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Abstract. Free convection motions induced by point sources or horizontal line sources of heat are
usually assumed to take the form of a vertically orientated plume. In this paper we consider how
material anisotropy affects the path of the plume centreline and we show that it is strongly affected
by both the anisotropy and the presence of impermeable bounding surfaces. The plume path is a
straight line whose angle from the vertical is determined by a balance between the upward buoyancy
force, the need for the plume to entrain equal amounts of fluid from the external regions either side
of it, and the ease of fluid motion in the direction of the principal axis with the highest permeability.
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Nomenclature

a0, b0 scalings for the leading order boundary layer solution.
a1, b1 scalings for the first order boundary layer solution.
A,B, B̂, C,D coefficient functions.
A,B,C coefficient functions.
Cp specific heat.
d length scale.
f0, g0 leading terms in the boundary layer expansion.
f1, g1 first order terms in the boundary layer expansion.
F0,G0 scaled leading order terms in the boundary layer expansion.
F1,G1 scaled first order terms in the boundary layer-expansion.
F leading order outer region solution.
g gravity.
(i, j , k) unit vectors in the directions of the principal axes.
K permeability.
K permeability tensor.
L scaled permeability.
M1,M2,M3 constants of integration.
q′ rate of heat flux per unit length of the line source.
r radial coordinate.
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R Darcy–Rayleigh number.
X,Y x and y coordinates after rotation through an angle δ.

Greek Letters
α, β, γ rotation angle of the principal axes about the x-, y- and z-axes.
β̂ coefficient of thermal expansion.
δ direction of the plume centreline.
ζ scaled similarity variable.
η similarity variable.
θ temperature.
κ thermal diffusivity.
µ viscosity.
ξ permeability ratio.
ρ density.
φ angular coordinate relative to the upward vertical.
φ+, φ− angular positions of the bounding surfaces.
) angular coordinate relative to φ = δ.
ψ streamfunction.

Superscripts and subscripts
1, 2, 3 denotes the three principal axes.
∗ dimensional.
∞ ambient.
x, y derivatives with respect to x and y, respectively.
X,Y derivatives with respect to X and Y , respectively.
′ derivatives with respect to either η or ζ .
+ region for which φ > δ.
− region for which φ < δ.

1. Introduction

It is a matter of common experience that atmospheric plumes rise vertically in
otherwise still air, but that their path may deviate quite substantially from this in
the presence of wind. Such deviations were also found by Shaw (1985) for plume
flow in a confined region with distinct inlets and outlets of fluid. Other effects, such
as entrainment into a bounding surface and the merging of neighbouring plumes,
both of which yield curved plume paths, have been summarised in the review paper
of Gebhart (1979). Below groundlevel the presence of groundwater flow (together
with other effects such as heterogeneities and variable saturation) also serves to
modify the path taken by a contaminant plume in a porous medium; see Harter and
Yeh (1996a, b) for example. However, when forced convective effects are absent,
the resulting free convective plume is usually assumed to ascend vertically.

In our previous paper (Bassom et al., 2001) we considered a very much simpler
configuration than those of Harter and Yeh by restricting attention to a horizontal
line heat source embedded in a fully saturated isotropic porous medium. Although
such a situation had already been studied previously by Afzal (1985), we extended
his analysis to cases where the porous medium is bounded by two semi-infinite sur-
faces at arbitrary angles. It was found that the free convective plume alway deviates
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from its vertical path unless the bounding surfaces are symmetrically placed with
respect to the vertical. Further, the paper by Bassom et al. (2001) gives a simple
analytical expression relating the plume deviation and the angles of the bounding
surfaces. The reason for such deviations lies in the competing effects of buoyancy,
which causes an upwards force, and the need for the plume to entrain roughly the
same amount the fluid from the external regions lying on each side of the plume.

However, many naturally occuring porous media are anisotropic with respect to
their material properties. Few studies have examined how boundary layers react
to the presence of anisotropy. To our knowledge only three exist to date: Ene
(1991), Rees and Storesletten (1995) and Storesletten and Rees (1997). In these
studies the boundary layer always remains attached to the heated surface, but for
a free convective plume there is no surface to guide its upward path. In the light
of the results of Bassom et al. (2001) it seems likely that anisotropy might have
the same qualitative effect as the presence of an asymmetric bounding surface in
an isotropic medium because of the breaking of symmetries. Therefore the aim
of the present paper is to determine the effects of anisotropy on the angle which
the plume centreline makes with the vertical. We consider three different config-
urations: an isolated line source, a line source placed at the end of a semi-infinite
surface (which serves to restrict the flow in the region outside the plume) and a line
source embedded in a plane surface.

To begin we suppose that the line source is placed at the intersection of two
bounding planes, more details of which are given below, and we concentrate on
the behaviour of the plume at large distances from the source. Depending on the
configuration studied, the flow is divided into various regions, one of which is the
boundary layer (i.e. the plume or inner) region, and either one (in the case of an
isolated line source) or two outer regions (when the porous region forms a wedge
with the plume at the apex). The last of these three cases is illustrated in Figure 1.

2. Mathematical Formulation

The present work deals with natural convective flow arising from a horizontal line
source of heat embedded in a porous medium with anisotropic permeability. A
Cartesian frame of reference is chosen where the x-axis is in the upward vertical
direction and the y- and z-axes are both horizontal and aligned normal to and along
the line source, respectively. The permeability tensor, K , is given by

K = K1i
′i ′ + K2j

′j ′ + K3k
′k′, (1)

where the right-handed set of unit vectors, i′, j ′ and k′ are obtained by rotating the
unit vectors in the x-, y- and z-directions (respectively, i, j and k) by an angle α

about the x-axis, followed by a rotation of an angle β about the y-axis and an angle
γ about the z-axis, in that order. In other words we have

i′ = (cos β cos γ, cos β sin γ,− sin β) (2a)
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Figure 1. Schematic diagram of the flow configuration depicting two bounding surfaces at
φ =φ+ and φ =φ−, and the plume with centreline along φ = δ. Also shown are the x- and
y- axes (φ = 0 and φ = 90◦, respectively) and the direction of gravity. We also consider cases
with only one bounding surface and with no bounding surfaces.

j ′ = (− cos α sin γ + sin α sin β cos γ, cosα cos γ +
+ sinα sin β sin γ, sinα cos β) (2b)

k′ = (sinα sin γ + cos α sin β cos γ,− sinα cos γ +
+ cos α sin β sin γ, cos α cos β). (2c)

The permeability matrix can now be written in the symmetric form,

K = K1




L11 L12 L13

L12 L22 L23

L13 L23 L33


 , (3)

where K1 is used as the reference permeability, and the Lij values are given in the
Appendix.

We consider steady flow in a porous medium for which Darcy’s law and the
Boussinesq approximation are both valid. Although the medium is anisotropic and
hence fluid motion will, in general, be induced in the z-direction, there is no res-
ulting z-variation in the convecting plume. Therefore, the governing equations are
reduced to

L11ψxx + 2L12ψxy + L22ψyy = (L11L22 − L2
12)θy, (4a)

θxx + θyy = ψyθx − ψxθy, (4b)
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w = (L13L22 − L12L23)ψy + (L12L13 − L11L23)ψx

(L11L22 − L2
12)

(4c)

where

u = ∂ψ

∂y
, v = −∂ψ

∂x
(5)

and w are the seepage velocities in the x-, y- and z-directions, respectively. Here
ψ is the streamfunction and θ is the temperature. All the variables in (4) have been
made dimensionless using the transformations

ψ∗ = κψ, (x∗, y∗, z∗) = Cpµκ2

gβ̂K1q ′ (x, y, z), θ∗ = θ∞ + q ′

ρCpκ
θ, (6)

where starred terms denote dimensional/unscaled quantities, q ′ represents the rate
of heat flux per unit length of the line source, and other terms, which have their
usual meanings in the porous medium context, are given in the Nomenclature. We
note that there is no Darcy–Rayleigh number present in Equations (4); if we define

d = Cpµκ2

gβ̂K1q ′ , (7)

as a natural lengthscale, then the Darcy–Rayleigh number, which for a line source
is defined as

R = ρgβ̂K1d

µκ

(
q ′

ρCpκ

)
, (8)

is equal to unity.
We will be considering the boundary layer flow induced by a line source and

therefore the width of the plume is asymptotically small compared with the dis-
tance from the leading edge. Far away from the plume centreline the velocity and
temperature approach their respective ambient values:

ψy → 0, θ → 0 as y → ∞. (9)

This condition will need to be made more precise below when we consider the
detailed effect of the isothermal flow induced in the regions either side of the
plume. The dimensionless heat flux per unit length released by the horizontal
line source is now unity. The equation for the global conservation of heat takes
the form,∫ ∞

−∞
(ψyθ − θx) dy = 1, (10)

where it is noted that the infinite limits represent the mathematical problem from
the point of view of the plume boundary layer.
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3. Analysis

The analysis we reproduce below is very closely related to that given in Bassom
et al. (2001) and it uses the method of matched asymptotic expansions. The plume
is assumed to have its centreline laying at an unknown angle δ to the vertical and
the basic boundary layer flow is determined. Entrainment into the plume induces
a flow in the outer region or regions which must be computed numerically, unlike
the isotropic problem considered in Bassom et al. (2001) where a simple analyt-
ical solution exists. In turn, the outer flow causes a small correction to the plume
solution, but the equations governing this leading correction to the plume have a
solution only when δ takes the correct value.

3.1. THE INNER REGION

We begin by rotating the coordinate axes through the angle, δ, which is currently
unknown. Relative to polar coordinates (r, φ) the positive x-axis corresponds to
φ = 0, the y-axis to φ =π /2, and the bounding surfaces to φ =φ+ and φ =φ−, as
shown in Figure 1. The new coordinates, X and Y , obtained by rotation, are given
by

X = x cos δ + y sin δ, Y = −x sin δ + y cos δ. (11a, b)

The transformed governing equations are then

AψXX + 2BψXY + CψYY = D tan δθX + DθY , (12a)

θXX + θYY = ψY θX − ψXθY , (12b)

and the energy constraint becomes∫ ∞

−∞
[ψXθ sin δ + ψY θ cos δ − θX cos δ + θY sin δ] dY = cos δ, (13)

where the new coefficients in (12a) are defined as

A = L11 cos2 δ + L12 sin 2δ + L22 sin2 δ, (14a)

B = 1

2
(L22 − L11) sin 2δ + L12 cos 2δ, (14b)

C = L11 sin2 δ − L12 sin 2δ + L22 cos2 δ, (14c)

D = (L11L22 − L2
12) cos δ. (14d)

The boundary layer solution takes the following form as X → ∞:

ψ = X1/3f0(η) + f1(η) + · · · , (15a)
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θ = X−1/3g0(η) + X−2/3g1(η) + · · · , (15b)

where the similarity variables is

η = Y/X2/3. (16)

The plume now has centreline at Y = 0, and the plume ascends along the X-axis.
The equations for f0, g0, f1 and g1 are

Cf
′′
0 − Dg′

0 = 0, (17a)

g
′′
0 + 1

3
(f0g0)

′ = 0, (17b)

Cf
′′
1 − Dg′

1 = 2

3
B(f ′

0 + 2ηf
′′

0 ) − 1

3
D tan δ(g0 + 2ηg′

0), (17c)

g
′′
1 + 1

3
f0g

′
1 + 2

3
f ′

0g1 + 1

3
f ′

1g0 = 0, (17d)

and the heat flux constraints become,∫ ∞

−∞
f ′

0g0 dη = 1, (18a)

∫ ∞

−∞

[
f ′

0g1 + f ′
1g0 +

[
1

3
(f0 − 2ηf ′

0)g0 + g′
0

]
tan δ

]
dη = 0, (18b)

where we note that the term multiplying tan δ integrates to zero because of the
symmetry of the integrand. The boundary conditions for the leading order terms
are

f0(0) = g′
0(0) = 0 and f ′

0, g0 → 0 as η → ±∞, (19a)

and, for the first order terms,

g1 → 0 as η → ±∞. (19b)

The other conditions necessary to solve Equations (17c,d) must be determined by
asymptotic matching with the solutions from the outer regions since it is the latter
which induces the corrections represented by f1 and g1.

As noted by Afzal (1985) and Bassom et al. (2001) there exist exact closed-
form solutions of the leading and first order equations, (17a)–(17d), which satisfy
the heat flux relations (18a) and (18b). Using the scaled independent variable

ζ = 1

6
a0η, (20)
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the new coefficient functions, F0, G0, F1 and G1 are defined by

f0(η) = a0F0(ζ ), g0(η) = b0G0(ζ ), (21a)

f1(η) = a1F1(ζ ), g1(η) = b1G1(ζ ), (21b)

where

a0 =
(

9D

2C

)1/3

, b0 =
(

3C

32D

)1/3

, (22a)

a1 = 4

C
, b1 = 2a0

3D
. (22b)

On substituting expressions (20), (21) and (22) into Equations (17a)–(17d) and
(18a) and (18b), we obtain the following equations,

F
′′
0 − G′

0 = 0, G
′′
0 + 2(F0G0)

′ = 0, (23a, b)

F
′′
1 − G′

1 = B̂(F ′
0 + ζF

′′
0 ), G

′′
1 + 2F0G

′
1 + 4F ′

0G1 + 2F ′
1G0 = 0,

(23c, d)

where

B̂ = B − 3b0D tan δ

a2
0

, (23e)

and the constraints,∫ ∞

−∞
F ′

0G0 dζ = 4

3
,

∫ ∞

−∞
(F ′

0G1 + F ′
1G0)dζ = 0. (24a, b)

The closed-form solutions are

F0 = tanh ζ, G0 = sech2ζ, (25a, b)

F1 = B̂ [ζF0 − 2ln(cosh ζ )] + M1 + M2F
′
0 + M3(ζF

′
0 + F0 − 2ζ ), (26a)

G1 = B̂(−ζF ′
0) + M2F

′′
0 + M3(ζF

′′
0 + 2F ′

0), (26b)

where we have imposed exponential decay on the temperature as ζ → ±∞. Fur-
thermore, M1, M2 and M3 are constants of integration. For an isotropic medium
with δ = 0, that is C =D = 1, the leading order solution reduces to that given by
Wooding (1963) and Afzal (1985).

Note that F1 ∼ − (±B̂ + 2M3)ζ as ζ → ±∞, which provides matching condi-
tions for the outer region solutions. As B̂ is dependent on the unknown direction of
the plume, δ, via (23e), the satisfaction of the matching conditions will yield this
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angle. But matching with the outer regions requires the use of polar coordinates, r
and ), where )=φ − δ is the angular coordinate relative to the plume centreline.
On using η = r1/3 sin)/(cos))2/3 we expand for small values of ) to obtain the
behaviour of ψ as η → ±∞:

ψ ∼ r1/3

[
a0 − 1

6
a0a1(B̂ + 2M3))

]
as η → ∞, (27a)

and

ψ ∼ r1/3

[
−a0 + 1

6
a0a1(B̂ − 2M3))

]
as η → −∞. (27b)

The first terms in (27a) and (27b) are equivalent to the inflow to the plume which
induces the leading order flow in the outer regions. The second terms reflect how
the outer flow, in its turn, alters the behaviour of the plume.

3.2. THE OUTER REGIONS

As the thermal field decays exponentially out of the boundary layer we may neglect
thermal effects. The governing equation becomes

Ā
∂2ψ

∂r2
+ 2

r
B̄

(
∂2ψ

∂r∂)
− 1

r

∂ψ

∂)

)
+ 1

r
C̄

(
1

r

∂2ψ

∂)2
+ ∂ψ

∂r

)
= 0, (28)

and

Ā = A cos2 ) + B sin 2) + C sin2 ), (29a)

B̄ = 1

2
(C − A) sin 2) + B cos 2), (29b)

C̄ = A sin2 ) − B sin 2) + C cos2 ). (29c)

In view of the leading behaviour of ψ as given in (27) the outer region expansion
begins as

ψ = r1/3F ()) + · · · , (30)

where F satisfies,

C̄F
′′ − 4

3
B̄F ′ + 1

3

(
C̄ − 2

3
Ā

)
F = 0. (31)

The boundary conditions which are satisfied by F depend on the flow config-
uration.
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When there are no bounding surfaces there is only one outer region and we
solve Equation (31) subject to the four boundary conditions which are taken from
the asymptotic relation (27):

F (0) = a0, F ′(0) = −1

6
a0a1(B̂ + 2M3), (32a)

F (2π) = −a0, F ′(2π) = 1

6
a0a1(B̂ − 2M3). (32b)

Although (31) forms a second order system, the third and fourth equations may be
taken to be

δ′ = 0, M ′
3 = 0, (33)

since both δ and M3 are constants, and we may therefore apply a straightforward
boundary value problem solver to the complete 4th order system.

When there are two bounding surfaces there exist two outer regions. If we
denote the solution in the outer region occupying )> 0 by F+ and the other by
F−, then we need to solve the 6th order system,

C̄F
′′
+ − 4

3
B̄F ′

+ + 1

3
(C̄ − 2

3
Ā)F+ = 0, (34a)

C̄F
′′
− − 4

3
B̄F ′

− + 1

3
(C̄ − 2

3
Ā)F− = 0, (34b)

δ′ = 0, M ′
3 = 0, (34c)

subject to the boundary conditions,

F+(0) = a0, F ′
+(0) = −1

6
a0a1(B̂ + 2M3), (35a)

F−(0) = −a0, F ′
−(0) = 1

6
a0a1(B̂ − 2M3), (35b)

F+(φ+ − δ) = 0, F−(φ− − δ) = 0. (35c)

Since δ is unknown, the ranges of integration for both F+ and F− are also un-
known. However, it is very straightforward to alter the range of integration for both
functions to the interval 0 to 1 by a linear coordinate transformation. In this way all
the unknown values and functions form part of either the equations or the boundary
conditions.

4. Results and Discussion

Our numerical results were obtained using a 4th order Runge–Kutta scheme allied
to the shooting method. In all cases we used 200 intervals which yields solutions
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which are correct to more than four significant figures. In all the different types of
configuration we consider, none of the initial conditions are known (for example,
the value a0 which is used in (32) and (35) is a function of δ) and therefore it proves
necessary to iterate for all initial conditions.

The full parameter set comprises the three rotation angles for the principal axes,
two permeability ratios, and either zero, one or two angles of the bounding surfaces.
Clearly it is impossible to present a comprehensive account of the effect of varying
each parameter, and for this reason we have decided to confine our interest to those
configurations for which the principal axes have been rotated about the z-axis, and
therefore we take α =β = 0. This means that the principal axes corresponding to
K1 and K2 make an angle γ to the vertical and horizontal, respectively. We consider
three special cases:

Case 1. An isolated line heat source (no bounding surfaces).
Case 2. A single bounding surface located at φ = γ + 180◦.
Case 3. Two bounding surfaces located at φ = γ ± 90◦.

Case 2 corresponds to where the two bounding surfaces are effectively coincident
and hence φ+−φ− = 360◦. Case 3 has the line source embedded in a plane and this
corresponds to φ+−φ− = 180◦. For all these cases there are two parameters, γ , the
rotation angle of the principal axes about the z-axis, and ξ =K1/K2, the permeab-
ility ratio. For Case 2 the single bounding surface lies in the direction opposing the
principal axis corresponding to K1. Here we take φ+ = γ+180◦ and φ− = γ−180◦.
For Case 3 the two bounding surfaces are parallel to the K2 principal axis.

Our restricted sets of results are shown in Figures 2, 3 and 4 which corres-
pond respectively to Cases 1, 2 and 3. Indications of the directions of the prin-
cipal axes and their relation to the direction of the bounding surfaces are depicted
schematically below each Figure. All angles are expressed in terms of degrees, for
convenience.

Figure 2 shows how the orientation of the plume varies with γ for various
permeability ratios ξ . Values of ξ which are greater than 1 correspond to cases
where K2 <K1. When ξ > 1 the plume takes positive orientations as γ increases
from zero. The reason for this is that flow in the direction given by the K1 axis
is favoured. For relatively high values of ξ the plume travels very easily in that
direction and this yields the large positive values of δ. For example, for ξ = 100,
which is an example of a rather extremely anisotropic medium, the plume orient-
ation curve is close to the line δ = γ which indicates that the plume centreline is
in the positive K1 direction. When ξ takes more realistic values much closer to 1
the variation in the plume orientation is more sedate and the maximum orientation
of the plume remains close to the vertical. This may be seen in Table I where we
indicate how the maximum absolute deviation of the plume centreline from the
vertical varies with ξ . When ξ is close to 1 (so that the medium is nearly isotropic)
the maximum plume deflection takes place when the rotation of the principal axes
is close to 45◦. Finally we note that certain symmetries are present in these Case 1
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Figure 2. The variation of the plume deflection angle, δ, with the principal axis rotation angle,
γ , for various values of the permeability ratio, ξ , for plume convection from an isolated line
heat source. The values of ξ represented are 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2,
3, 5, 10, 20, 30, 50, 100. Also shown is a schematic of the relation between the principal
axes and γ .

results and therefore we have restricted the values of γ presented in Figure 2 for
the range 0 � γ � 90◦. Plume deflections at other angles may be found using the
relation

δ(γ, ξ) = δ(γ + 90◦, ξ−1). (36)

Figure 3 represents the case of one isolated semi-infinite surface with leading
edge at the line source. When γ = 0 the surface is vertical and lies directly below
the line source.

For small values of γ the overall effect of the presence of the surface is small
compared with the isolated source shown in Figure 2, and similar physical ar-
guments apply. However, the difference between Cases 1 and 2 becomes very
significant when γ gets close to 90◦ especially for those media where ξ > 1. Again
taking the ξ = 100 curve as an extreme example, we have a large positive plume
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Table I. Values of γ which maximise the plume inflec-
tion for the given values of ξ

ξ δ γ

0.999 −0.2866 44.9857

0.99 −0.2879 44.856

0.9 −3.017 43.492

0.8 −6.379 41.810

0.5 −19.471 35.264

0.3 −32.579 28.711

0.2 −41.810 24.095

0.1 −54.903 17.548

0.05 −64.791 12.604

0.03 −70.347 9.826

0.02 −73.901 8.049

0.01 −78.579 5.711

0.001 −86.378 1.811

Also shown are the corresponding plume deflections, δ.
Corresponding values for ξ > 1 may be obtained using
δ(ξ−1) = −δ(ξ ) and γ (ξ−1) = 90−γ (ξ ).

deflection when γ is just less than 90◦. At this point the fluid prefers to travel
in the positive K1 direction which lies just above the horizontal. However, as the
inclination of the surface and the principal axes increases to values just greater
than 90◦, buoyancy forces still require fluid to rise, but the easiest path is now in
the negative K1 direction, which explains the large negative values of δ. There is a
relatively quick transition between the large positive and large negative deflections
as γ passes through 90◦. Again, less severe plume deviations arise for more realistic
values of ξ .

In Figure 3 we confine the presentation of the dependence of δ on γ to the
range 0◦ � γ � 180◦. At γ = 180◦ the isolated surface is vertical and the plume
deviation is positive in all cases considered. At such values of γ we feel it is
very likely that the plume will attach itself to the surface in the same way that
free jets are attracted towards adjacent surfaces due to the lack of fluid to entrain.
This is almost certainly the case for an isotropic medium given by ξ = 1 for then
a straightforward vertical plume will arise in practice, even though the present
analysis predicts a deviation of approximately 55◦. For ξ = 1 it is also possible
to obtain δ � −55◦ when γ =−180◦ which is essentially the same case as for
γ = 180◦, and hence there are three possible solutions for the isolated vertical
surface laying immediately above the line source. Although these nonvertical math-
ematical solutions are valid solutions of the equations, we believe that they are
likely to be unstable, and the definitive demonstration of this conjecture will lie in
the computation of the stability characteristics of plumes using an unsteady elliptic
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Figure 3. The variation of the plume deflection angle, δ, with the principal axis rotation angle,
γ , for various values of the permeability ratio, ξ , for plume convection from a line heat source
in the presence of an isolated semi-infinite surface located at φ = γ+180◦. The values of ξ

represented are 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, 10, 20, 30, 50, 100. Also
shown is a schematic of the relation between the principal axes and γ .

formulation of the governing equations. However, we point out that the solutions
presented here assume from the outset that the flow has a certain structure, namely
that the plume boundary layer is bordered by two different outer flow regions. Thus
the flow represented by Figure 3 are possible solutions of the governing equations,
but when γ get close to 180◦, they may not represent stable solutions.

In Figure 4 we display how δ varies with γ for a semi-infinite porous medium.
Here we restrict attention to cases for which 0 � γ � 90◦. When γ > 90◦ one
of the bounding surfaces lies above the plume and while the numerical solutions
represent valid solutions of the equations, they are highly likely to be unstable.
Here the variation of δ with γ follows the same trends as in Figures 2 and 3 when
γ is small. When γ reaches values close to 90◦ we again have positive value of
δ for all anisotropies depicted, although the plume deviation when the medium is
isotropic is now approximately 50◦ due to the slightly different outer flow field.
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Figure 4. The variation of the plume deflection angle, δ, with the principal axis rotation angle,
γ , for various values of the permeability ratio, ξ , for plume convection from a line heat source
embedded in a plane with normal in the same direction as the K1 principal axis. The values of
ξ represented are 0.001, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, 10, 20, 30, 50, 100
and 1000. Also shown is a schematic of the relation between the principal axes and γ .

We note that, for ξ > 0.428 the plume always has a positive deviation; for other
values of ξ deviations may be either positive or negative depending on the value
of γ .

5. Conclusions

We find that the presence of anisotropy causes plumes to rise at angles other than
the vertical in general. In this regard anisotropy has a similar effect to the presence
of asymmetrically placed (relative to the vertical) bounding surfaces in an isotropic
porous medium; see Bassom et al. (2001). This feature, which is well known in
the analysis of contaminant movement in groundwater studies, is somewhat unex-
pected in the free convective context where there is no imposed pressure gradient
causing mixed convective transport.
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From a mathematical point of view the lesson to be gleaned from the present
paper is that it is not always sufficient simply to consider the leading order bound-
ary layer flow when analysing plumes. A naive analysis which does not consider
the outer flow regions and their effect on the next correction to the plume solution,
is likely to assume that the plume rises vertically, and hence the results of such
an analysis will be incorrect. Even if one assumes that it rises at a different angle,
there is no rational argument for an a priori choice of an angle unless the analysis
presented here is followed. Indeed we have shown that it is absolutely essential
to allow the plume to deviate by an O(1) angle from the vertical in order to be
able to obtain a solution for the second term in the asymptotic expansion. We
note that such a mathematical device, whereby O(1) effects are determined by the
solution of equations at higher order, is quite commonplace in the context of the
theory of weakly nonlinear Bénard convection (see Newell and Whitehead, 1969,
for example) and other weakly nonlinear and WKBJ theories.

We have seen that the plume is strongly attracted to the direction of that prin-
cipal axis corresponding to the larger permeability, especially when permeabil-
ity ratio is substantially different from 1. But when γ �= 0 the flows are never in
those precise directions because of twin effects of buoyancy, which serves to cause
the fluid to rise vertically, and the presence of external boundaries, which modifies
the detailed flow outside the plume and which, in turn, affects the position of the
plume quite strongly.

Appendix

In this Appendix we present the definitions of the entries of the diffusivity tensor
given in Equation (3).

K1L11 = K1 cos2 β cos2 γ +
+K2(sin α sin β cos γ − cos α sin γ )2 +
+K3(cos α sin β cos γ + sinα sin γ )2, (A1)

K1L22 = K1 cos2 β sin2 γ +
+K2(sin α sin β sin γ + cos α cos γ )2 +
+K3(cos α sin β sin γ − sinα cos γ )2, (A2)

K1L33 = K1 sin2 β + K2 sin2 α cos2 β + K3 cos2 α cos2 β, (A3)

K1L12 = K1L21 = K1 cos2 β sin γ cos γ + K2(sinα sin β cos γ −
− cos α sin γ )(sinα sin β sin γ + cos α cos γ ) +
+K3(cos α sin β cos γ + sinα sin γ ) ×
× (cos α sin β sin γ − sinα cos γ ), (A4)
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K1L13 = K1L31 = −K1 sin β cos β cos γ +
+K2(sinα sin β cos γ − cos α sin γ ) sinα cos β +
+K3(cos α sin β cos γ + sinα sin γ ) cosα cos β, (A5)

K1L23 = K1L32 = K1 sin β cos β sin γ +
+K2(sinα sin β sin γ + cos α cos γ ) sinα cos β +
+K3(cos α sin β sin γ − sinα cos γ ) cosα cos β. (A6)

The expressions (A1)–(A6) correspond to expressions (A1)–(A6) given in Rees
and Storesletten (1995), but in that paper there were several misprints concerning
the signs in (A1), (A2), (A4), (A5) and (A6).
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