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II. Nonlinear evolution

By D. And rew S. Rees

Department of Mechanical Engineering, University of Bath,
Claverton Down, Bath BA2 7AY, UK

Received 4 July 2001; accepted 24 September 2001; published online 14 May 2002

We consider the nonlinear evolution of vortex instabilities in a near-vertical free
convection boundary layer in a porous medium. At such inclinations, both small
amplitude and strongly nonlinear disturbances may be described within the con nes
of boundary-layer theory with no further approximations. Steady vortices are induced
by placing a thermal disturbance within the boundary layer and by computing their
development downstream using a parabolic solver.

It is found that the strength of the resulting convection depends not only on the
wavelength of the vortex disturbance, but also on the amplitude of the disturbance
and its point of introduction into the boundary layer. Whenever vortices grow, they
attain a maximum strength before decaying once more. Curiously, there is a speci c
disturbance amplitude that yields the largest possible response downstream, in the
sense that both smaller and larger initial amplitudes yield weaker responses. This
unusual phenomenon is shown to be related to the shape of the vortex.
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1. Introduction

In Rees (2001), which will be referred to as part I, we undertook a detailed linearized
stability analysis of free convective boundary-layer ®ow from a uniform-temperature
heated surface embedded in a porous medium. Attention was focused on the near-
vertical case where the inclination from the vertical is taken to be asymptotically
small. Although this seems to be an unusually speci c con guration to consider, it
has the advantage that the full vortex disturbance equations may be described within
the boundary-layer approximation. It is also quite likely that many of the qualitative
features uncovered here, in part I and in subsequent papers, will also apply at more
realistic angles from the vertical.

Vortex disturbances are characterized by their spanwise wavenumber and their
cross-stream pro le. In common with many other boundary-layer ®ows, the neu-
tral stability curve exists only for wavenumbers below a certain maximum value.
For disturbances with wavenumbers above this value, boundary-layer ®ows are pre-
dicted to be linearly stable, which means that small amplitude perturbations should
always decay as they travel downstream. At wavenumbers below the maximum value,
disturbances may grow, although they decay initially if they have been introduced
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relatively close to the leading edge. However, it was shown in part I that such a
neutral curve, which is computed only after assuming the streamwise variation of
the disturbance, is too restrictive. The evolution of disturbances was shown to be
governed by a parabolic system of equations whose numerical solution demonstrated
that disturbances may begin to grow at stations closer to the leading edge than are
given by the neutral curve. This conclusion was based on a thermal energy of the
vortex as a measure of the strength of the disturbance.

The main aim of this paper is to extend the analysis of part I into the nonlinear
regime. It was shown in part I that the fully nonlinear evolution of vortex distur-
bances may also be modelled within the framework of the boundary-layer approxi-
mation and is also described by a parabolic system. This system is now three dimen-
sional, unlike the linearized disturbance equations, and its solution is e¬ected by
means of a spanwise Fourier decomposition and the application of the well-known
Keller-box method (Keller & Cebeci 1971) in a slightly unusual form.

In view of the above discussion, it is not surprising to  nd that the detailed evo-
lution of a vortex disturbance depends on its wavenumber, but we  nd that it also
depends very strongly on where it has been introduced into the boundary layer and
on its amplitude. Details of how the evolution depends on these factors are compli-
cated, but, in general, when the wavenumber is below the maximum value on the
neutral curve, vortices experience growth over a range of values of x, the streamwise
coordinate. In some instances, this is preceded by decay, but it is also succeeded by
decay, which is a surprising result, since a local Darcy{Rayleigh number based on the
boundary-layer thickness continues to increase with distance from the leading edge,
and therefore one would expect the boundary layer to be increasingly susceptible
to instability. Another surprising result is obtained by considering the response of
the boundary layer to disturbances of various amplitudes. In this case, the maxi-
mum vortex strength increases as the amplitude of the initial disturbance increases,
but there is a maximum response that is such that further increases in the strength
of the initial disturbance serves only to decrease the eventual local response of the
boundary layer. A reason for this is discussed later. A similar scenario also occurs
when the point of introduction of the disturbance is varied.

The outline of the paper is as follows. In x 2 we present the governing equations,
which were derived in part I, and describe the numerical method used to solve them.
The numerical results are presented in x 3 and are discussed in detail. Finally, in x 4
the implications of this work are discussed.

2. Governing equations and numerical method

We consider how vortex instabilities evolve along the free convection boundary-layer
®ow induced by a near-vertical uniform-temperature heated surface embedded in a
porous medium. The detailed ®ow con guration and coordinate system are sketched
in  gure 1. In common with part I, we assume that the surface is asymptotically
close to being vertical, but still upward facing, since in that limit the full disturbance
equations satisfy the boundary-layer approximation; at O(1) angles from the vertical
streamwise di¬usion become important and it will prove necessary to undertake an
elliptic fully three-dimensional unsteady numerical analysis. But, in the present case,
vortex evolution, even in the fully nonlinear regime, may be studied by means of
solving a set of parabolic partial di¬erential equations.
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Figure 1. Sketch of the ° ow domain and boundary conditions.

The detailed derivation of the full disturbance equations subject to the boundary-
layer approximation has been given in part I and will not be repeated here. It was
shown that the perturbation pressure, p, and the perturbation temperature, ³ , satisfy
the equations

p00 + ¹ 2pzz = 1
2
( ¹ ³ ¹ ¡ ² ³ 0) + ¹ ³ 0; (2.1)

³ 00 + ¹ 2 ³ zz = ( 1
2
f 0) ¹ ³ ¹ ¡ (1

2
f) ³ 0 + (f 00)( ¹ ¡ 1

2
² ) ³

¡ (f 00)p0 + 1
2
( ¹ ³ ¹ ¡ ² ³ 0) ³ + ¹ ³ ³ 0 ¡ p0 ³ 0 ¡ ¹ 2pz ³ z ; (2.2)

subject to
p0 = ³ = 0 at ² = 0 and p; ³ ! 0 as ² ! 1; (2.3)

where ² = y=x1=2 is the similarity variable, ¹ = x1=2 is a scaled streamwise coordinate
and (x; y; z) forms a non-dimensional Cartesian coordinate system in the streamwise,
cross-stream and spanwise directions, respectively. Furthermore, subscripts denote
derivatives with respect to the corresponding variables and primes denote derivatives
with respect to ² in common with many other non-similar analyses. The stream
function, Á, corresponding to the basic boundary-layer ®ow, is given by Á = x1=2f( ² ),
and both the vertical velocity and the temperature by f 0( ² ), where f satis es the
following equation and boundary conditions:

f 000 + 1
2
ff 00 = 0; f(0) = 0; f 0(0) = 1 and f 0 ! 0 as ² ! 1: (2.4)

These were  rst derived and solved by Cheng & Minkowycz (1977). As equations (2.1)
and (2.2) form a parabolic system of partial di¬erential equations, initial conditions
are required to complete the speci cation of the problem. Precise details of these are
given in the following section.

In part I, solutions of the linearized version of equations (2.1) and (2.2) were
obtained using the Keller-box method. In this numerical technique, the full equations
are reduced to  rst-order form in ² , discretized using central di¬erence approxima-
tions based halfway between grid points in both the ² - and ¹ -directions, and the
resulting nonlinear system of di¬erence equations solved using a multi-dimensional
version of the Newton{Raphson iteration scheme, the iteration matrix having block-
tridiagonal form. In the present paper, the governing equations have an extra z-
dependence, which makes the numerical di¯ culties much greater. We have solved
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the system (2.1) and (2.2) by taking a truncated spanwise Fourier expansion in the
form

p( ¹ ; ² ; z) = 1
2
p0( ¹ ; ² ) +

NX

n= 1

pn( ¹ ; ² ) cos nkz; (2.5)

³ ( ¹ ; ² ; z) = 1
2
³ 0( ¹ ; ² ) +

NX

n = 1

³ n( ¹ ; ² ) cos nkz; (2.6)

where k is the wavenumber of the primary vortex and N is the truncation level of
the series. In the simulations we present here, a value of N = 5 was used; this was
deemed to be su¯ cient, as the amplitude of the  fth term (n = 5) always remained
very considerably smaller than that of the primary vortex (n = 1). The substitution
of (2.5) and (2.6) into equations (2.1) and (2.2) is straightforward, but lengthy to
present and therefore we omit this detail. We obtain a system of 2N + 2 second-
order parabolic partial di¬erential equations in ¹ and ² to solve. With N = 5, this
means that the standard Keller-box implementation uses 24 variables when reduced
to  rst-order form in ² , and hence the block-tridiagonal iteration matrix is composed
of 24£24 submatrices. Such a system was programmed initially, but its execution was
very slow. Therefore, we elected to keep the equations in second-order form and to
use central di¬erences in ² based on the grid points. This has various consequences.
(i) The block-tridiagonal structure of the iteration matrix is retained, which means
that the same basic code may be used. (ii) The submatrices are now 12 £ 12, which
results in a very considerable increase in the speed of the code. (iii) The method
retains second-order accuracy in ² in terms of the computed values of p and ³ .
(iv) Derived values, such as the surface rate of heat transfer, now become of  rst-
order accuracy in ² , as such quantities rely on taking numerical derivatives.

We also elected, as in part I, to use backward di¬erence approximations in ¹ . One
reason for this is to eliminate pointwise oscillations, which sometimes occur when
using central di¬erences (see Rees (1997) for an example of where the use of backward
di¬erences was also essential). One advantage of its use is that it is not necessary
to specify an initial pro le for p. To see this, we  rst note that no ¹ derivatives of
p occur in either equation (2.1) or (2.2). This means that p is de ned only in terms
of ³ and ³ ¹ . Therefore, a disturbance may be introduced by specifying only the ³
pro le, and, given that a backward di¬erence method has been employed, we do not
need to rely on the p pro le at the point of introduction of the disturbance in order
to march the numerical solution on to the next ¹ gridpoint.

As with many other parabolic boundary-layer simulations by the present author,
we use numerical derivatives to compute the iteration matrix from the de nition
of the `right-hand-side’ vector. This has the distinct advantage of a much reduced
development time for the numerical code, which, given the complexity of the system
being studied here, is very considerable, although the execution time is necessarily
increased.

In general, we set
³ 1 = A² e¡ ² at ¹ = ¹ 0; (2.7)

where we refer to A as the amplitude of the vortex disturbance and ¹ 0 as the point
of introduction of the disturbance. In all the computations presented here, we have
used 50 equally spaced gridpoints lying in the range 0 6 ² 6 10; this maximum value
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Figure 2. Neutral stability curve: ¹ c against k.

of ² is su¯ cient to contain the evolving disturbances, which, as will be seen later,
have a slight tendency to become concentrated towards the heated surface. Uniform
steps of length 0:1 in the ¹ -direction were also used.

3. Numerical results

In  gure 2 we reproduce, for reference, the neutral curve obtained from the approxi-
mate stability analysis undertaken in part I. The main reason for this is to allow the
following nonlinear results to be interpreted in terms of a linearized stability theory,
albeit one that is approximate. We see from this  gure that vortex disturbances will
always decay whenever k is greater than ca. 0.0924, whereas at smaller values of k,
in nitesimally sized disturbances may expect to enjoy growth within a range of val-
ues of ¹ , although this range is both preceded and succeeded by decay. Our aim is
to investigate numerically how nonlinearities a¬ect this scenario.

(a) Some typical cases

We begin by highlighting the general behaviour of some typical cases before moving
on to a more comprehensive description of how the vortex evolution changes with
amplitude, A, and point of introduction of the disturbance, ¹ 0.

In  gure 3 we display the detailed evolution of the primary vortex (n = 1), its
harmonics (n > 1) and the mean correction to the basic ®ow (n = 0) as ¹ varies.
Here we have used k = 0:04, ¹ 0 = 8 and A = 0:1 as representative values of k, ¹ 0

and A. At this value of k, the numerical data corresponding to  gure 2 indicates
that in nitesimally sized disturbances should grow when ¹ > 10:66 or, equivalently,
when x > 113:7, and will begin to decay again when ¹ ’ 132:74 or x ’ 17 620. The
curves displayed in  gure 3 show the evolution with ¹ of the surface rates of heat
transfer due to each Fourier mode; these are given by qn = @³ n=@² j ² = 0 (0 6 n 6 5)
and are fairly typical of those obtained when k < 0:094 and when ¹ 0 is below the
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Figure 3. Variation with ¹ of the surface rates of heat transfer, qn , corresponding to the
various Fourier modes, n = 0; 1; 2 : : : . We have taken ¹ 0 = 8, k = 0:04 and A = 0:1.

neutral curve. The amplitude of the primary vortex, as represented by q1,  rst decays
until ¹ is near to the  rst neutral value, and then it begins to grow. For this case,
the growth continues until ¹ is just above 50, at which point the amplitude slowly
decays; this value of 50 is substantially below the restabilizing value of 220:9 read o¬
the data plotted in  gure 2 at k = 0:04. One purpose of the rest of our results is to
explain this discrepancy between the in nitesimal-amplitude results of  gure 2 and
the large-amplitude simulation.

It is important to note that the mean correction to the basic ®ow (n = 0) gives
an increase in the overall rate of heat transfer from the surface as the mean local
rate of heat transfer becomes more negative. Secondly, the n = 2 curve is signi cant
only over a small range of values of ¹ and that higher modes do not contribute
greatly to the local rate of heat transfer; this observation, which is common to all
our simulations, justi es the use of N = 5 for the number of modes used.

Figure 4 shows how the cross-section of the vortex pattern varies with distance from
the leading edge. Here we show contours of the perturbation isotherms at selected
values of ¹ , where, in each subframe, the contours are scaled to lie between §³ extr,
where the extremum value satis es

³ extr = max( ³ m ax; ¡ ³ m in ): (3.1)

As ¹ increases, the vortices begin to grow in strength and eventually the vortices
that correspond to negative perturbation temperatures (the middle vortex in each
subframe of  gure 4) begin to acquire a triangular pro le, while the neighbouring
vortices rise from the surface. At this point, the boundary layer becomes thicker,
but eventually the vortex system weakens, which results in the `negative’ vortex
becoming smaller and becoming progressively more con ned to the near-wall region.
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Figure 4. Cross-section of the vortex system corresponding to the perturbation temperature
pro¯le for various values of ¹ . This vortex system was obtained using ¹ 0 = 8, k = 0:05 and
A = 0:1.
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Figure 5. The variation in the surface rate of heat transfer, q1 , due to the primary
vortex for various wavenumbers. We have taken ¹ 0 = 8 and A = 0:1.

A comparison between the boundary-layer responses for di¬erent vortex wavenum-
bers is depicted in  gures 5 and 6, for otherwise identical cases. We have taken ¹ 0 = 8
and A = 0:1 for these  gures. Figure 5 shows how q1, the surface rate of heat transfer
due to the primary vortex, evolves with ¹ . All the curves show an initial decrease
in the vortex strength, since ¹ 0 = 8 is in the stable region shown in  gure 2 for
all wavenumbers. Thereafter, the vortex grows in amplitude, but the distance over
which this behaviour is maintained depends very much on the vortex wavenumber,
and subsequently the vortex decays. For k = 0:09, this region of growth is relatively
short, which is consistent with the small region of instability indicated in  gure 2,
and therefore the vortex does not grow greatly. On the other hand, when k < 0:08,
the initial growth is relatively rapid. The vortex quickly undergoes a nonlinear satu-
ration, which inhibits further growth and causes decay, at least in terms of the surface
rate of heat transfer, even though the values of ¹ and k lie within the unstable region
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Figure 6. Isolines of the surface rate of heat transfer over four vortices in ( ¹ ; z)-space for various
values of the vortex wavenumber, k. Again we have taken ¹ 0 = 8 and A = 0:1. The horizontal
coordinate varies between z = 0 and z = 4 º =k.

delimited by the neutral curve given in  gure 2. This phenomenon will be considered
in more detail later.

An alternative view of the overall vortex structure is shown in  gure 6. Contours
of the surface rate of heat transfer, @³ =@ ² j ² = 0, in the ¹ ; z-plane for each of the cases
shown in  gure 5 are given. Each part shows two periods in the z-direction, i.e. four
vortices. When k = 0:09, the four vortices shown are of roughly the same strength,
as is indicated by the fact that ³ m ax is almost the same as ¡ ³ m in , and both the
growth and decay phases of the evolution are evident. As the wavenumber decreases,
the vortices become increasingly strong, and nonlinear e¬ects serve to favour one
vortex over its nearest neighbours. That this must be so may be gleaned from a
careful consideration of  gure 3; the n = 1 curve corresponds to cos kz, while the
n = 0 curve is the change in the mean heat transfer due to the presence of vortices.
Therefore, at some values of z (z = 0, for example), the local rate of heat transfer
from the mean correction and from the primary vortex almost cancel each other
out, since ³ 0

1( ² = 0) and ³ 0
0( ² = 0) have opposite signs. But at other values of z

(kz = º , for example), they reinforce each other. The e¬ect on the surface rate of
heat transfer is that the four vortices appear to become just two, a phenomenon
that is particularly strong for k = 0:04 and k = 0:05. In reality, the four vortices
still exist, and each alternate vortex lifts itself away from the surface, as is seen in
 gure 4.

(b) The e® ect of varying the disturbance amplitude, A

Even with the introductory results presented so far, it is clear that nonlinear-
ity plays an important role in the detailed evolution of the vortex. Therefore, this
subsection is devoted to a survey of how the amplitude of the initial disturbance
a¬ects the subsequent development of the ®ow. We have chosen to use the ampli-
tudes A = 10¡1; 10¡2; 10¡3; : : : ; 10¡20. As above, the vortex wavenumbers vary in
steps of 0:01, from 0:04 to 0:09. We have again chosen to use the point ¹ 0 = 8 at
which to introduce the disturbance; the e¬ect of using other values of ¹ 0 is considered
in the next subsection. From a numerical point of view, the presence of amplitudes as
small as 10¡20 necessitates the use of a relative convergence criterion in the numer-
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Figure 7. The variation with ¹ of q1 (left-hand ¯gure parts) and q0 (right-hand ¯gure parts) for
various wavenumbers between k = 0:04 and k = 0:09 and amplitudes A = 10¡ 1 ; 10 ¡ 2 ; : : : ; 10 ¡ 20 .
The value ¹ 0 = 8 was used. The curve on the extreme left corresponds to A = 10¡ 1 in each case.

ical code, rather than an absolute one, in order to ensure that the evolving solution
has converged to a su¯ cient number of signi cant  gures at each value of ¹ .

The detailed surface rates of heat transfer for the primary vortex (q1) and the
mean correction to the basic heat transfer (q0) are given in  gure 7. In each part,
the range of values of ¹ on the abscissa is always the same, but the scale used for the
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Figure 7. (Cont.) The variation with ¹ of q1 (left-hand ¯gure parts) and q0 (right-hand ¯gure
parts) for various wavenumbers between k = 0:04 and k = 0:09 and amplitudes A = 10¡ 1 ,
10¡ 2 ; : : : ; 10¡ 2 0 . The value ¹ 0 = 8 was used. The curve on the extreme left corresponds to
A = 10¡ 1 in each case.

ordinate (i.e. for the heat transfer) varies from case to case. The heat transfer due to
the primary vortex appears on the left of each pair. The detailed numerical results
indicate that the onset of convection (de ned here as the point at which @q1=@¹ = 0)
occurs at roughly the same value of ¹ for any chosen wavenumber and it is therefore
almost independent of the initial amplitude of the disturbance. However, the value of
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Figure 8. Variation in the values of the nonlinear neutral points, ¹ nl , with n = ¡ log10 A for
di® erent vortex wavenumbers. The lines placed near to ¹ n l = 11 correspond to onset of instability,
while the others correspond to the beginning of decay.

¹ at which the heat transfer begins to decrease again is a very strong function of the
initial amplitude. For all values of k, the value of ¹ at which the peak heat transfer
occurs seems to increase as the initial amplitude of the disturbance decreases. This
may be understood in terms of the fact that a relatively large distance is required
for the vortex initiated by a relatively small amplitude disturbance to develop to
nonlinear saturation.

Perhaps more surprising is the fact that, for each wavenumber, there is a maxi-
mum local response in terms of q1, and that these maxima can occur for very small
initial amplitudes. For k = 0:04, for instance, the peak local response corresponds to
A ’ 10¡19, whereas A ’ 10¡7 when k = 0:05. A similar variation with A of the local
maximum mean response (q0) occurs, although the peak responses occur at slightly
di¬erent values of A. Intuitively, one would expect the amplitude of the response
to a disturbance to increase monotonically with increasing disturbance amplitudes,
but the detailed results presented here indicate otherwise, suggesting that there is a
more subtle interplay between the magnitude of A and local growth rates.

The right-hand graphs in  gure 7 correspond to q0. In all cases, q0 becomes neg-
ative, at least initially, and very strongly so for the smaller wavenumbers, thereby
substantially increasing the local mean rate of heat transfer. However, at the larger
values of ¹ , when the primary vortex has reduced in strength quite considerably,
q0 becomes positive. This is a universal phenomenon, but the largest positive value
attained never causes the mean heat transfer ( 1

2
q0 + f 00(0)) to become positive.

In all the graphs shown in  gure 7, the peak local heat transfer occurs at or
below the corresponding upper branch value of ¹ depicted in  gure 2. For the larger
wavenumbers (k = 0:07, 0:08 and 0:09), this is seen very clearly since the distance
over which linear growth is predicted by  gure 2 is relatively small, and comparison of
the parts comprising  gure 7 shows a rapidly decreasing region where the disturbance
grows as k increases.

In  gure 8 we summarize the stability characteristics displayed in  gure 7 by
showing the values of ¹ at which dq1=d ¹ changes sign as a function of the disturbance
amplitude; this value we denote by ¹ n l and refer to by the name nonlinear neutral
point. More precisely, if n is de ned by A = 10¡n, then we show how the value
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of ¹ n l varies with n at the point where q1 takes extreme values. Figure 8a shows
the variation of ¹ n l for k > 0:05, while  gure 8b gives the k = 0:04 curve, which is
more complicated. As mentioned earlier, q1 attains its minimum values when ¹ is
very close to the lower branch of the neutral stability curve given in  gure 2. But
the values of ¹ n l clearly increase as n increases, again as mentioned before, but this
 gure also shows that there is a limit to that increase; there is an abrupt change
from a monotonically increasing variation with n to a constant, and this constant
lies just slightly above the neutral curve given in  gure 2. In this regard, the constant
corresponds to those values depicted in the linear stability analysis of part I, and
the point at which the abrupt change in slope takes place corresponds to that value
of A above which nonlinear e¬ects become signi cant. Thus we see that the lower
wavenumbers are increasingly responsive to very small amplitude disturbances. When
k = 0:04, however, there is a qualitative change in the shape of the ¹ n l; n curves as
they become multivalued. This occurs only for the larger disturbance amplitudes,
and the four values of ¹ n l that correspond to n = 2 (or A = 10¡2) may be seen to
correspond to the four extrema in the A = 10¡2 curve in the k = 0:04, q1  gure part
of  gure 7.

Finally, it is necessary to mention the fact that the detailed curves presented in
 gures 7 and 8 vary with the shape of initial disturbance and with the value of ¹ 0 at
which the disturbance is introduced. Although we do not consider variations in the
disturbance shape in the present paper, variations in ¹ 0 are described in the next
subsection.

(c) The e® ect of varying ¹ 0

Now we turn our attention to a survey of how the boundary layer responds to
disturbances introduced at di¬erent values of ¹ 0 for di¬erent wavenumbers. Variations
of q1 with ¹ are displayed in  gure 9 for A = 0:1, for the same set of wavenumbers
as in  gure 7, and for ¹ 0 varying in steps of 1, from 1 to 15, in steps of 5, from 15
to 100, and steps of 10, from 100 to 200. In all cases, the value of q1 decays whenever
¹ < 10, but the point at which growth  rst occurs ( ¹ n l) depends strongly on both ¹ 0

and k. An example of the dependence on ¹ 0 is shown in  gure 10, which corresponds
to k = 0:06, a typical case. We see that ¹ n l is independent of ¹ 0 when ¹ 0 6 5, but
¹ n l then begins to increase as ¹ 0 increases above 5. This is related to the fact that
the disturbance pro le given in (2.7) is not precisely that which gives the fastest
growth. For relatively small values of ¹ 0, the disturbance evolves over a relatively
large distance, which allows it to attain a shape that corresponds at least roughly
to that with the largest growth rate, and therefore ¹ n l is essentially independent of
¹ 0. Conversely, for larger values of ¹ 0, an ideal shape for growth has not yet been
attained and therefore the disturbance needs to evolve beyond that given by the
linear stability analysis of part I.

Whenever ¹ 0 lies between the lower and upper branches of the neutral stability
curve given in  gure 2, the value of q1 shown in  gure 9 decays at  rst, but only for
a very short distance before growth occurs. This may also be explained by appealing
to the fact that the initial disturbance does not correspond to the one that is ideal
for growth. Thus it is possible to vary the length of this short region of decay by
altering the shape of the disturbance from that given in (2.7); when it is more like
the shape given by the linear stability analysis, then the region is shorter, but when
the pro le has multiple signs, for example, then the region is lengthened.
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Figure 9. The variation of q1 with ¹ for various values of ¹ 0 with each ¯gure part depicting
di® erent vortex wavenumbers between k = 0:04 and k = 0:09. In each case A = 0:1 is the initial
vortex amplitude.

Figure 9 also clearly shows the fact that di¬erent values of ¹ 0 also yield di¬erent
peak values of q1. For example, for k = 0:04, the largest value of q1 is attained when
¹ 0 ’ 95. Likewise, it shows that decay occurs prematurely when the ®ow is highly
nonlinear. This is particularly evident when considering the peaks in q1 for k 6 0:07.
For larger wavenumbers, such as k = 0:09, the variation in the value of ¹ at which
q1 is a maximum is much more gentle.
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Figure 10. A close-up view of the k = 0:06 ¯gure part of ¯gure 9. The solid circles denote
where the slope of q1 against ¹ is zero, and marks the onset of instability.

These features are summarized in  gure 11, which shows how ¹ n l varies with ¹ 0. In
all the parts of  gure 11, the horizontal lines correspond to the onset of convection
and the re-establishment of stability, as given by the approximate linear analysis of
part I, while the diagonal line is given by ¹ n l = ¹ 0, and therefore nonlinear onset
must be above this line. For k = 0:09, the linearized stability analysis is followed
closely, even though A = 0:1 represents quite a large disturbance. Thus nonlinear
onset occurs slightly below the linear onset value given in part I, but then rises once
¹ 0 > 9, to lie just above the ¹ n l = ¹ 0 line. The value of ¹ n l corresponding to the
re-establishment of stability lies just above the appropriate linear stability value.

As k decreases from 0:09, there begins to be a distinctive change in the shape of
the curve corresponding to the re-establishment of stability. In particular, the curve
develops a increasingly marked dip as k decreases, again indicating that the value
of q1 is beginning to decay prematurely. Once more, when k is as low as 0:04, the
evolving disturbance exhibits multiple regions of growth and decay, and the variation
of ¹ n l with ¹ 0 becomes more complicated.

The curves shown in  gure 11 represent the situation that pertains when the dis-
turbance pro le is given by (2.7) and when A = 0:1. It is again true that the shape
of the curves depends on the disturbance pro le, but the variation with A is very
marked, since nonlinearities play a crucial role. Therefore, we display in  gure 12 the
¹ n l curves corresponding to k = 0:06 for A = 10¡1, 10¡3, 10¡5, 10¡7 and 10¡9 in
order to see how the re-establishment of stability depends on the disturbance ampli-
tude. We note  rst that there is no signi cant variation in the values of ¹ n l at onset.
But there is a monotonic rise in the distance over which growth is maintained as A
decreases. For this wavenumber, the linearized analysis predicts the stability bound-
aries very adequately when A 6 10¡9, but does not do so when A is substantially
larger than this.
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Figure 11. The variation of ¹ n l with ¹ 0 for various values of the vortex wavenumber. The ampli-
tude of the initial disturbance is A = 0:1. The horizontal lines depict the linear stability criteria
given in ¯gure 2, while the diagonal line shows where ¹ n l = ¹ 0 .

4. Conclusions

In this paper we have sought to give a fairly comprehensive overview of the nonlin-
ear response of the thermal boundary layer in porous media to vortex disturbances.
One reason for this is that the present work represents the  rst nonlinear vortex
study in porous medium thermal boundary-layer ®ows; the fairly extensive litera-
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Figure 12. The e® ect of di® erent disturbance amplitudes, A, on
the nonlinear stability criterion for k = 0:06.

ture on linearized vortex theory has been reviewed by Rees (1998). Attention has
been restricted to the admittedly idealized con guration of a heated surface that is
asymptotically close to the vertical, but the equations governing the nonlinear vor-
tex evolution are parabolic within this regime, which greatly simpli es what would
otherwise have been an unsteady three-dimensional elliptic simulation. In particular,
we have varied the vortex wavenumber, k, the position of introduction of the dis-
turbance, ¹ 0, and the amplitude, A. We have not presented any quantitative results
showing how the disturbance shape a¬ects the evolution of the vortices.

It is clear that nonlinear e¬ects alter substantially many aspects of the ®ow from
what they are when linearized theory is valid. These include the values of ¹ at which
vortices begin to grow and decay (as exempli ed by  gures 8 and 11), the shape of the
vortices ( gure 4), and the rather unusual dependence of the peak rate of heat transfer
on the amplitude and position of the disturbance ( gures 7 and 9, respectively). All
of these features may be explained by recourse to relatively straightforward notions
involving growth rates, distances over which disturbances may grow, the evolution
of the disturbance pro les with ¹ and their shape relative to that given by linear
theory.

One further feature that is worthy of emphasis is the fact that all such vortex dis-
turbances eventually decay. Although one might naively expect growth to continue,
since the local Rayleigh number based on the boundary-layer thickness continues
to grow, and hence it would seem to indicate that the boundary layer is becoming
increasingly unstable, the increasing thickness of the boundary layer also causes the
aspect ratio of the vortex to decrease, an e¬ect that stabilizes disturbances. In this
context, as with many other growing boundary layers such as Blasius ®ow over a
®at plate and the vertical clear ®uid boundary layer from a vertical hot surface,
stabilization occurs as the vortex evolves downstream.
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Notwithstanding this, the boundary layer continues to grow in thickness and
becomes more unstable, and therefore we would expect the decaying vortices pre-
sented here eventually to be destabilized themselves by disturbances of other forms.
At present, there is no experimental evidence to back up even the linearized theory,
let alone secondary nonlinear instabilities. In the context of the thermal boundary
layer induced in a clear ®uid by a hot inclined surface, Chen et al . (1991) undertook
a weakly nonlinear theory based on the parallel ®ow approximation to show that it is
possible for a vortex system like that given here to undergo a subharmonic instability
that e¬ectively doubles the wavelength of the vortices. Some further and very recent
con rmation of this mechanism has been given by Jeschke & Beer (2001). Prelim-
inary calculations using the code described herein con rm that the present vortex
system also undergoes this wavelength-doubling instability; it is hoped to give a
detailed report on this aspect in due course, although some preliminary results are
given in Rees (2002).

A second candidate for a possible instability mechanism is the Eckhaus instability.
This was analysed in detail for the weakly nonlinear B´enard problem by Newell &
Whitehead (1969), who showed that it too modi es the wavelength of convection
cells. It is too early to state categorically that this mechanism is important in the
present problem. A third possibility is that the ®ow might become unsteady, in
which case the present solution methodology would be inadequate to model the
consequences. That unsteadiness is a possible mechanism that may be justi ed by
analogy with the onset of unsteady convection in the Darcy{B´enard problem, as
reviewed by Kimura (1998). For a convection cell of a unit aspect ratio in a uniform
horizontal layer, unsteady ®ow occurs at a Rayleigh number, R, of approximately 390,
and that the mechanism is destabilization with respect to two-dimensional travelling
waves in the upper and lower thermal boundary layers which appear within the
main convecting cell at that Rayleigh number. The onset of steady Darcy{B´enard
convection takes place at Rc = 4 º 2, and therefore unsteady convection occurs at a
Rayleigh number of approximately 10Rc. If this is translated very crudely into the
present problem, then it indicates that we could expect unsteady e¬ects in the form
of waves travelling around the vortices at a value of ¹ near to 100, since the local
Rayleigh number is proportional to x1=2 = ¹ and the onset of vortices is close to
¹ = 10.

It is hoped that many of the results presented here might be applicable to boundary
layers at more moderate angles of inclination. However, the nature of the ®ow changes
from parabolic to elliptic at such inclinations, and it is likely that there will be a
much reduced dependence of the vortex system on the amplitude and shape of the
initiating disturbance.
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