable, subject to being able to compute the solutions at
each timestep, and has much better stability properties than a more conventional
second–order accurate scheme based on the Crank–Nicolson method. For when
the timestep is relatively large, backward–difference solutions of, say, the two–
dimensional Fourier equation,

∂χ

∂t
=

∂2χ

∂x2
+

∂2χ

∂y2
, (10)

exhibit monotonic decay to the ultimate steady state, whereas the corresponding
solution using Crank–Nicolson exhibits pointwise oscillations which decay only
very slowly.
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In the present problem, the coefficient of the Laplacian terms in equations (9b)
and (9c) varies with ξ and η, and may be thought of as a spatially–varying thermal
diffusivity. From a numerical point of view this means that the flow adjusts very
quickly near the leading edge, and very slowly far downstream. Again, the presence
of such coefficients rules out any possibility of using an explicit scheme for solving
(9). Without these coefficients the maximum useable timestep is proportional to
the square of the spatial step, but with them the timestep is proportional to the
fourth power. Likewise, locations very near the leading edge in (9) are equivalent
to having very large timesteps in the solution to equation (10), and therefore
pointwise oscillations in the evolving solution are expected near the leading edge
when solving (9) using a method based on the Crank–Nicolson scheme. Therefore
we adopted the backward–difference discretisation. Indeed, given that the final
state of all cases considered is that steady flow prevails, the freedom to modify the
timestep to make efficient use of the CPU time available was also an important
consideration.

If we define tn to be the nth timestep, ξi, the ith grid point in the ξ–direction,
ηj , the jth gridpoint in the η–direction, and χn

i,j to be the value of the typical
variable, χ at these points, then the full difference equations corresponding to
equations (9) are

ψn+1
i+1,j − 2ψn+1

i,j + ψn+1
i−1,j

δξ2
+

ψn+1
i,j+1 − 2ψn+1

i,j + ψn+1
i,j−1

δη2

=
(
1 +

1
γ

)[ξi

2

θn+1
i,j+1 − θn+1

i,j−1

2δη
+

ηj

2

θn+1
i+1,j − θn+1

i−1,j

2δξ

]
, (11a)

(ξ2
i + η2

j )
4

[θn+1
i,j − θn

i,j

δt
+ H(θn+1

i,j − φn+1
i,j )

]

=
θn+1

i+1,j − 2θn+1
i,j + θn+1

i−1,j

δξ2
+

θn+1
i,j+1 − 2θn+1

i,j + θn+1
i,j−1

δη2
+ L(ψn+1

i,j , θn+1
i,j ), (11b)

(ξ2
i + η2

j )
4

[
α

φn+1
i,j − φn

i,j

δt
− γH(θn+1

i,j − φn+1
i,j )

]

=
φn+1

i+1,j − 2φn+1
i,j + φn+1

i−1,j

δξ2
+

φn+1
i,j+1 − 2φn+1

i,j + φn+1
i,j−1

δη2
, (11c)

where L(ψn+1
i,j , θn+1

i,j ) is the Arakawa [7] formulation of the discretised Jacobian:
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L(ψn+1
i,j , θn+1

i,j ) =
[(

ψn+1
i+1,j − ψn+1

i−1,j

)(
θn+1

i,j+1 − θn+1
i,j−1

)−
(
ψn+1

i,j+1 − ψn+1
i,j−1

)(
θn+1

i+1,j − θn+1
i−1,j

)

+ ψn+1
i+1,j

(
θn+1

i+1,j+1 − θn+1
i+1,j−1

)− ψn+1
i−1,j

(
θn+1

i−1,j+1 − θn+1
i−1,j−1

)

− ψn+1
i,j+1

(
θn+1

i+1,j+1 − θn+1
i−1,j+1

)
+ ψn+1

i,j−1

(
θn+1

i+1,j−1 − θn+1
i−1,j−1

)

+ θn+1
i,j+1

(
ψn+1

i+1,j+1 − ψn+1
i−1,j+1

)− θn+1
i,j−1

(
ψn+1

i+1,j−1 − ψn+1
i−1,j−1

)

− θn+1
i+1,j

(
ψn+1

i+1,j+1 − ψn+1
i+1,j−1

)

+ θn+1
i−1,j

(
ψn+1

i−1,j+1 − ψn+1
i−1,j−1

)]
/12δξ δη. (12)

Here the timestep, and steplengths in the ξ and η directions are given by δt, δξ
and δη, repsectively.

At each timestep the resulting finite difference equations were solved using the
line–relaxation Gauss–Seidel method coupled with the Full Approximation Scheme
multigrid method with V–cycling; see Brandt [8]. Typically each computation was
initiated using the steady θ solution corresonding to the local thermal equilibrium
solution presented by Rees & Bassom [3], with φ being set equal to θ, and ψ set
to zero. The use of a backward–difference method means that ψ does not have to
be prescribed at the outset. The appropriate initial θ–profile was computed using
the same code, but a decaying profile was used as its initial condition. Indeed,
the present code may be used for this purpose by setting H = 0, thereby decou-
pling the θ and φ equations, and setting the coefficient of the right–hand–side
of (9a) to be unity. The solutions obtained for ψ and φ are irrelevant, and are
discarded. A crude form of timestep control allowed the timestep to increase as
the computation approaches the steady–state; we used the same methodology as
Rees & Bassom [9] but typically used a maximum timestep of 10 to ensure that
the Gauss–Seidel/multigrid iteration scheme converges.

In the computation we used 128 intervals in the ξ–direction and 32 in the η–
direction. Further efficiency can be gained by using a nonuniform grid, or equiv-
alently, a coordinate–stretching transformation. The latter will, of course, modify
equations (9), but this is a straightforward change, and its details are omitted
here. In the ξ–direction we use the same transformation as in [4], whereas η is
modified by using η = eη∗ where η∗ is the new variable. In our computations
we took 0 ≤ ξ ≤ 55 (equivalent to 0 ≤ x ≤ 756.25 on the heated surface), and
0 ≤ η∗ ≤ 4 (equivalent to 0 ≤ η ≤ e4 ' 55.6). In the η–direction grid points are
concentrated mainly towards η = 0, the gridpoint nearest to the heated surface
being located at η = 0.133.

In each case the code was run until the maximum pointwise change in θ between
the timesteps was less than 10−6. This criterion was always satisfied after the
timestep had achieved its maximum value.
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Numerical Results

There are two main parameters to vary, H and γ. Although a third parameter, α,
appears in the governing equations, it multiplies a time–derivative, and therefore
it affects only the evolution to the steady-state flow and not the steady–state
flow itself. In all the computations presented here we set α = 1, although other
choices of α yield identical steady–state results. The results of our computations
are displayed in the form of isotherm plots in Figures 1 and 2, and in the form of
surface rates of heat transfer in Figures 3 and 4.

Figure 1 displays how the thermal field of both the solid and fluid phases
changes as H is reduced when γ = 1. When H = 1 there is little difference
between the θ and φ solutions and we can say in this case that the flow is essen-
tially in local thermal equilibrium except, perhaps, at locations very close indeed
to the leading edge (see also the H = 1 curves in Figure 3). As H decreases
towards zero, nonequilibrium effects become stronger, especially near the leading
edge, and these effects become increasingly noticeable further downstream of the
leading edge. When H is as small as 0.001, the thermal field of the solid phase has
acquired a distinctive shape relatively close to the leading edge. Firstly, at loca-
tions below the leading edge, the solid–phase isotherms are nearly horizontal for a
substantial distance before turning upwards. Secondly, these isotherms are nearly
vertical at and just above x = 0 and lie well outside the temperature field of the
fluid phase; both these phenomena are entirely consistent with the boundary–layer
theory presented in [2] — see Figure 2 of that paper. The main conclusion to be
drawn is that, when H is small, temperature differences between the phases are
to be expected because of the relatively weak transfer of heat between the phases.
Thus heat conduction appears to be relatively strong in the solid phase and is not
affected greatly by the advection of heat in the fluid phase. Conversely, when H
is large, temperature differences between the phases cannot be sustained in the
steady state.

In Figure 2 we show how variations in γ change the temperature field when
H = 0.01. As γ increases from 1.0 the temperature difference between the phases
becomes smaller — this may be explained by appealing to the fact that γ multiplies
the temperature–difference term in equation (9c), and therefore the solid phase
tries to minimise the temperature difference between the phases when γ is large.
Thus variations in γ seem to have the same qualitative effect on the flow as do
variations in H. However, when γ is very small, we can see that there is an
accompanying change in the thickness of the fluid temperature field near x = 0,
which is also decreasing as γ decreases. The isotherms themselves also have a
marked change in their general appearance near the leading–edge. In Rees & Pop
[2] we showed, using asymptotic theory, that the fluid boundary–layer thickness
near the leading edge is independent of γ and that it eventually thickens to a
γ–dependent value at large distances. But in that paper the fluid conductivity
was used in the nondimensionalisation process, whereas here we use the effective
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Figure 1. Isotherms for both the fluid phase (solid lines) and solid phase (dashed lines) for
γ = 1.0 for various values of H.

conductivity of the medium, where the ratio between these conductivities is 1+γ−1.
Thus all flows here attain the same thickness in terms of η at large distances
from the leading edge, but when γ becomes small the near–leading edge thickness
decreases.

Figures 3 and 4 depict the numerical values of Qf = −∂θ/∂η and Qs = −∂φ/∂η
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Figure 2. Isotherms for both the fluid phase (solid lines) and solid phase (dashed lines) for
H = 0.01 for various values of γ. The isotherm plot for γ = 1 is presented in Figure 1.

at η = 0 for ξ ≥ 0, although these values are plotted against the physical variable
x. Figure 3 corresponds to the isotherm plots shown in Figure 1, and Figure 4 to
those shown in Figure 2. Also shown in Figure 1 is the rate of heat transfer for
the datum case of Rees [4] where the rate of heat transfer is independent of x; this
corresponds to H →∞.
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Figure 3. Variation with x of Qf and Qs, the surface rates of heat transfer for the fluid and
solid phases, respectively, for γ = 1.0, and for H = 1.0, H = 0.1, H = 0.01 and H = 0.001. The
horizontal line corresponds to the datum case where the medium is in local thermal equilibrium.

It is clear from Figure 3 that the fluid rate of heat transfer, Qf , is always greater
than Qs, the solid rate of heat transfer. Again this qualitative detail is in accord
with the conclusions of Rees & Pop [2]. In fact Qf is always greater than that
corresponding to the datum case, and Qs is less. The degree of departure from the
datum case can be regarded as a measure of the degree to which nonequilibrium
effects are important. Therefore we can see clearly that the influence of nonequi-
librium effects spreads rather quickly downstream as H decreases from 1, and the
maximum extent of departure from equilibrium also increases. When H < 0.01
thermal nonequilibrium exists quite strongly throughout the whole computational
domain, and therefore it may be possible that the use of a larger computational do-
main will change the H = 0.001 solution presented here. However, we do not think
that such changes will be particularly large, for the flow is essentially parabolic
near the outflow boundary, and therefore much more dependent on upstream con-
ditions than those prevailing downstream.

Figure 4 shows that Qf and Qs are both very sensitively dependent on the
value of γ, with the value of Qf being more sensitive.
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Figure 4. Variation with x of Qf and Qs, the surface rates of heat transfer for the fluid and solid
phases, respectively, for H = 0.01, and for (i) γ = 10, (ii) γ = 3, (iii) γ = 1, (iv) γ = 0.3 and
(v) γ = 0.1.

Conclusions

In this paper we have sought to identify how thermal nonequilibrium effects serve
to modify the flow induced by a constant temperature vertical surface embedded
in a porous medium. The companion paper, Rees & Pop [2], presents a formal
boundary–layer theory which indicates, among other things, that nonequilibrium
effects are most pronounced near the leading edge. The present paper extends that
work by reinstating elliptic effects. Thus the full equations of motion are solved
numerically and a detailed study of the flow near the leading edge obtained. While
a comprehensive quantitative comparison between the two works has not been un-
dertaken, due to the necessity of taking very small values of H, and of having a
correspondingly large computational domain, an excellent qualitative agreement
has been found when H is sufficiently small. In particular, the boundary–layer
theoretical solution given in Figure 2 of [2] yields a solid–phase set of isotherms
which appear to terminate at non–zero values of y at x = 0, unlike those of the
fluid phase. The present numerical investigation shows that this rather unusual
behaviour for a boundary–layer is consistent with the solution of the fully ellip-
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tic equations shown in the present Figure 2. This agreement also lends further
credence to the validity of the analysis presented in [2].

A very important conclusion from the present numerical work is that these
flows are likely to be stable since the steady flows presented have been obtained
using unsteady simulations. The stability of the case where local thermal equilib-
rium applies was demonstrated by the combined numerical study of Rees [4] and
asymptotic study of Lewis et al. [5]. A definitive statement about the stability of
the present flows will require a similar asymptotic analysis to be undertaken.
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