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Summary

We consider the flow induced by a line source placed at the intersection of two semi-infinite
plane surfaces, and our main aim is to determine the influence of these bounding surfaces on
the direction the plume takes. To this end a two-term boundary layer theory is presented from
which it is deduced that the plume is, in general, orientated away from the vertical. A careful
analysis of the boundary-layer solutions is undertaken to provide, subject to the determination
of a constant for each Prandtl number, an analytical expression for the plume angle in terms of
the orientations of the bounding surfaces. It is found that the plume is affected very strongly by
the presence of the surfaces.

1. Introduction

Variations in the direction of the centreline of both line-source and point-source plumes are well
known even from casual observation. In the environment such variations arise most frequently
because of the presence of mixed or forced convective effects, such as wind in the atmosphere, or
groundwater movements in the dispersion of underground pollutants. A further cause, which exists
in the porous medium context, is the presence of inhomogeneities or anisotropy; in these cases even
free convective plumes may exhibit a centreline which is not vertical (1,2). The close proximity of a
solid surface also plays a significant role by drawing the plume towards itself—numerous excellent
photographs of plumes being entrained towards nearby vertical surfaces and of the conjoining of
neighbouring plumes may be found in the review by Gebhart (3). A detailed mathematical analysis
of the curved path taken by a plume in a cavity with specified, but asymmetrically placed, ports
of entry and exit of the fluid was undertaken by Shaw (4). As far as we are aware, the only other
papers which deal with free convection plumes as boundary-layer flows in the presence of bounding
walls are the studies of Afzal (5) and of Bastiaans et al. (6). Afzal (5) considers the case where
two bounding surfaces are placed symmtrically either side of the plume and intersect at the source.
In such a configuration the plume continues to rise vertically. In Baastians et al. (6) numerical
simulations of turbulent flows induced by a line heat source in a cavity are presented.

The aim of the present paper is to determine how two inclined plane surfaces affect the motion
of a free convective line-source plume placed at the intersection of those surfaces. This is achieved
using almost exactly the same techniques as were employed in (1,2), namely the method of matched
asymptotic expansions. The need for this is as follows. If a two-term boundary-layer theory is
required, then it is necessary to find the leading-order circulations in the regions on either side
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Fig. 1 Schematic diagram of the flow configuration depicting the two bounding surfaces at φ = φ+ and
φ = φ−, and the plume with centreline along φ = δ. Also shown are the x- and y-axes (φ = δ and

φ = δ + 90◦, respectively) and the direction of gravity

of the plume before finding the first-order plume solution (that is, the second boundary layer
term). However, if the leading-order plume is assumed to rise vertically, then the equations for
the first-order plume cannot be solved in general. The resolution of this mathematical difficulty
lies in assuming that the leading-order plume centreline lies at an angle δ to the vertical. Then the
imposition of the requirement that a solution must exist for the first-order plume yields a solvability
condition from which a unique value of δ may be found in terms of the orientation angles of the
bounding surfaces.

The inclination angle of the plume is a function of three variables, the orientations of the bounding
surfaces and the Prandtl number. But we show that it is possible to reduce the equations of motion
to a form where only one numerical solution is required for each Prandtl number, and this yields
a constant which appears in a straightforward analytical expression relating the orientations of the
plume and the surfaces. A comprehensive set of results is given for Prandtl numbers equal to 6·7,
0·7 and 0·01.

2. Governing equations

The present work deals with free convective flow induced by a line source of heat which is placed at
the intersection of two semi-infinite bounding planes, as shown in Fig. 1. We will be concentrating
on the possible behaviour of the plume at relatively large distances from the source by employing
the boundary layer approximation. In this study the flow is divided into three regions, a boundary
layer (inner) region which comprises the plume and which is thin relative to the flow domain, and
two outer regions, either side of the plume. The plume is assumed to have a centreline which is at
an angle δ to the vertical, and which is determined from the analysis.

A Cartesian frame of reference is chosen where the x-axis is aligned along the centreline of
the plume, the z-axis is in the direction of the line source and is horizontal, while the y-axis is
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perpendicular to both these. The dimensional basic equations for steady two-dimensional flow are

∂u

∂x
+ ∂v

∂y
= 0, (1)

ρ∞
(

u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ∇2u + ρ∞gβ(T − T∞) cos δ, (2)

ρ∞
(

u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ∇2v − ρ∞gβ(T − T∞) sin δ, (3)

u
∂T

∂x
+ v

∂T

∂y
= κ∇2T, (4)

where the Boussinesq approximation has been used. The equation for the global conservation of
heat takes the form

ρ∞C p

∫ ∞

−∞

[
u(T − T∞) − κ

∂T

∂x

]
dy = q ′, (5)

where q ′ is the rate of heat flux per unit length of the line source. In the above equations u and
v are the fluid velocities in the x- and y-directions, respectively, p is the pressure, and T is the
temperature of the fluid. The diffusivity, viscosity and coefficient of cubical expansion are given by
κ , µ and β, respectively, while g is acceleration due to gravity, ρ is density and C p is specific heat
at constant pressure. Ambient conditions are denoted by the subscript ∞.

Equations (1) to (5) are made dimensionless by using the transformations

(u, v) = µ

ρ∞d
(u∗, v∗), (x, y) = d(x∗, y∗),

p = µ2

ρ∞d2
p∗, T − T∞ = q ′

ρ∞C p
θ∗, (6)

where the starred variables denote dimensionless quantities, and d is defined as a natural lengthscale
by

d = µ

(
C p

gβq ′ρ2∞

)1/3

. (7)

In non-dimensional terms the governing equations are

∂u

∂x
+ ∂v

∂y
= 0, (8)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ∇2u + θ cos δ, (9)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v − θ sin δ, (10)

u
∂θ

∂x
+ v

∂θ

∂y
= σ−1∇2θ, (11)

∫ ∞

−∞

[
uθ − 1

σ

∂θ

∂x

]
dy = 1, (12)
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where the asterisks have been omitted for clarity of presentation, and where the non-dimensional
parameter, σ , is the Prandtl number which is given by

σ = µ

ρ∞κ
. (13)

We note that there is no Grashof number present in these equations. The non-dimensionalization
used here has, in effect, set the appropriate Grashof number equal to unity and it is this which defines
the lengthscale, d , given in (7). For the sake of completeness the scalings in (6) may also be written
in the form

(u, v) = ρ
−1/3∞

(
gβq ′

C p

)1/3

(u∗, v∗), (x, y) = µ

ρ
2/3∞

(
C p

gβq ′

)1/3

(x∗, y∗),

p = ρ
1/3∞

(
gβq ′

C p

)2/3

p∗. (14)

The analysis of this paper corresponds to the situation which prevails at large-dimensional
distances from the heat source relative to the size of d, and which corresponds to large values
of x compared with unity. As the flow is two-dimensional the governing equations reduce to

∇4ψ + ∂θ

∂y
cos δ + ∂θ

∂x
sin δ = ∂ψ

∂y
∇2

[
∂ψ

∂x

]
− ∂ψ

∂x
∇2

[
∂ψ

∂y

]
, (15)

σ−1∇2θ = ∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
, (16)

where the pressure, p, has been eliminated, and a streamfunction, ψ , is defined according to

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (17)

Far from the plume centreline the velocity and temperature approach their respective ambient
values,

∂ψ

∂y
→ 0, θ → 0 as y → ±∞. (18)

This condition will need to be made more precise below when we consider the detailed effect of the
isothermal flow induced in the regions either side of the plume.

The equation for the global conservation of heat now takes the form∫ ∞

−∞

[
∂ψ

∂y
θ − 1

σ

∂θ

∂x

]
dy = 1, (19)

where it is noted that the infinite limits represent the mathematical problem from the point of view
of the asymptotically thin plume boundary layer.

3. Analysis

In solving equations (15), (16), (18) and (19) we use the method of matched asymptotic expansions
to determine series solutions for ψ and θ . Entrainment into the plume induces a flow in the outer
regions which, in turn, causes a small correction to the plume solution. But the equations governing
this leading correction have a solution only when the centreline angle, δ, takes the correct value.
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3.1 The inner region

In the inner, or plume boundary-layer region, the solution takes the following form as x → ∞:

ψ = x3/5 f0(η) + f1(η) + · · · , θ = x−3/5g0(η) + x−6/5g1(η) + · · · , (20)

where the similarity variable is

η = y/x2/5. (21)

After substitution of (20) and (21) into the governing equations (15) and (16), the boundary-layer
approximation is invoked (x  y) and like powers of x are equated to obtain

f ′′′
0 + g0 cos δ + 3

5 f0 f ′′
0 − 1

5 f ′
0 f ′

0 = 0, (22)

σ−1g′
0 + 3

5 f0g0 = 0, (23)

f ′′′′
1 + 3

5 f0 f ′′′
1 + 4

5 f ′
0 f ′′

1 + 1
5 f ′′

0 f ′
1 + g′

1 cos δ = ( 3
5 g0 + 2

5ηg′
0) sin δ, (24)

σ−1g′′
1 + 3

5 g0 f ′
1 + 6

5 f ′
0g1 + 3

5 f0g′
1 = 0, (25)

where equations (22) and (23) have already been integrated once with respect to η. The heat flux
constraint becomes

∫ ∞

−∞
f ′
0g0 dη = 1,

∫ ∞

−∞
(

f ′
0g1 + f ′

1g0
)

dη = 0. (26)

It is convenient to introduce the functions h0 and h1 defined by

h0 =
∫ η

0
f ′
0(ξ)g0(ξ) dξ, h1 =

∫ η

0
[ f ′

0(ξ)g1(ξ) + f ′
1(ξ)g0(ξ)] dξ, (27)

so that equations (26) may be written in the form

h′
0 = f ′

0g0, h′
1 = f ′

0g1 + f ′
1g0, (28)

subject to the boundary conditions given below. We assume that the leading-order solution displays
the appropriate symmetries about η = 0 (that is, f0 is odd and g0 is even), and then we use these
symmetries to integrate the equations for positive values of η only. The fifth-order system formed
by equations (22), (23) and (28)1 is completed, for numerical purposes, by five boundary conditions,

η = 0 : f0 = f ′′
0 = h0 = 0, η → ∞ : f ′

0 → 0, h0 → 1
2 . (29)

Given that f ′
0 → 0 as η → ∞, it is clear that f0 asymptotes to a constant and, given the form of

equation (23) at large values of η, we conclude that g0 will decay exponentially, thereby rendering
it unnecessary to apply a condition on the temperature field. We will define a0 as the limiting value
of f0 at large values of η and therefore

lim
η→±∞ f0 = ±a0, where a0 = a0(σ, δ). (30)



448 D. A. S. REES AND L. STORESLETTEN

3.2 The outer regions

The aim of this subsection is the determination of the flow in the relatively large regions outside the
plume. We have seen that the temperature field decays exponentially, and therefore we may ignore
it when considering the outer flow. As shown in Fig. 1 there are impermeable surfaces placed at
φ = φ+ and φ = φ−, and the plume, which is asymptotically thin in the tangential direction, is
located at φ = δ. We have assumed that the line source is at the intersection of the planes and hence
the streamfunction is taken to be zero on the planes.

On neglecting the temperature field in equation (15) we obtain

∇4ψ = ψy∇2ψx − ψx∇2ψy . (31)

However, on rewriting this equation in polar coordinates, and noting that ψ = O(r3/5) as r → ∞,
we see that the left-hand side terms are of O(r−17/5) while the right-hand side terms are O(r−9/5),
which is asymptotically larger. Therefore we must neglect the diffusion terms for the leading-order
external flow. The equation formed by setting to zero the right-hand side of (31), is satisfied by
solutions of the equation

∇2ψ = 0, (32)

which corresponds to the usual potential flow. In polar coordinates (r, φ) this is

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂φ2
= 0, (33)

where the upward vertical corresponds to φ = 0, the plume centreline to φ = δ and the two
bounding surfaces to φ = φ+ and φ = φ−, respectively.

Equation (33) must be solved separately in the regions on either side of the plume. Given the
large-η behaviour of f0 given in (30), and the definition of f0 in (20), the boundary conditions
corresponding to the plume are obtained by asymptotic matching. Therefore (33) must be solved
subject to

lim
φ→δ+ ψ = a0r3/5 and ψ(φ = φ+) = 0, (34)

in the region to the left of the plume, while on the right we have

ψ(φ = φ−) = 0 and lim
φ→δ− ψ = −a0r3/5. (35)

If we set

ψ = r3/5F+(φ) (φ > δ),

ψ = r3/5F−(φ) (φ < δ), (36)

then equation (33) reduces to

F ′′ + 9
25F = 0. (37)
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The solutions are

F+ = a0
sin 3

5 (φ+ − φ)

sin 3
5 (φ+ − δ)

and F− = −a0
sin 3

5 (φ − φ−)

sin 3
5 (δ − φ−)

. (38)

These solutions may now be used to obtain matching conditions for the first-order plume
equations. For small positive values of (φ − δ) the streamfunction may be expanded in the form

ψ ∼ a0r3/5[1 − 3
5 (cot 3

5 (φ+ − δ))(φ − δ)] as (φ − δ) → 0+. (39)

This may be rewritten in terms of x and η by making use of the asymptotic forms

x ∼ r and η = y/x2/5 ∼ r3/5(φ − δ), (40)

and therefore we have

ψ ∼ a0[x3/5 − ( 3
5 cot(φ+ − δ))η] as η → ∞. (41)

Similarly, we find that

ψ ∼ a0[−x3/5 − ( 3
5 cot(δ − φ−))η] as η → −∞. (42)

The behaviour of the second terms in (41) and (42) may be translated into the following boundary
conditions for the first-order plume:

f ′
1 → − 3

5 a0 cot(φ+ − δ) as η → ∞, (43)

f ′
1 → − 3

5 a0 cot(δ − φ−) as η → −∞. (44)

4. Numerical solution of the plume equations

Our aim here is to solve the leading-order system (22), (23), (28)1 and (29) and the first-order
system (24), (25), (28)2, (43) and (44). As mentioned earlier, we cannot solve these equations in
general by taking δ = 0, and therefore it is necessary to find δ as a function of the three parameters
φ+, φ− and σ . Given that the boundary conditions for the first-order equations do not display
a particular symmetry in general, it is not straightforward to consider solely the η � 0 part of
the domain. Thus it would seem necessary to split the first-order equations (24), (25) and (28)2
into two parts, one corresponding to η � 0 and one for η � 0 and to solve the larger system
subject to additional matching conditions at η = 0. However, this approach is very computationally
intensive and requires the solution of this new enlarged system over many combinations of the three
parameters.

In (1) we were able to solve the analogous porous medium problem analytically, but a careful
scrutiny of the first-order solutions in that paper reveals that the component parts (that is, the
complementary functions and particular integral) display either odd or even symmetries. The result
of that analysis was the deduction of a straightforward trigonometrical formula for δ in terms of
φ+ and φ−. These facts motivate the following analysis which effectively reduces the number of
parameters from three to one, although numerical solutions remain to be found.
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First we can eliminate cos δ from both the leading-order and first-order systems by means of the
substitutions

fn(η) = (cos δ)1/5 Fn(ζ ), gn(η) = (cos δ)−1/5Gn(ζ ), hn(η) = Hn(ζ ) for n = 0, 1,

(45)

where

η = (cos δ)−1/5ζ . (46)

Hence the leading-order system of equations and its boundary conditions reduce to

F ′′′
0 + G0 + 3

5 F0 F ′′
0 − 1

5 F ′
0 F ′

0 = 0, (47)

σ−1G ′
0 + 3

5 F0G0 = 0, (48)

H ′
0 = F ′

0G0, (49)

subject to

ζ = 0 : F0 = 0, F ′′
0 = 0, H0 = 0, (50)

ζ → ∞ : F ′
0 → 0, H0 → 1

2 , (51)

where primes indicate derivatives with respect to ζ for the F , G and H variables. The solution of
this system depends on only one parameter, σ , and the large-η asymptotic value of f0 is given by

A0 = lim
ζ→∞ F0(ζ ), where a0 = (cos δ)1/5 A0. (52)

The first-order system of equations and its boundary conditions become

F ′′′′
1 + G ′

1 + 3
5 F0 F ′′′

1 + 4
5 F ′

0 F ′′
1 + 1

5 F ′′
0 F ′

1 =
[

3
5 G0 + 2

5ζ G ′
0

] sin δ

(cos δ)6/5
, (53)

σ−1G ′′
1 + 3

5 F ′
1G0 + 6

5 F ′
0G1 + 3

5 F0G ′
1 = 0, (54)

H ′
1 = F ′

0G1 + G0 F ′
1, (55)

subject to

ζ → ∞ : F ′
1 → − 3

5 A0
cot(φ+ − δ)

(cos δ)1/5
, G1, H1 → 0, (56)

ζ → −∞ : F ′
1 → − 3

5 A0
cot(δ − φ−)

(cos δ)1/5
, G1, H1 → 0. (57)

Strictly speaking (53) to (55) forms a seventh-order system but we have specified only six boundary
conditions. However, since δ is unknown we may form an eighth equation, δ′ = 0, and apply two
extra boundary conditions, F ′′

1 → 0 as ζ → ±∞. But this approach still retains three independent
parameters with its consequently large number of numerical simulations.

A much more efficient approach to solving the system (53) to (57) is to split it into its odd and
even components. Therefore we set

F1 = F1o + F1e, G1 = G1o + G1e and H1 = H1o + H1e. (58)
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Here it is to be understood that F1o is an odd function, but its thermal counterpart, G1o, is in fact
even; the subscripts are meant to denote the fact that F1o and G1o are associated with one another.
Likewise F1e is even and G1e is odd. If, for convenience, we define the values α+ and α− according
to

α+ = − 3
5 A0

cot(φ+ − δ)

(cos δ)1/5
and α− = − 3

5 A0
cot(δ − φ−)

(cos δ)1/5
, (59)

then they correspond respectively to the positively and negatively large ζ limits of F ′
1 given in (56)

and (57). We define further constants, γo and γe, as follows:

γo = 1
2 (α+ + α−) and γe = 1

2 (α+ − α−). (60)

These are the large-ζ limits of F ′
1o and F ′

1e, respectively.
We consider the odd case first, and, given that the inhomogeneous term in (53) is even, the

corresponding equation for the odd component is homogeneous, although the boundary conditions
are not. In this case we may integrate (53) once. Given the symmetries of the functions we need
only to consider the region from ζ = 0 onwards and therefore F1o, G1o and H1o satisfy

F ′′′
1o + G1o + 3

5 F0 F ′′
1o + 1

5 F ′
0 F ′

1o = 0, (61)

σ−1G ′′
1o + 3

5 F ′
1oG0 + 6

5 F ′
0G1o + 3

5 F0G ′
1o = 0, (62)

H ′
1o = F ′

0G1o + F ′
1oG0, (63)

subject to the boundary conditions

ζ = 0 : F1o = 0, F ′′
1o = 0, G ′

1o = 0, H1o = 0, (64)

ζ → ∞ : F ′
1o → γo, G1o, H1o → 0. (65)

Using a standard fourth-order Runge–Kutta code embedded in a shooting method algorithm we
found that this system has a solution for every value of γo. As the equations are linear, the existence
of a solution for any one value of γo implies that solutions for other values are the appropriate
multiple of the first solution. Therefore this component of F1 and G1 has no bearing on the required
value of δ.

Turning to the even components, we may split them up into three parts: a particular integral and
two complementary functions. The symmetries of F1e, G1e and the leading-order solutions are
such that the right-hand side of (55) is even, and hence H1e is an odd function. Therefore, if we
set H1e(−∞) = 0 it necessarily implies that H1e(∞) = 0, and hence that the correct boundary
conditions for H1e are automatically satisfied because of the symmetries. We write the equations
for F1e and G1e in the form

F ′′′′
1e + G ′

1e + 3
5 F0 F ′′′

1e + 4
5 F ′

0 F ′′
1e + 1

5 F ′′
0 F ′

1e = A[ 3
5 G0 + 2

5ζ G ′
0], (66)

σ−1G ′′
1e + 3

5 F ′
1eG0 + 6

5 F ′
0G1e + 3

5 F0G ′
1e = 0, (67)

where the constant A is (tan δ)/(cos δ)1/5, and where the boundary conditions are

ζ = 0 : F ′
1e = 0, F ′′′

1e = 0, G1e = 0, (68)

ζ → ∞ : F ′
1e → γe, F ′′

1e, G1e → 0. (69)
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Now we define the particular integral, Fpi , and the two complementary functions, Fcf 1 and Fcf 2
according to:

Fpi is the solution with F1e(0) = 0, F ′′
1e(0) = 0 and A = 1, (70)

Fcf 1 is the solution with F1e(0) = 1, F ′′
1e(0) = 0 and A = 0, (71)

Fcf 2 is the solution with F1e(0) = 0, F ′′
1e(0) = 1 and A = 0. (72)

It is easily confirmed that Fcf 1 = 1 and therefore it too plays no part in determining the value of δ.
The final solution for F1e will therefore take the form

F1e = tan δ

(cos δ)1/5
Fpi + B Fcf 2 + C, (73)

where B and C are arbitrary constants. Numerically we find that both Fpi and Fcf 2 have solutions
which grow quadratically in ζ , and therefore both violate the large-ζ boundary condition on F1e in
(69). However, it is possible to combine them to eliminate this quadratic growth and to establish the
correct linear growth. Therefore, if we take

Fpi ∼ c1ζ
2 + c2ζ and Fcf 2 ∼ d1ζ

2 + d2ζ as ζ → ∞, (74)

where the constants c1, c2, d1 and d2 are obtained numerically, then the overall quadratic growth is
suppressed when

c1
tan δ

(cos δ)1/5
+ d1 B = 0, (75)

and the correct linear growth is obtained when

c2
tan δ

(cos δ)1/5
+ d2 B = γe. (76)

Given the definition of γe in equation (60), the value B may be eliminated from (75) and (76) to
obtain the equation

cot 3
5 (φ+ − δ) − cot 3

5 (δ − φ−) = − 10
3

[c2d1 − c1d2

d1 A0

]
tan δ. (77)

This equation is very similar to that obtained in (1) where the fractions within the cotangents are
both 1

3 , and the coefficient of tan δ is −2. The important implication of this formula is that we need
to compute solutions of the leading-order equations, (61) to (63), and the equations for both Fpi and
Fcf 2 only once for each value of σ . Having thereby obtained the values of A0, c1, c2, d1 and d2 the
full dependence of δ may be obtained simply by solving the equation (77).

In our numerical solutions we allowed σ to vary between 0·01 and 10, and, given the wide range
of boundary-layer widths which correspond to such extreme values of the Prandtl number, we were
very careful to ensure that not only was the steplength sufficiently small to obtain solutions correct to
five significant figures, but also that the maximum value of ζ was sufficiently large that the constants
given in (77) did not vary upon further increases in ζmax.

Although (77) cannot be rearranged to give δ explicitly in terms of φ+ and φ−, it may be
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Fig. 2 The value of the parameter � defined by equation (78) as a function of the Prandtl number σ

manipulated easily to yield, say, φ+ in terms of δ and φ−. If, for convenience, we define the
constant � according to

� = 10
3

[c2d1 − c1d2

d1 A0

]
, (78)

then (77) gives

cot 3
5 (φ+ − δ) − cot 3

5 (δ − φ−) = −� tan δ, (79)

from which we obtain

φ+ = δ + 5
3 cot−1

[
cot 3

5 (δ − φ−) − � tan δ
]
. (80)

Some care is needed to ensure that the correct inverse cotangent is computed. The variation of �

with σ is shown in Fig. 2. We see that the value of � does not vary greatly from the neighbourhood
of 0·75 when σ lies in the range 2 < σ < 10, but decreases for σ < 2. The detailed numerical
results do not indicate clearly the limit as σ → 0, but this limit is difficult to analyse numerically as
the thermal boundary-layer thickness increases indefinitely. An asymptotic analysis of the small-σ
limit is outside the scope of this paper.

5. Results and discussion

For any computed value of �, equation (80) yields an analytical solution for φ+ in terms of δ and
φ−. In Fig. 3 we use this numerical data to show how φ+ and φ− are related for each chosen value
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Fig. 3 The loci of values of the surface angles, φ+ and φ−, measured in degrees, which yield plumes of
various orientations. Solid curves correspond to fluids with σ = 6·7, long dashes to σ = 0·7 and short dashes

to σ = 0·01. The respective values of � for these three cases are 0·75485, 0·70327 and 0·54364. The
displayed values of δ are 0◦, 10◦, 20◦, . . . , 70◦, 80◦, 85◦ and 89◦. All angles are given in degrees

of δ. We show curves for σ = 6·7 (water), σ = 0·7 (air) and σ = 0·01 (representative of liquid
metals).

Before discussing Fig. 3 it is important to note that substitution of the value � = 0 into (79)
yields

δ = 1
2 (φ+ + φ−), (81)

which means that the plume lies exactly midway between the bounding surfaces. In this case the
plume entrains exactly the same amount of fluid from either side and therefore it is dominated
completely by the outer region circulations. Therefore increasing positive values of � correspond
to the increasing influence of buoyancy which would otherwise cause the plume to ascend vertically.

We also note, as in (1), that those cases for which δ = 0 correspond to symmetrically placed
bounding surfaces so that φ+ + φ− = 0. There are also cases which we suspect strongly of not
being physically realizable. These cases almost certainly include those for which φ+ and φ− have
the same sign. The present analysis relies on the fact that there are two external regions, whereas
these particular cases will have the plume ascending the upper of the two surfaces. Tentatively we
would expect that flows for which φ+ > 0 and φ− < 0 are realizable, but this may depend on how
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close to the vertical the bounding surfaces lie; a detailed examination of this aspect lies outside the
scope of this paper.

When the surfaces are asymmetrically placed, Fig. 3 shows that plumes do not rise vertically.
For example, for σ = 0·01, when φ− = −90◦ and φ+ = 180◦, then the plume deviation is
δ � 30◦. This value is above the line 1

2 (φ+ + φ−) = 45◦ which demonstrates that, although
buoyancy does play a role, its effect is not as great as one might expect. It is clear that deviations
from 1

2 (φ+ + φ−) = 45◦ are not large when φ− < 0 and φ+ > 0 and therefore the effect of the
induced flow external to the plume is particularly strong. This is especially so for liquid metals
for which � is relatively small. For these fluids thermal diffusion is relatively large and therefore
the boundary layer is relatively thick. In turn, the induced velocity along the plume reduces in
comparison with fluids of larger Prandtl numbers and therefore the role of buoyancy in determining
the direction of the centreline is also reduced relatively.
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