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Abstract

In this paper we consider how the boundary-layer flow induced by a constant temperature vertical surface embedded

in a porous medium is modified by time periodic variations in the gravitational acceleration. It is assumed that the

amplitude of these variations is comparable with the mean gravitational acceleration. The resulting nonsimilar

boundary layer equations are solved using the Keller-box method after using a Fourier decomposition in time to reduce

the system to parabolic form with only two independent variables. The main effect of such g-jitter is confined mainly to

the region near the leading edge and becomes weak at larger distances from the leading edge. For small g-jitter am-

plitudes the numerical results compare very well indeed with our earlier analysis in Rees and Pop [Int. Comm. Heat

Mass Transfer 27 (2000) 415].

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Due to its numerous applications in a wide variety of

industrial processes as well as in many natural circum-

stances, the subject of convective flow in porous media

has attracted considerable attention in the last few de-

cades. Examples of such technological applications are

geothermal extraction, storage of nuclear waste mate-

rial, ground water flows, thermal insulation engineering,

food processing, fibrous insulation, soil pollution and

packed-bed reactors to name just a few. For a list of the

key references of a vast literature concerning this sub-

ject, we refer to the most recent books by Nield and

Bejan [2], Ingham and Pop [3] and Vafai [4].

Convective flows in both viscous (nonporous) and in

fluid-saturated porous media are driven by buoyancy

forces resulting from the presence of both a temperature

gradient and a gravitational field. However, there has

been great deal of recent interest in the effects of those

buoyancy forces which are produced by the interaction

of density gradients with the variable acceleration field

known as g-jitter. There is a growing literature which

tries to characterize the g-jitter environment and the

review articles by Alexander [5] and Nelson [6] give a

good summary of earlier work on convective flows in

viscous fluids. There have also been a number of recent

studies which investigate the effect of g-jitter on such

fluids, e.g. [7–14]; these papers also provide references to

earlier work on the subject. However, to the best of our

knowledge there is very little work in the published lit-

erature which is devoted to the study of g-jitter effects on

convective flows in porous media (see [1]).

All the above-mentioned studies show that convec-

tion in a microgravity environment is related to the

magnitude of g-jitter and to the alignment of the growth

direction (in crystal growth) or the direction of the

temperature gradient (in convective flows). Several cal-

culations, which are based on numerical models, have

been made to estimate and calculate the adverse effects

of time-varying g-jitter (see [13]). Both 2-D and 3-D

numerical models have been developed for this purpose.

These models have been used to study the effects asso-

ciated with both idealised single-and multiple-frequency

g-jitter modulation and realistic g-jitter data collected by
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accelerometer during real flight experiments. Studies

have shown that the frequency, amplitude and spatial

orientation of the residual gravity vector all play an

important role in determining the convective flow be-

haviour of the system. When the residual accelera-

tions oscillate in a particular direction, the orientation of

this direction relative to the density gradient determines

whether a mean flow is generated in the system. Sinu-

soidal oscillating accelerations induce an oscillating

convective flow and composition oscillation in the liquid

pool during crystal growth. The resulting velocity and

composition fields usually oscillate with the same fre-

quency as the imposed gravity field.

The aim of the present paper is to study the be-

haviour of the g-jitter induced free convection in the

boundary-layer over a vertical flat plate embedded in a

fluid-saturated porous medium. In our previous paper

[1] we considered small g-jitter amplitudes and presented

numerical and asymptotic solutions in terms of an ex-

pansion in powers of the small-amplitude parameter.

Our objective here is to develop the basic understanding

of the g-jitter effect begun in [1] by extending the analysis

to g-jitter amplitudes which are comparable with grav-

ity. As in [1] we confine our interest to those cases where

Darcy�s law is valid. Instead of a small-amplitude ex-

pansion, we reduce the governing equations to a system

involving only two independent variables by means of a

Fourier expansion in time. We find that strong g-jitter

effects are confined mainly to the leading region, and

these effects wane with distance downstream.

2. Governing equations and analysis

The nondimensional equations of motion for two

dimensional convective boundary layer flow in a porous

medium in the presence of g-jitter are given by (see [1])

wyy ¼ ð1 þ � cos xtÞhy ; ð1aÞ

ht ¼ hyy þ wxhy � wyhx: ð1bÞ

Here Darcy�s law and the Boussinesq approximation are

both assumed to be valid, and all the variables in (1a)

and (1b) have been nondimensionalised as in [15]. Here,

x is the streamwise coordinate along the heated vertical

surface which is maintained at a nondimensional tem-

perature h ¼ 1, and y is the variable which is perpen-

dicular to the surface. Far from the heated surface h ! 0

and the nondimensional streamfunction is taken to be

zero on the heated surface y ¼ 0. The quantities x and �
are the frequency and amplitude of the g-jitter effect.

The steady boundary layer flow which arises when � ¼ 0

was first given by Cheng and Minkowycz [16] in terms of

a similarity solution. They found that

w � x1=2f ðgÞ; h � gðgÞ; ð2Þ

where the similarity variable, g, is defined as g ¼ y=x1=2.

Given the present time-dependent forcing, we substitute

w � x1=2f ðg; tÞ; h � gðg; tÞ ð3Þ

into Eq. (1) and obtain

f 00 ¼ g0ð1 þ � cos xtÞ ð4aÞ

and

g00 þ 1
2
fg0 ¼ xðf 0gx � fxg0Þ þ xgt: ð4bÞ

Here primes denote derivatives with respect to g and

the t and x subscripts represent derivatives with respect

to those variables. The boundary conditions required to

complete the specification of the mathematical problem

are that

f ¼ 0; g ¼ 1 at g ¼ 0 and f 0; g ! 0 as g ! 1:

ð5Þ

We note that Eq. (4a) may be integrated once with re-

spect to g to reduce the system to third-order.

The solution of Eqs. (4) and (5) were found by first

using the transformations:

s ¼ xt; n ¼ xx; ð6Þ

which removes x from the governing equations. Now f
and g are expanded using the following Fourier series:

f ¼ f0cðg; nÞ þ
XN
n¼1

fncðg; nÞ cos ns½ þ fnsðg; nÞ sin ns�;

ð7aÞ

g ¼ g0cðg; nÞ þ
XN
n¼1

gncðg; nÞ cos ns½ þ gnsðg; nÞ sin ns�:

ð7bÞ

After substitution of these series into the governing

equations we obtain the following system of equations

f 0
0c ¼ g0c þ 1

2
�g1c; ð8aÞ

f 0
1c ¼ g1c þ � g0c

�
þ 1

2
g2c

�
; ð8bÞ

f 0
1s ¼ g1s þ 1

2
�g2c; ð8cÞ

f 0
nc ¼ gnc þ 1

2
�½gn�1;c þ gnþ1;c� for n ¼ 1; . . . ;N � 1;

ð8dÞ

f 0
ns ¼ gns þ 1

2
�½gn�1;s þ gnþ1;s� for n ¼ 1; . . . ;N � 1;

ð8eÞ

f 0
Nc ¼ gNc þ 1

2
�gN�1;c; ð8fÞ

f 0
Ns ¼ gNs þ 1

2
�gN�1;s; ð8gÞ

g000c þL0c
0c þ

1

2

XN
j¼1

Ljc
jc

�
þLjs

js

�
¼ 0; ð9aÞ
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g001c þL0c
1c þL1c

0c þ
1

2

XN�1

j¼1

Ljc
jþ1;c

h
þLjþ1;c

jc

þLjs
jþ1;s þLjþ1;s

js

i
¼ ng1s; ð9bÞ

g001s þL0c
1s þL1s

0c þ
1

2

XN�1

j¼1

Ljc
jþ1;s

h
�Ljþ1;c

js

�Ljs
jþ1;c þLjþ1;s

jc

i
¼ �ng1c; ð9cÞ

g00nc þL0c
nc þLnc

0c þ
1

2

XN�n

j¼1

Ljþn;c
jc

�
þLjc

jþn;c þLjþn;s
js

þLjs
jþn;s

�
þ 1

2

Xn�1

j¼1

Ln�j;c
jc

�
�Ln�j;s

js

�
¼ nngns

for n ¼ 2; . . .N � 1; ð9dÞ

g00ns þL0c
ns þLns

0c þ
1

2

XN�n

j¼1

Ljc
jþn;s

�
�Ljþn;c

js �Ljs
jþn;c

þLjþn;s
jc

�
þ 1

2

Xn�1

j¼1

Ln�j;s
jc

�
þLn�j;c

js

�
¼ �nngnc

for n ¼ 2; . . .N � 1; ð9eÞ

g00Nc þL0c
Nc þLNc

0c þ
1

2

XN�1

j¼1

Ljc
N�j;c

�
�Ljs

N�j;s

�
¼ NngNs;

ð9fÞ

g00Ns þL0c
Ns þLNs

0c þ
1

2

XN�1

j¼1

Ljc
N�j;s

�
þLjs

N�j;c

�
¼ �NngNc:

ð9gÞ

Here the operator L is defined according to

La
b ¼ 1

2
fag0b � xðf 0

agbn � fang0bÞ; ð10Þ

where n-subscripts denote derivatives with respect to n.

Of interest to engineers is the mean rate of heat

transfer, and therefore the sinusoidal components of the

solution for g are not relevant for this purpose. Thus the

time averaged rate of heat transfer may be obtained

from the leading term in (7b), namely, g00cðg ¼ 0Þ. If we

define QðnÞ as a scaled global rate of heat transfer ac-

cording to

QðnÞ ¼ x1=2

2n1=2

Z n

0

@h
@y

ðx; yÞ
				
y¼0

dx ð11aÞ

then it may be shown that

QðnÞ ¼ 1

2n1=2

Z n

0

g00cðg; xÞ
x1=2


 �
g¼0

dx: ð11bÞ

When � ¼ 0 we have Q ¼ �0:44376 which agrees with

that reported by Cheng and Minkowycz [16].

3. Numerical results

The whole system (8) and (9) comprises a set of

parabolic partial differential equations which were solved

using the Keller–box method [17]. Details of the method

may be found in many recent publications by the present

authors, and here we have used the semi-automatic

procedure outlined in [18]. All the results quoted here

were obtained using uniform grids in both the n and g
directions; we took 200 intervals to cover 0 < x < 20 and

100 intervals for 0 < g < 10. This range of values of g is

more than sufficient to contain the developing boundary

layer. We found that very small steps in x were required

to avoid pointwise oscillations in the streamwise direc-

tion, and, in order to obtain reasonable computation

times, we modified the Keller box method to use a first

order accurate backward difference discretisation in the

x-direction. Although this is formally less accurate than

is central differencing, we found that there were at least

four figures of accuracy in our results. We also chose to

use N ¼ 5 as the truncation level for the Fourier series;

again, this was sufficient to capture adequately the res-

olution of the flow near the leading edge where higher

Fourier components are largest. Thus we solve a 33rd

order system of partial differential equations. We also

found that the backward differencing strategy allows

computations to proceed for cases where � > 1, i.e. for

cases where the perceived gravitational acceleration

changes sign during each cycle; this is in contrast to the

more usual centrally differenced method for which � ¼ 1

was found to represent the maximum amplitude for

which solutions may be obtained.

Firstly we needed to ensure that the complicated set

of equations given in (8) and (9) have been encoded

correctly, and this was done by comparing our numeri-

cal results with those of Rees and Pop [1] who consid-

ered asymptotically small amplitudes of g-jitter. While

the equations solved in [1] display some similarity to

those considered here, there are substantial differences

between the two systems, and the subroutine which

evaluates the finite difference approximation to Eqs. (8)

and (9) was completely re-written in order that this

check may be made. Likewise we modified the code used

in [1] to use backward differences; the way in which that

code is written allows such a modification to be made

without changing those lines which define the equations

to be solved. The results of this process are shown in

Table 1 which compares the value of the Oð�Þ surface

rate of heat transfer for the cosine term from [1] with the

values of g01c=� at both g ¼ 0 and n ¼ 0. A careful ex-

amination of the entries in Table 1 also shows that there

is an Oð�2Þ variation in g01c=�jg¼0 when � is small; this is

consistent with the fact that the next cos s term in [1]

arises at Oð�3Þ. A more stringent test is the comparison

of the evolution with n of the rates of heat transfer
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corresponding to g01c and g01s with the corresponding

Oð�Þ solutions from [1]. These are shown in Fig. 1 where

the small-� solution is compared with the solutions for

� ¼ 0:2, 0.4 and 1.0. Here we see clearly that the � ¼ 0:2
curves are almost identical to the small-� curve. In fact,

the curve for � ¼ 0:1 (not shown) is indistinguishable

graphically from the small-� curve.

Fig. 2 displays the behaviour of the local rate of heat

transfer, g00cjg¼0, as a function of n for � ¼ 0:0, 0.2, 0.4,

0.6, 0.8 and 1.0. This quantity is of interest since it

corresponds to the mean value over time. For small

values of � we see that the deviation from the � ¼ 0 curve

is approximately quadratic, which gives good qualitative

agreement with the analysis of [1]. At larger values of the

deviation becomes roughly linear. There is a distinctive

decaying oscillation to an asymptotically decaying state

which corresponds to the mean Oð�2Þ solution given in

Fig. 2 of [1]. The corresponding global rate of heat

transfer is given in Fig. 3 for the same range of ampli-

tudes. The main feature of these graphs is that the

overall effect of g-jitter is to diminish the magnitude of

the mean rate of heat transfer near the leading edge. It

appears therefore that the decelerating phase of the g-

jitter cycle reduces the mean rate of heat transfer by a

greater amount than it is increased during the acceler-

ating phase.

Figs. 4 and 5 show how the cos s and sin s compo-

nents of the surface rate of heat transfer vary with n. In

Fig. 1. The computed Oð�Þ rates of heat of transfer, g01cð0Þ and

g01sð0Þ, as functions of n from [1] (dashed curves), together with

the corresponding curves for � ¼ 0:2, 0.4 and 1.0. The curve

corresponding to � ¼ 0:2 is the closest continuous curve to the

dashed curve.

Fig. 2. The variation with n of the mean (i.e. time-averaged)

local surface rate of heat transfer, g00cjg¼0, for � ¼ 0, 0.2, 0.4, 0.6,

0.8 and 1.0.

Fig. 3. The variation with n of the mean global surface rate of

heat transfer, QðnÞ, for � ¼ 0, 0.2, 0.4, 0.6, 0.8 and 1.0.

Table 1

Comparison of the leading edge rate of heat transfer corre-

sponding to the cos s term and the corresponding Oð�Þ term

from [1] which is denoted by an asterisk

� ðg01cjg ¼ 0Þ=�
0.0* )0.2214

0.1 )0.2216

0.2 )0.2222

0.3 )0.2232

0.4 )0.2247

0.5 )0.2267

0.6 )0.2293

0.7 )0.2327

0.8 )0.2372

0.9 )0.2429

1.0 )0.2506
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both cases the primary effect of g-jitter is felt relatively

close to the leading edge, but the in-phase ðcos sÞ com-

ponent is much stronger than the out-of-phase ðsin sÞ
component at the leading edge. A little further down-

stream, at n ¼ 2, the out-of-phase component reaches its

maximum strength, but at greater distances the out-

of-phase component dominates and the response of the

boundary-layer to the g-jitter forcing has a time lag of

p=2 relative to the phase of the forcing. This is seen

clearly in Fig. 6 where we display a contour plot of

the time-varying local surface rate of heat transfer,

g0ðn; g; sÞjg¼0 for � ¼ 0:2. In this figure the horizontal

axis corresponds to the leading edge, the maximum

magnitude of the rate of heat transfer over time occurs

at s=2p ¼ 0, 1, 2, etc., and the minima occur at

s=2p ¼ 0:5, 1.5, 2.5, etc. The response of the boundary

layer at larger distances has its maximum and minimum

Fig. 6. Contours of the surface rate of heat transfer

g0ðn; g; sÞjg¼0 for the case � ¼ 0:2. If b ¼ 0:44376, then the in-

terval between contours is equal to 0:01b. The contours

reaching n ¼ 15 correspond to g0jg¼0 ¼ �b and the contour

nearest to n ¼ s ¼ 0 corresponds to �1:09b.

Fig. 7. Contours of the surface rate of heat transfer g0ðn; g;
sÞjg¼0. The interval between contours is equal to 0:05b; see the

caption in Fig. 6. The contours reaching n ¼ 15 correspond to

g0jg¼0 ¼ �b and the contour nearest to n ¼ s ¼ 0 corresponds

to �1:4b.

Fig. 5. The variation with n of the sin s (or out-of-phase)

component of the local surface rate of heat transfer, g01sjg¼0, for

� ¼ 0, 0.2, 0.4, 0.6, 0.8 and 1.0.

Fig. 4. The variation with n of the cos s (or in-phase) compo-

nent of the local surface rate of heat transfer, g01cjg¼0, for � ¼ 0,

0.2, 0.4, 0.6, 0.8 and 1.0.
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magnitudes located at increasing values of s relative

to the leading edge, but the response also decays with n.

The contours which �survive� until n ¼ 15 correspond to

the constant value of g0jg¼0 which is obtained when there

is no g-jitter effect (i.e. for � ¼ 0). For the fairly small

value of � represented in Fig. 6 the time-dependent re-

sponse is dominated by the cos s and sin s components.

But at larger values of �, such as is shown in Fig. 7 where

� ¼ 1, there is marked difference in the appearance of the

contours between the accelerating and decelerating parts

of the jitter cycle. This is because more Fourier modes

become significant. Indeed, if we wished to compute the

response to g-jitter with amplitudes greater than unity,

it would be necessary to use a much larger number of

Fourier modes. Once more, at the leading edge, the re-

sponse achieves its maximum magnitude at times which

are exactly in phase with the perceived gravitational

acceleration, and there is an eventual p=2 phase shift at

relatively large values of n.

4. Discussion

We have considered how vertical free convection in a

porous medium is affected by large sinusoidal variations

in the force of gravity about its mean value. The gov-

erning nonsimilar boundary layer equations were solved

using a Fourier series expansion and the parabolic sol-

ver, the Keller-box method. Solutions have been pre-

sented in terms of the surface rate of heat transfer.

As in [1] it was found that the deviation from steady

solutions corresponding to no g-jitter is most significant

near the leading edge, and that the effect of g-jitter, at

least in terms of the surface rate of heat transfer, decays

with distance from the leading edge. When the g-jitter

amplitude, �, is small, the deviation from the mean � ¼ 0

case is roughly sinusoidal. The peak rate of heat trans-

fer, for instance, is in phase with the g-jitter forcing at

the leading edge, but it varies monotonically to a p=2

phase lag with increasing distance. When � takes values

close to unity the response to g-jitter becomes strongly

nonlinear and this effect is felt more during deceleration

when the boundary layer thickens substantially and

there is a very marked drop in the surface rate of heat

transfer.
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