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Landau-Ginzburg equations are derived and used to study the three-dimensional
stability of convection in a layered porous medium of infinite horizontal extent.
Criteria for the stability of convection with banded or square planform are
determined and results are presented for two-layer and symmetric three-layer
systems. In general the neutral curve is uni-modal and parameter space is divided
into regions where either rolls or square cells are stable. For certain ranges of
parameters, however, the neutral curve is bimodal and there exists a locus of
parameters where two modes with different wavenumbers have simultaneous onset.

1. Introduction

Free convection in porous media has been the subject of considerable attention due
to its importance in, for example, geothermal energy studies. Horton & Rogers
(1945) and Lapwood (1948) were the first to show that, provided the Rayleigh
number exceeds 47m2, convection cells can occur when a porous layer of infinite
horizontal extent is uniformly heated from below. Experimental verification of this
result was provided by Katto & Masuoka (1967). It was also confirmed by Westbrook
(1969), using an energy stability method, and extended to finite domains by Beck
(1972). Palm, Weber & Kvernvold (1972), using the method of Schliiter, Lortz &
Busse (1965), showed that two-dimensional rolls constitute the stable pattern of
convection near onset, but values for the range of stable wavenumbers were not
presented. By using a spectral method, Straus (1974) determined the region of
stability of rolls well into the strongly nonlinear regime, thus extending and verifying
the work of Palm et al.

Subsequently, further realism has been sought by many authors. The separate
effects of anisotropy and hydrodynamic dispersion on the stability of rolls were
determined by Kvernvold & Tyvand (1979, 1980). The influence of aspect ratio on
pattern selection was determined by, for example, Straus & Schubert (1981) and
Riley & Winters (1989a), and on the onset of time-dependent motion by, for
example, Caltagirone (1975) and Riley & Winters (19895). Georgiadis & Catton
(1986) considered the effects of a finite Darcy—Prandtl number, inertia and no-slip
conditions on two-dimensional convection in an infinite layer. More recently Rees &
Riley (1986, 1987, 1989 a, b) and Rees (1990) have considered the effects of small-
amplitude imperfections at the horizontal boundaries. They show that, depending on
the wavenumber and symmetry of the imperfections, various stable cellular patterns
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arise, including rolls, squares, rectangles and rolls with spatially varying phase or
orientation. The effects of sidewall imperfections were studied by Impey, Riley &
Winters (1990), who showed that the bifurcation structure is crucially dependent on
the Fourier decomposition of the imperfection.

The above-mentioned studies have all been concerned with convection in
homogeneous media; it is the purpose of this paper to address the problem of the
onset and stability of convection in inhomogeneous layers, or, more specifically, in
layered media. Georghitza (1961) was the first to consider the effects of
inhomogeneities. Two problems were investigated: the first concerned a porous
medium consisting of two sublayers with slightly different permeabilities; the
second, a single layer with a permeability having a weak, linear dependence on the
vertical coordinate. Donaldson (1962) used a finite-difference method to compute
the flow and temperature field in a two-layer system, the lower layer of which was
impermeable, but finitely conducting. Ribando & Torrance (1976) assumed an
exponential variation in the ratio of viscosity to permeability. More recent works
have concentrated directly on the effects of layering. Masuoka et al. (1978) derived
criteria for the onset of convection in a two-layer system and also calculated flow
patterns. Rana, Horne & Cheng (1979) used a three-layer system to model the Pahoa
reservoir in Hawaii. A comprehensive analysis of the onset of convection and the
post-critical heat transfer was presented by McKibbin & O’Sullivan (1980, 1981).
This was extended to inciude the effects of thin, highly impermeable ‘sheets’
(McKibbin & Tyvand 1983) and thin highly permeable ‘cracks’ (McKibbin &
Tyvand 1984) within the layer. McKibbin (1983) generalized Donaldson’s work to
include layers which do not have the same thickness or thermal conductivity.

In the above multilayer studies, and also in those involving other material
inhomogeneities, the flow has been assumed to be two-dimensional. Owing to the
presence of slip conditions in porous media flows, the results these papers describe are
certainly valid for a medium which is narrow in the spanwise coordinate so that
three-dimensional disturbances are suppressed. However, the question of the
validity of the results in horizontally unbounded media is unresolved. We have
partial information in that Riahi (1983) considered flow in a porous layer bounded
above and below by semi-infinite regions of impermeable, conducting media and
found that three-dimensional square cells constitute the stable planform in part of
parameter space. It is the primary task of this paper to determine the preferred
planform of convection near onset, thereby validating and extending the above
results. Of major importance also are the stability boundaries, i.e. the range of stable
wavenumbers, since these determine the possible variation in heat transfer.

Recent studies have concerned convection in related configurations. Catton &
Lienhard (1984) and Heiber (1987) have analysed the onset of two-dimensional
convection in multiple pure-fluid layers when the layers are separated by a rigid layer
of finite conductivity and thickness. Lienhard & Catton (1986) extended these results
by calculating the post-critical heat transfer coefficients. Criteria have also been
derived for the onset of two-dimensional convection in coupled fluid/porous layers
by Sommerton & Catton (1982) and Pillatsis, Taslim & Narusama (1987). Chen &
Chen (1988) considered a model of double-diffusive convection in a porous layer
underlying a fluid layer in order to describe channel segregation in the solidification
of alloys. They performed a linear stability analysis showing that the neutral
stability curve may be bimodal. Similar bimodality was found by Proctor & Jones
(1988) who considered flow in a double Bénard layer, i.e. two layers of fluid separated
by a rigid conducting membrane of zero thickness. They considered two-dimensional
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convection when two modes onset simultaneously with a wavenumber ratio of
precisely 2 and found a rich bifurcation structure. Bimodality also arises in the
present problem and is a consequence of layering.

The general layout of the paper is as follows. Section 2 contains a derivation of the
governing equations and boundary and interface conditions for an arbitrary number
of layers. A weakly nonlinear analysis is presented in §3 and it is shown that the
amplitude of convection in the form of rolls (squares are the superposition of two
orthogonal rolls) is governed by a set of coupled space-dependent Landau-Ginzburg
equations similar in form to that for the Bénard problem. These equations are
analysed in §4. Criteria for the stability of rolls and squares are given and bounds on
the range of stable wavenumbers for both planforms are derived. In §§5 and 6 we
present the main results of our analysis, the former containing results for two-layer
systems, the latter for symmetric three-layer systems. In §7, our method is applied
to the studies of Donaldson (1962) and Rana et al. (1979) confirming their assumption
that the flow is two-dimensional. Finally, we discuss the results in §8.

2. Formulation of the problem

We consider a fluid-saturated porous layer which is heated uniformly from below
and composed of N homogeneous sublayers (see figure 1). The outer horizontal
boundaries, which are situated at z* = 0 and z* = d, are held at temperatures 7; + AT
and T}, respectively, where AT > 0, and are impermeable. The horizontal interfaces
between the layers are assumed to be permeable. In each sublayer, conservation of
mass, momentum and energy (suitably averaged over a representative elementary
volume) determine the pressure P, relative to the pressure when the system is all at
a temperature 7} ; the Darcy velocity vector ¢ = (u,v, w); and the temperature 7'

V.g=0, (2.1)

K.
q= ——;(VP+pﬂ*(T—To)g), (2.2)

oT
[¢ipec+(1—¢y)p; Ci]at—**‘PCq VT =k, V°T. (2.3)
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Here the Darcy—Prandtl number has been assumed large so that inertia effects are
negligible in (2.2), and the Boussinesq approximation has been invoked. In the above
g is the gravity vector; p, ¢, 4 and f* are the density, specific heat, viscosity and
coefficient of cubical expansion of the saturating fluid; p;, ¢;, K; and ¢, are the
density, specific heat, permeability and porosity of the ¢th sublayer matrix; k;
denotes the effective thermal conductivity of the ith saturated sublayer and ¢*
denotes time.
The outer boundary conditions are given by

T=T+AT, w=0 onz*=0, (2.4)
T=1, w=0 onz*=d. (2.5)

At the interfaces between the sublayers, the temperature, pressure and vertical
fluxes of mass and heat are taken to be continuous. We also assume that the net mass
flux along the layer is zero.

To facilitate the analysis of the three-dimensional stability characteristics of finite-
amplitude convection, we recast the above equations and boundary conditions in
terms of the pressure and temperature fields. On eliminating g from (2.1)-(2.3) we
obtain

Vep = pogﬂa p (2.6)
ki o K cT K oT
—+ — —-1T, —VUP-VT+A¥— 2.7

where AF =[¢,pc+(1—¢,)p,c;)/pc. This system possesses a trivial ‘conduction’
solution with a piecewise-linear temperature distribution and no convection:

¥ N
T = C’B+AT[?~”]C z +28,]/3, (2.8)
1 j=1
*__ N
F; —pogﬂ*AT[ S 5T B —2n) E (* ——zf+2z“)]/a. (2.9)

In the above 8, = d,/k;, where d, is the depth of the ¢th sublayer,

N

=336, z=2X4
i=1

=1

and z,_, < z* < z,. The temperature drop across the ith sublayer is given by

AT, = %}'AT. (2.10)

(3

It proves convenient to use a similar non-dimensionalization to that of McKibbin
& O’Sullivan (1980, 1981). Therefore we set

2*¥—2, T-1T, K, pc pcd?
=, 0,= 0 p=—"1—P, t*=
o, T TAar o BTk, ( k)

(.’L’*, y*) = d(x’ y): Zz =

n
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in (2.6) and (2.7), to obtain

o%p;,  0%p;\ O*p, R,00,
e Top2 ) Yo 7,02, 2.12
Vz(ax2+ay2)+azf v E)Z@ O, ( )
620 aze 0%0; apz ab; api 06, p, agz_) 00,

where k, is the thermal conductivity of a reference sublayer and A, = A¥r?k,/k;.
Here r; = d,/d is the relative thickness of sublayer + compared with the depth of the
whole layer, and R, is a local Rayleigh number defined by

PogP*AT d, K, p;c;
1k,
Thus in each sublayer the equations are non-dimensionalized differently and the

corresponding z-coordinate, Z,, takes values between 0 and 1.
The boundary conditions are now

R =

T

(2.14)

kapl Rk

N1%g —0 onz, =0, 2.1
ruzlkj 'z r on (2.15)
d
0y =0, aZJ=0 onZy =1, (2.16)
N

and the interface conditions at Z, =1 and Z,,, = 0 are

7 r; o8, 006, k.7, k. 7
tg =g el R 2 iti,, M1 lign . .
ki 2 ’C,':+l t+1° aZl aZi+17 Kz p@ Kz._‘_l p7,+1’ (2 170/ ()
api R, kz 0Pir1 Bipi ki
k; azi . 0, =k;\y 0Z,., o 0, (2.17d)
For later reference we introduce R given by
R = Pogp*ATdK,, pc (2.18)

4aniuk,, ’

which is a global Rayleigh number given in terms of the total temperature drop and
depth of the layer, the permeability and thermal conductivity of the reference
sublayer, n, and is scaled relative to the critical Rayleigh number, 4n?, for a single
layer. Using (2.14) and (2.18), a convenient alternative representation is given by

R, o0 (Kika) [ 13
& =4 (K kz)/zk’. (2.19)

J

The heat transferred through the layer is a quantity of important practical
interest. Therefore we introduce the Nusselt number, Nu, defined as the ratio of the
heat transferred by convection and conduction to that transferred by conduction

alone, and given by
L
N — — f 06,

Z dx, (2.20)

Z,=0
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where we have assumed that convection takes the form of rolls with generators in the
y-direction and wavelength L ; for other modes of convection, such as square cells, the
integration is over the appropriate region in (z, y)-space.

3. Weakly nonlinear expansion

The bifurcation to two-dimensional convection from the conduction solution was
described by McKibbin & O’Sullivan (1980, 1981). Steady convection bifurcates
supercritically at a critical Rayleigh number which is dependent on the particular
configuration, and it is a straightforward, but lengthy, computation to find the post-
critical Nusselt number. The assumption of two-dimensional flow is common to most
previous investigations: Donaldson (1962), Masuoka et al. (1979), Rana ef al. (1979),
McKibbin (1983) and McKibbin & Tyvand (1983, 1984). Riahi (1983) showed,
however, that when a single porous layer is bounded by finitely conducting,
impermeable bedrock and caprock, three-dimensional flow with square planform can
constitute a stable pattern. In view of this we shall consider general three-
dimensional stability.

We use Newell-Whitehead-Segel theory and seek asymptotic expansions in
powers of ¢:

(i, 0, R, R) = X €"(p{™, 6™, R™, R™), (3.1)

P> Uy
n=0

where R™ and R{™ are related via (2.19) and € < 1 is the typical magnitude of the
post-critical motion. Here (p{?, 6?) are given by

- G i) o

0
Rz‘ 13—1 ] z Jj=t 1 J=ij

6 =

||Mz

k—’— 0> (3.3)
i.e. the non-dimensional conduction Solutlon.

The solution to the O(e)-equations is taken to be the sum of two rolls of relative
orientation ¢:

(1) (0) f((]
(l )=%<Aelw+A >( ) (B eletreosgysing) | o iuceeong- "S“””( ) (3.4)

8 g g )’

where the amplitudes, 4 and B, are functions of the slow timescale 7 = €% and, in the
first instance, the slow spatial scales X = ex and Y = ey. We note that the differential
operators arising at O(e) may be made self-adjoint by a suitable weighting of each
equation only if the layer has a constant thermal conductivity — we assume this from
now on. In general the application of the solvability condition, which is derived
below, to the O(e?)-equations yields the result that R = 0 (the exception occurs
when second-order resonances arise — these are discussed later).

The solution to the O(e*)-equations is complicated by the presence of terms
involving the first-order partial derivatives of the amplitudes, but this does not prove
too troublesome for they may be shown to be orthogonal to the eigenfunctions (f{?,
9{”) and therefore are not involved in the solvability condition at second order. On
proceeding to the solvability condition on the O(e?)-equations we find terms
involving the second spatial derivatives of the amplitudes. These terms, however,

»
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simply reflect the curvature of the neutral curve near its minimum, and hence the
required coefficient can be calculated from the linear stability problem. In this way

we obtain
¢, A, =0A+c,Axy—c, A[AA +¢,BB], (3.5a)

¢;B,=0B+c,By, x, —c3B[BB+c,AA], (3.5b)

where ¢ =R®/R® X, =Xcos¢—Ysing, and ¢, >0 is the curvature-related
coefficient. The values ¢,, ¢, and ¢, are real functions of r, and K, (z = 1(1) N), and ¢,
also depends on ¢, the relative orientation of the rolls. It may be shown analytically
that ¢, is positive and, numerically, we find that ¢, and ¢, are also positive.

In order to analyse the zigzag instability, we eonsider slightly oblique modes and
define the slow spatial scales X* = iz, Y* = efy. Omitting all detail, we obtain

3 2 2
e, A4, =cd+c, [a%_i%] A—c,A[AAd +¢,BB), (3.6a)
o i e _ _
¢, B, =o0B+c, X 2a 7% B—c,;B[BB+c,AA], (3.6b)
B B

where Y% = Y*cos¢p+ X*sin¢ and the coefficient of the 02/0Y*? term in (3.6a) is
chosen to be consistent with the behaviour of the neutral curve near its minimum.
Thus when A oc ed®X+LY"  the wavevector of the roll is (x+€eK,eL) and its
wavenumber is a +¢(K + L*/2a) + o(¢). When K = — L?/2a the wavenumber becomes
a+o(e). Likewise the effects of the space-dependent terms in (3.6a) cancel implying
that, for a mode of wavenumber «, the critical value of ¢ is zero, as expected.
Convection in the form of any number of rolls may now be computed owing to the
absence of further resonances in the weakly nonlinear expansion. For example if we
consider convection in the form of three rolls of orientations 0, ¢ and y and common
wavenumber, a, then the respective amplitudes, A, B and C, of the rolls are given by

¢, A, =adA—c, A[AA +c,(¢p) BB+c,(x) CC], (3.7a)
¢, B, = 0B—cy BIBB +¢,(¢) AA +¢,(xy— $) CC), (3.76)
¢,0, = aC—c;C[CC+c,(x—¢) BB+c,(x) AA], (3.7¢)

where the spatial derivatives have been omitted.
The heat transferred across the layer may now be computed: from (2.20) the
Nusselt number is

Nu = 1+6:Nu,(R® /R®), (3.8a)
R P
where Nu, = A4+ BB+ CC)-2} . (3.8b)
dZy |z,

4. Analysis of the amplitude equations

The evolution of two rolls of finite relative orientation, ¢, is governed by equations
(3.5), where ¢, =c,(¢) > 0. When o > 0 there is an infinity of possible steady
solutions to these equations. They fall into two simple classes, namely pure modes for
which one of A and B is zero, and mixed modes where both 4 and B are non-zero. The
former class is typified by the roll solution

A =[(c—c, K% /c,FeikX, B =0, (4.1)

15 FLM 211
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where the solution has been normalized to be real at X = 0. The latter category is
typified by the solution

A=A4,e% B=B,el¥s (4.2)
where

o +02(04L2—K2) o cy(c, K2 —L?)

A2 = . IB2 =
o cs(1+ey)  ez(1—cj) 154 cs(1+ey)  cy(l—ch)

(4.3a, b)

It is the stability of the solutions (4.1) and (4.2) with which we are concerned.

4.1. The stability of roll solutions

Consider first the stability of the pure mode given by (4.1). There are three forms of
instability to which this steady solution may be subject, namely the zigzag, sideband
and cross-roll instabilities. The analysis for the zigzag instability, using (3.6a),
follows closely the analysis of Newell & Whitehead (1969) for the Bénard problem,
and yields the result that modes with K < 0 are unstable to disturbances in the form
of a pair of rolls equally oriented at an O(e?)-angle to the original roll. The
disturbances subsequently evolve into a single roll. The sideband-instability result
follows immediately from the analysis of Newell & Whitehead: the disturbance,
which is of the form e!®+*DX 4 ¢eiE-L)X where ¢ is some constant, grows when

¢, K? < 0 < 3¢, K2, (4.4)

where the lower bound represents the neutral curve for the A-mode.

The cross-roll instability is analysed by looking at B-mode disturbances using
(3.5b). It is easily shown that the most unstable disturbance has the form B =
constant, i.e. it has precisely the critical wavenumber, and has that orientation ¢
which minimizes c,(¢). In our numerical calculations this was generally achieved
when ¢ = Im; situations where this is not so are discussed in §5. Thus the
disturbance is at right angles to the original mode and grows when

K2 <o <—4m_. g2 (4.5)
Cam—1

here ¢,,, = min,c,(¢) is assumed to be greater than 1.

The relative importance of the sideband and cross-roll instabilities is gauged by
comparing (4.4) and (4.5) whereupon we find that the cross-roll instability bound is a
more restrictive bound on the wavenumber perturbation, K, when c,,,/(¢,, —1) > 3,
that is, when

Cam < 2. (4.6)

For a single porous layer ¢,,, = 10/7 ~ 1.42857 (Rees & Riley 1989a) and we recover
the known result that the cross-roll instability is more important than the sideband
instability.

Using (3.5) it is easily shown that rolls are unstable to cross-roll disturbances when

Cam < 1, (4.7)

whatever the value of K. As the fastest-growing disturbance is perpendicular to the
original roll, the fully evolved flow pattern then has square planform and comprises
two rolls as given by (4.2) and (4.3).
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4.2. The stability of square cells

Having deduced the region of stability of rolls we now turn to the question of the
stability of square cells. In order to simplify the analysis we assume that the
constituent rolls have the same wavenumber and are given by

A=A,0K% B=A,ekY, (4.8)

where |4, = (0—c¢y,K?)/cy(1+¢,), and ¢, = c,(3n). We consider four instability
mechanisms corresponding to disturbances in the form of (i) the constituent rolls, (ii)
sideband modes, (iii) zigzag modes and (iv) oblique rolls.

On introducing disturbances in the form of the constituent rolls it is simple to show
that square cells are unstable whenever c,(3m) > 1, which in view of (4.7) is not
unexpected. Thus the planform of the stable mode of convection depends entirely on
the value of ¢,: when ¢,(3m) > 1 rolls are stable and squares are unstable, and when
¢, (i) < 1 rolls are unstable and squares are stable. Moreover the same analysis also
shows that rectangular cells comprising two rolls at relative orientation ¢ are stable
whenever ¢,(¢) < 1.

The ‘sideband’ instability may be analysed by introducing the substitutions 4 =
A eBX +¢,(X,Y), B=A,e5Y +¢54(X,Y) into (3.5), where X; =—Y as ¢ = jn, and
linearizing. The following equations are obtained for the disturbances ¢, and ¢g:

Je

2
€ N . 3 N
¢ —E)TA = 06, +cz—aX‘; — eyl JH[(2+¢,) e, +685XE, + ¢, e EET Vg, f o, ! KE T ],
(4.9a)
de Q% , . B _
=2 = 0eg+ s —ClA*[(2+¢y) €5+ MK B + 0, KT E, +c, T Ve, .
or oY?
(4.9b)
Solutions exist of the form
€A — 6A1 ei((K+L) X+MY) + €A2 ei((KvL) XAMY), (4_ 100/)
GB — 631 ei((1(+M) Y+LX) + 632 ei((K—M)X—LY)’ (4 10 b)

where we note that the Y-variation in ¢, and the X-variation in €5 give rise to O(e?)
variations in the roll wavenumbers (and hence O(e*) variations in the Rayleigh
number — a higher order than that which o represents) and therefore both are passive
variations in their respective equations, at least to the order of the present analysis.
The resulting eigenvalue problem for the growth rates of €4,, €,4,, €5, and e, is found
to decouple into two eigenvalue problems. One of these reproduces the result (4.4),
the other yields the neutral curve

_ ,(3+¢y)

=c,K o) (4.11)
which is a more restrictive bound on stability than (4.4). Decoupling also occurs for
the zigzag instability and yields the result as for rolls, namely that square cells with
K < 0 are unstable.

Finally we look at disturbances in the form of rolls at an orientation ¢, relative to

the A-roll. Using (3.7) and (4.2), the linearized equation governing the corresponding
amplitude, C, is given by

¢, C, = [o—c4(cy(P) +c,Gn— ) |4,*1C. (4.12)

F
(2]
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This may be rewritten in the form

¢, O, = [[X(@e) o+, K ey (@) + csGn— b))/ (1 +¢,(3m))] C, (4.13)

where y(¢.) = 1+c¢,(3n)—c,(P.) —c,3n—.), and the disturbance has precisely the
critical wavenumber which maximizes the growth rate. We know that (d/d¢)
cy(p) = 0 at both ¢, = 0 and ¢, = in because ¢,(§) = ¢,(—&) = c,(n—§), and therefore
it can be shown that y(¢.) has turning values at ¢, = 0, in and in. The substitution
of the first and third of these values into (4.13) yields the marginal curve above which
disturbances grow :

o= c, K*(2+c¢,(3m)), (4.14)
since ¢,(0) = 2. This stability bound, however, is less restrictive than that for the
sideband instability, (4.4), as ¢,(37) < 1. On substituting ¢, = i into (4.13) we obtain
the marginal curve

_ 2¢, ¢, (3m) K

= 20,0m)— 1—c (i)’

(4.15)

In all our calculations the denominator of (4.15) was found to be positive, implying
that square cells are stable to C-mode disturbances above this curve. If the
denominator were negative, then a similar analysis shows that square cells are
unstable to C-mode disturbances with ¢, = Ir.

It is now a simple matter to determine the relative importance of this oblique roll
instability mechanism and the sideband instability. On defining I" such that

[3+¢,(3m)][2¢,(3m) — 1 —c,(3m)]
2[1 —c,(3m)] 4(3m)

Ir= (4.16)
then I" > 1 implies that the sideband instability dominates, and vice versa. We find
numerically that I'2 30 and therefore the sideband instability dominates the
oblique roll instability.

5. Numerical results for the two-layer configuration

We first present our results for a porous layer consisting of two sublayers. As
stressed by McKibbin & O’Sullivan (1980, 1981) there is a wide variety of
configurations to consider even for a two-layer system. In the case of equal thermal
properties in each sublayer it is possible, however, to present an exhaustive survey
of the situation at the onset of convection. We have assumed the layers to be of
infinite horizontal extent with the lower sublayer (sublayer 1) as the reference layer
and therefore the results are functions of the two parameters, r, and K,/K,.

Values of the (global) critical Rayleigh number and wavenumber for this
configuration were presented in McKibbin & O’Sullivan (1980) as a function of K, /K,
for 10r, = 1(1) 9. They found, in common with Masuoka et al. (1979), that for certain
values of the parameters two minima exist on the critical-Rayleigh-number curve.
However, this was mentioned only briefly and no cases were presented where the
critical curve had two minima at the same value of the Rayleigh number. Contours
of the critical Rayleigh number are shown in figure 2 for values of r, and K, /K, lying
between 0.01 and 1.0. We note that the results obtained by inverting the sublayers,
i.e. interchanging (r,, K,) and (r,, K,) are identical to those presented here. It may be
seen that, when either K,/K, =1 or r, = 1, R, = 1, which is the appropriate scaled
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Fiaure 2. Values of the critical Rayleigh number, R, as a function of r, and K,/K, for the two-
layer system. The thick line denotes the double-minimum locus ; this convention also applies for all
other contour plots presented here.

value for the Lapwood (or single-layer) problem. Moreover the critical Rayleigh
number, having been scaled with respect to the properties of sublayer 1, takes the
value K, /K, when r, = 0. The heavy line in figure 2 traces the double-minimum locus,
the presence of which is also indicated by a discontinuity in the slope of the contours.
This locus also represents the points at which the critical wavenumber for the onset
of convection changes discontinuously. Values of «./n (n is the critical wavenumber
for the Lapwood problem) are shown in figure 3 where this discontinuity is clearly
evident. When », =0, », =1 or K,/K, =1 then a,/mr =1 as the configuration is
equivalent to a single layer. For small values of K,/K, the critical wavenumber
becomes larger as r, decreases and the convection pattern becomes increasingly
concentrated within the more permeable sublayer (see figure 3b in McKibbin &
O’Sullivan 1980 for a typical example). As r, decreases further and (r,, K,/K,) crosses
the double-minimum locus the most unstable mode suddenly switches to one with a
global convection pattern (i.e. most of the fluid circulates through both sublayers;
see figure 3a in McKibbin & O’Sullivan 1980), and with «,/n taking a value nearer
to 1.

One very interesting feature of these results not previously noted occurs at the end
of the double-minimum locus. As the locus is traversed upwards, as drawn, the two
critical wavenumbers approach each other and coincide at the end point. Thus the
critical-Rayleigh-number curve has a single minimum there, but it is a quartic rather
than a quadratic turning point. This is seen in figure 4 where we show successive
critical curves corresponding to points on the double-minimum locus together with
the locus of their minimum values. The quartic point corresponds to the values r, =
0.323889, K,/K, = 0.0657659, R, = 6.917323 and a,/n = 1.540927. These values
were obtained using the classical fourth-order Runge-Kutta method with a constant
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Fiaure 3. Values of the scaled wavenumber, a,/n, as a function of r, and K,/K, for the
two-layer system.
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Ficure 4. Neutral curves corresponding to values of (r,;, K,/K,) lying on the double-minimum locus
for the two-layer system. The curves correspond to K,/K, = 0.06576, 0.063, 0.06, 0.057, 0.053,
0.047, 0.042, 0.034. The dashed line denotes the locus of the respective minima.
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FIGURE 5. Values of the coupling parameter, ¢,(3%), as a function of », and K, /K, for the two-layer
system. Values of ¢, above 1.5 correspond to regions where the sideband instability restricts the
range of stable wavenumbers of rolls more than the cross-roll instability, and vice versa.

step-length to solve for f{¥ and ¢{» together with their first three derivatives with
respect to «, and by setting B, = K, = R, = 0. Additional accuracy was obtained
using Richardson extrapolation.

In figure 5 we show values of ¢,(3m) as a function of r, and K,/K,. There is a large
region of parameter space where ¢, >3 which is the condition for the sideband
instability to be more important than the cross-roll instability. Near the quartic
point the values of ¢,(}n) increase rapidly, which therefore seems to herald a
singularity. A careful study of the corresponding numerical values indicates that the
singularity occurs at r; = 0.316484, K,/K, = 0.0636392 for the smaller of the two
wavenumbers on the double-minimum locus. Here the ratio of the critical
wavenumbers is /2, and the singularity in ¢,(in) is caused by the blow-up of the
second-order solutions. On defining the critical wavenumbers to be «, and «,, where
o, < a,, the second-order interaction of two modes with wavevectors (a,,0) and
(0, «,) gives rise to forcing terms with wavevectors (a,, —e,) and («,, «,), and therefore
both have wavenumber 1/ 2a,. In general, when o, = 4/2a,, the forcing terms contain
components proportional to modes with orientation +4n and wavenumber «,. In a
similar manner two modes with the higher wavenumber may interact at second order
to generate a forcing term proportional to a mode with the lower wavenumber
providing that their relative orientation has the appropriate value. This type of
resonance occurs at all points on the double-minimum locus and therefore invalidates
our analysis there. It is also worth noting that the values of both Nu, and ¢,(n) for
the smaller wavenumber tend towards zero as a,/a, 2, owing to a second-order
resonance. This in turn implies that ¢, > 00 since Nu, is inversely proportional to ¢,.
The coefficient ¢,c, remains bounded, however, since the solutions involved in its
determination remain bounded and so ¢, — 0 also. Codimension-two problems with
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Fraure 6. Values of the scaled curvature term, 10c,, as a function of , and K,/K, for the
two-layer system.

O(2) symmetry in which two modes with wavenumbers in the ratio 1:2 have
simultaneous onset are of general interest. Studies by Armbruster, Guckenheimer &
Holmes (1988), Jones & Proctor (1987) and Proctor & Jones (1988) have revealed a
rich dynamical structure including heteroclinic cycles and modulated travelling
waves. This aspect, however, lies outside the scope of the present work.

Thus, for parameter values on the double-minimum locus, the general analysis
detailed in §§3 and 4, breaks down owing to resonant effects between the two
wavelengths. At such points amplitude equations arise with only quadratic
nonlinearities, implying the existence of transcritical bifurcations and flow at
Rayleigh numbers below the critical value for linear instability. We note that when
this is the case the effect of small perturbations in r, and K,/K, will do little to affect
this qualitative behaviour, and therefore doubt must be cast on the validity of our
results in the region near to the double-minimum locus. The determination of the
degree of subcriticality of convection and the region of validity of our results requires
a fully nonlinear numerical computation.

Finally, in figure 6 we present values of ¢,, which primarily determines the size of
the band of wavenumbers that are linearly unstable when the Rayleigh number is
just supercritical. When ¢, is relatively large this band is narrower than when ¢, is
small (cf. Riley & Davis 1989). Values of ¢, on the left side of the locus are larger than
the corresponding values on the right side, so that there is a larger range of unstable
wavenumbers on the left side (see figure 4); the left side also corresponds to smaller
wavenumbers (see figure 3). As the quartic point is approached ¢, decreases to zero,
as expected. The values of ¢,, in conjunction with the values of ¢,(3n) shown in figure
5, also determine the region of stability of rolls in Rayleigh number-wavenumber
space. Whenever ¢, > 3 the stability region is bounded by o = 3¢, K%, otherwise the
bound is given by (4.5).
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Ficure 7. Values of the critical Rayleigh number R, as a function of r, and K, /K, for the
three-layer system (a).

As regards the heat transfer through the layer, we find it is greater when the
convection pattern is global (relatively small &) than when convection is localized in
one sublayer.

6. Numerical results for symmetric three-layer configurations

In this section we present the numerical results for symmetric configurations
consisting of three sublayers, for which k, = k, = k;, r, = r, and K, = K,. We expect
that the results for non-symmetric layers are qualitatively the same as those
presented for the two-layer configuration as regards the existence of double-
minimum points and the presence of second-order resonant terms.

Again, there are only two free parameters, r, and K,/K,, so that the whole of
parameter space may be explored. We subdivide the presentation of the results into
two parts: (a) those configurations for which the middle sublayer is more permeable
than the outer sublayers, and (b) those for which it is less permeable. For (a) the
middle layer was taken as the reference sublayer and the parameters », and K, /K,
(<1) varied. For (b) the lowest sublayer (sublayer 1) was taken as the reference
sublayer and r, and K,/K, (<1) varied.

(@) Values of the critical (global) Rayleigh number for the specific case r, = r, = 0.4,
ry =0.2, a =7 (rolls of square cross-section) are given in McKibbin & O’Sullivan
(1980) for various values of K,/K,. By restricting themselves to one chosen
wavenumber and one set of sublayer thicknesses they did not discover the presence
of double-minimum points for this configuration. The locus of double-minimum
points is shown as a heavy line on the critical-Rayleigh-number plot depicted in
figure 7. Again the critical Rayleigh number increases as the thickness of the less
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F1cure 8. Values of the coupling parameter, ¢,(3n), as a function of 7, and K, /K, for the three-layer
system (a). The second thick line denoting c,(3n) = 1 divides parameter space into two regions
where either rolls (¢, > 1) or square cells (¢, < 1) are stable. The single-layer value is given by
c,(bm) = 10/7.

permeable sublayer increases. The critical-wavenumber values just to the right of the
double-minimum locus do not deviate greatly from 7 and correspond to a global flow
pattern, as defined in the previous section. This occurs because the thin, but highly
permeable, middle sublayer has little effect on the flow pattern; such behaviour was
noted by McKibbin & Tyvand (1984) who studied the effect of ‘cracks’, or thin,
highly permeable sublayers, on the onset of two-dimensional convection and the
subsequent heat transfer. The corresponding critical Rayleigh numbers have values
near to K,/K, since the Rayleigh number is defined relative to sublayer 2. Just to the
left of the double-minimum locus, however, the critical wavenumber is large
compared with © and the flow is localized within the central sublayer. The end-point
of the locus again corresponds to a quartic turning point, which arises at r, =
0.419940, K, /K, = 0.0202078 with R, = 23.26715 and a,/n = 2.301403.

Values of ¢,(ir) are shown in figure 8: there is a region where ¢,(3n) < 1 within
which rolls are unstable and square cells constitute a (linearly) stable mode of
convection. It is interesting to note that the region contains the double-minimum
locus itself and this could therefore have important ramifications on pattern selection
as the locus is crossed. We note also that the values of ¢,(in) are bounded above by
2, indicating that there are no singular solutions at second order, as is the case for
two-layer configurations. Indeed this assertion may be proved by considering the
up-down symmetry of the Z,-dependent parts of the O(e)- and O(c?®)-terms (see also
Jones & Proctor 1988). The first-order solutions are even about the midlayer plane
and can only generate odd forcing terms at second order. Since the eigensolutions are
even these forcing terms do not cause a resonance even if the wavenumber takes the
critical value. We conclude, therefore, that our analysis is generally valid as no
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Ficure 9. Values of the critical Rayleigh number, R, as a function of r, and K,/K, for the
three-layer system (b).

singularities arise at second order. Similarly this conclusion is valid for all symmetric
configurations; the O(e?)-singularities occurring on the double-minimum locus will
arise for all non-symmetric configurations provided that they do indeed possess a
double-minimum locus.

We do need to be aware, however, that other resonances may arise for symmetric
configurations at third order, for example when the critical wavenumbers are a, and
o, = 3a,. We hope to study these higher-order resonances in the future, but, in the
meantime, it is important to note that the effect of these resonances may be shown
to apply only within O(e®) of the double-minimum locus. Thus the present analysis
is valid but needs modification very close to the double-minimum locus.

As in the case of the two-sublayer configuration, we find that the larger heat
transfer values occur when the circulation is global.

(b) We turn now to the complementary case where the middle sublayer is less
permeable than the outer layers. Values of the critical Rayleigh number are shown
in figure 9; again we note the presence of a double-minimum locus. In this
configuration we have convection consisting of corotating vertical cells localized
within the outer layers for parameter cases to the right of the double-minimum locus
(see figure 8a in McKibbin & O’Sullivan 1980). Here there is relatively little flow
within the middle sublayer. For parameter values lying just to the left of the locus,
the flow is global in character but has a relatively small wavenumber. As the outer
sublayers become thinner and more permeable, the inner boundaries begin to imitate
constant-pressure surfaces. The flow then consists of nearly vertical flow through the
middle sublayer with almost all the fluid being discharged into or entrained from the
outer sublayers (see figure 8¢ in McKibbin & O’Sullivan 1980). The critical
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FicUurE 10. Values of the coupling parameter, c,(3n), as a function of r, and K,/K, for the three-
layer system (b). Values of ¢, above 1.5 correspond to regions where the sideband instability
restricts the range of stable wavenumbers of rolls more than the cross-roll instability, and vice
versa.
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F1Gure 11. A close-up view of the ¢,(in) = 1.5 contour near the quartic point for the three-layer
system (b).
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wavenumber for a single layer with constant-pressure boundaries may be shown to
be zero ; values lying to the left of the double-minimum locus are decreasing as K,/K,
decreases. 4

Yet again there is a quartic turning point, which is located at r, = 0.350339,
K,/K, =0.0278195 where R, = 5.966713 and a, = 1.195315m.

Values of ¢,(ir) for case (b) are presented in figure 10. We see that, in most of the
parameter space, ¢,(37) >3, which means that the sideband instability is more
important than the cross-roll instability. The boundary where the sideband and
cross-roll instabilities have equal importance and which is given by ¢,(37) = 3 now
assumes a rather complicated form. To clarify the situation, the part of the boundary
near the quartic point is rescaled and shown in figure 11. Again ¢,(3n) is bounded for
reasons of symmetry, as in (a). Once more third-order resonances arise which
complicate the analysis within O(e?) of the double-minimum locus in parameter
space. However, the resulting analysis is likely to be simpler than in (@) since rolls,
rather than squares, are the stable planform on both sides of the double-minimum
locus. Yet again we find relatively high heat transfer values when the wavenumber
is small and the flow is global.

7. Application of the method to previous studies

There are, to our knowledge, only two studies other than those of McKibbin and
his coworkers to which we can apply our method. The earlier of these studies consists
of a numerical analysis (using finite differences) of the flow in a porous layer overlying
an impermeable layer of equal thickness and thermal conductivity (Donaldson 1962).
The flow was assumed to be two-dimensional and the upper boundary was either
impermeable (closed-top), or at a constant pressure in order to simulate an open-top
reservoir. This latter condition is very easily accommodated into our numerical
scheme.

The configuration studied by Donaldson corresponds to our parameters r, =
r, =% k,/k, =1 and K,/K, = 0, and to taking sublayer 2, the upper sublayer, as the
reference sublayer. Although our numerical method does not apply when
K,/K, =0, we found that setting K,/K, as small as 107° does give reasonably
accurate results. In tables 1 and 2 we present numerical results for this two-layer
configuration for values of the permeability ratio varying from 1 to 107°, where the
upper boundary is assumed to be either impermeable or at constant pressure. Values
of R,, a,, Nu,, c,(in), c,(3n), ¢, (37), ¢,(37) and ¢, are given and are seen to converge as
K, /K, becomes small. For the closed-top case (table 1) there is a small range of the
permeability ratio for which the sideband instability is more important than the
cross-roll instability (i.e. when ¢,(in) > 1.5). For very small values of K, /K,, ¢,(3n) =
1.2495, which yields the following expressions for the neutral, sideband instability
and cross-roll instability curves:

o=c,K? o=3c,K? o =5.0080c,K? (7.1)

respectively. Hence the region of stability of rolls is quite small compared with the
region of existence of rolls. The limiting values of R, and «, are 3.3455 and 1.6954,
respectively, which are in accord with McKibbin (1983). The corresponding results
for the open-top case are given in table 2, where it may be seen that, since ¢,(3w) > 3
for all values of K,/K,, the sideband instability is more important than the cross-
roll instability. Thus we have confirmed that two-dimensional rolls constitute the
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K,/K, R a/n Nu, ¢4(3m) ¢4(3m) ¢, (3m) ¢4(§m) 10c,

¢

0.00001 3.3455 1.6954 0.5242 1.2495 1.4061 1.5767 1.7691 0.2983
0.00003 3.3454 1.6953 0.5242 1.2496 1.4062 1.5768 1.7691 0.2983
0.0001 3.3451 1.6951 0.5242 1.2497 1.4063 1.5769 1.7693 0.2984
0.0003 3.3441 1.6945 0.5245 1.2500 1.4066 1.5774 1.7698 0.2984

0.001 3.3408 1.6924 0.5252 1.2510 1.4080 1.5790 1.7714 0.2985
0.003 3.3311 1.6863 0.5272 1.2539 1.4118 1.5836 1.7762 0.2988
0.01 3.2969 1.6646 0.5350 1.2651 1.4260 1.6007 1.7932 0.3001
0.03 3.1952 1.5990 0.5619 1.3051 1.4752 1.6567 1.8434 0.3048
0.1 2.7980 1.3522 0.7423 1.5427 1.7163 1.8650 1.9665 0.3680
0.2 2.2520 1.1423 1.2094 1.6823 1.8011 1.8949 1.9614 0.6061
0.3 1.8694 1.0681 1.5914 1.6100 1.7330 1.8399 1.9292 0.7840
0.4 1.6132 1.0360 1.7980 1.5399 1.6743 1.7966 1.9056 0.8836
0.5 1.4337 1.0195 1.9005 1.4929 1.6357 1.7686 1.8904 0.9406
0.7 1.2003 1.0049 1.9784 1.4455 1.5968 1.7406 1.8753 0.9945
1.0 1.0000 1.0000 2.0000 1.4286 1.5830 1.7306 1.8700 1.1032

TABLE 1. Values of B, &,, Nu,, ¢,(3n), c,(3n), ¢,(3m), c,(in) and ¢, for different permeability ratios
for the closed-top Donaldson (1962) problem

K, /K, R, a,/m Nu, ¢4(37) c4(3m) ¢4(3m) cy(3T0) 10c,

0.00001 2.2151 1.2438 0.4442 1.7462 1.8024 1.8625 1.9279 0.5273
0.00003 2.2150 1.2438 0.4442 1.7462 1.8024 1.8626 1.9279 0.5280
0.0001 2.2147 1.2436 0.4442 1.7464 1.8026 1.8627 1.9280 0.5274
0.0003 2.2139 1.2431 0.4443 1.7470 1.8031 1.8632 1.9283 0.5276

0.001 2.2112 1.2415 0.4447 1.7489 1.8049 1.8648 1.9294  0.5287
0.003 2.2033 1.2369 0.4458 1.7545 1.8101 1.8692 1.9324  0.5313
0.01 2.1755 1.2208 0.4500 1.7740 1.8282 1.8845 1.9426 0.5408
0.03 2.0954 1.1755 0.4648 1.8290 1.8774 1.9245 1.9674 0.5723
0.06 1.9749 1.1119  0.4968 1.9013 1.9382 1.9697 1.9921 0.6326
0.1 1.8195 1.0405  0.5597 1.9652 1.9870 2.0017 2.0068 0.7336
0.2 1.4936 0.9283 0.7953 2.0025 2.0096 2.0119 2.0088 0.9938
0.3 1.2635 0.8702 1.0591 1.9852 1.9943 2.0000 2.0020 1.1808
0.4 1.1017 0.8347 1.2895 1.9582 1.9730 1.9851 1.9942 1.3028
0.5 0.9840 0.8097 1.4738 1.9304 1.9515 1.9703 1.9865 1.3850
1.0 0.6864 0.7405 1.9537 1.8326 1.8768 1.9196 1.9607 1.5584

TABLE 2. Values of R, a,, Nu,, ¢,(31), ¢,(31), c,(4m), ¢,(3n), and ¢, for different permeability ratios
for the open-top Donaldson (1962) problem

stable planform for convection, at least when the Rayleigh number is close to its
critical value.

The second study is by Rana et al. (1979) who considered large-amplitude
convection in a model of the Pahoa reservoir in Hawaii. They considered three cases
of this open-top three-layer system, the first two had heated vertical boundaries and
therefore we cannot apply our method. The third case had insulated sidewalls which,
for porous media convection, is equivalent to fixing the wavenumber in an infinite
layer since slip boundary conditions apply. The parameters they quote have been
presented in the appropriate form for this study by McKibbin & O’Sullivan (1981)
and are r, = 04375, r,=0.25, r, =0.3125, K,/K, =04, K,/K, =25 and k, =
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¢ A ¢ A

0°  2.00000 50°  2.01773
10°  2.00097 60°  2.02220
20°  2.00373 70°  2.02569
30°  2.00786 80°  2.02789
40°  2.01275 90°  2.02864

TaBLE 3. Values of ¢,(¢) for the Rana et al. (1979) problem

ky, = k;. The lowest sublayer (sublayer 1) is taken as the reference. Rana et al.
considered a two-dimensional cavity of aspect ratio 2 (width/height) and calculated
the critical Rayleigh number to be B, = 0.838 34 and the corresponding wavenumber,
a, = 7. In a layer of infinite horizontal extent the critical Rayleigh number is reduced
to 0.77155 at a wavenumber of 0.72351n. Values of Nu, and ¢, for this case are
1.52198 and 0.15907, respectively. In table 3 we present values of ¢, as a function of
¢ for the infinite layer. We note that ¢,(¢) = 2 for all ¢ and it varies by less than
1.5%. Thus the sideband instability is the predominant instability mechanism for
positive K and rolls again constitute the stable planform.

8. Discussion

We have considered the onset and three-dimensional stability of convection in a
fluid-saturated porous layer, heated from below and consisting of homogeneous
horizontal sublayers. In particular, we have analysed configurations consisting of
two sublayers and symmetric layers comprising three sublayers. The marginal curves
for the onset of convection have been calculated and we have presented contour plots
of the critical Rayleigh numbers. Prominent features of these plots are the loci of
double-minimum points where two modes of differing wavenumbers onset simul-
taneously. These are significant, for rich dynamical behaviour has been found in
such situations where the wavenumbers are commensurate : interesting phenomena
such as travelling waves and homoclinic orbits occur.

A weakly nonlinear analysis was presented for the general case of one global
minimum in the neutral curve; we hope to pursue the special case of two minima in
future work. Utilizing a pressure-temperature formulation of the governing
equations, we were able to investigate the three-dimensional stability properties of
the finite-amplitude convection. In direct contrast to McKibbin & O’Sullivan (1981),
we find that the governing (linearized) system may be made self-adjoint (but only if
the thermal properties of the sublayers are identical) by a suitable weighting of the
equations in each sublayer. Thus whereas McKibbin & O’Sullivan resorted to a direct
numerical solution of the third-order equations to determine the solvability
condition, we find a simple analytic form. This enabled Landau-Ginzburg equations
governing the amplitudes of various two-dimensional modes to be derived more
easily.

As in Rayleigh—Bénard convection, the sideband-instability curve (o = 3¢, K?)
may be deduced directly from the curvature of the neutral curve at its base, and the
zigzag instability is active when the wavenumber of the fluid motion is less than the
critical wavenumber. We have determined (i) the relative importance of the cross-roll
and sideband instabilities for rolls, (ii) the stability of rolls and square cells and (iii)
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the relative importance of the sideband and an oblique mode instability for square
cells.

For two-layer configurations the sideband instability turns out to be a more
important instability mechanism than the cross-roll one over much of parameter
space, although the cross-roll instability is more important for a single layer. We find
that there is a locus of double-minimum points along which two modes of differing
wavenumbers have simultaneous onset and the end of which corresponds to a quartic
turning point in the neutral curve. A singularity lying on the locus was revealed and
traced to the presence of resonant forcing terms at second order; in this case the
solvability condition at second order yields sets of quadratic-amplitude equations.
This resonance phenomenon occurs at all points on the double-minimum locus. Thus
there must exist a region, not necessarily small, surrounding the double-minimum
locus where the present analysis does not apply; the extent of such a region is
unknown owing to the local nature of weakly nonlinear analysis and can only be
deduced by using a suitable fully nonlinear numerical method.

For symmetric three-layer configurations there are two double-minimum loci, one
of which occurs when the middle sublayer is more permeable than the outer layers,
the other when it is less permeable. When the middle layer is more permeable the
cross-roll instability is the dominant instability mechanism. The corresponding
double-minimum locus is found to occur entirely within a region where the cross-roll
instability mechanism is sufficiently strong as to render rolls unstable and square
cells stable. When the middle sublayer is less permeable, the sideband instability
becomes the more important instability over much of parameter space.

On the double-minimum loci no second-order resonances arise, as shown by
symmetry arguments, but third-order resonances may occur. Although they are not
analysed here there is, in fact, a considerable number of these resonances but their
influence is felt only within an O(e?)-distance of the double-minimum locus.

Although we have restricted ourselves by assuming identical thermal properties in
each sublayer and considering only two specific configurations, we may, nevertheless,
make some informed comments about other configurations based on the qualitative
features of the present results and the role played by symmetry. The presence of a
double-minimum locus seems to be a general feature, and it is possible to find certain
configurations for which there are three minima (see figure 12). If the parameter
values are close to those on a double-minimum locus, the effects of resonance between
the modes of different wavenumbers will depend on the symmetry of the layer in the
way that we have found here. Open-top layers cannot be considered as symmetric,
but it may be possible to approach symmetry fairly closely either by having almost
impermeable upper and lower sublayers, or by having a very thin, but highly
permeable, lower sublayer. Of course, the symmetric layer cannot be regarded as
typical for a perturbation in its parameters will contain an antisymmetric
component, in general. Indeed it may be shown that an O(e) antisymmetric
perturbation will generate quadratic terms in the third-order amplitude equations
when the parameters lie within O(¢?) of the double-minimum locus. In this way it
would be possible to have some idea of the expected phenomena near the double-
minimum locus for general asymmetric layers. We hope to return to this at a later
date.

The effect on finite-amplitude convection of different thermal properties in each
layer is unknown. All that may be said with certainty is that double- (and multiple-)
minimum loci do exist for this more general problem. Although we believe that the
same qualitative results apply (such as the supercritical bifurcation of single-roll
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Ficure 12. Marginal curves for the first two modes for a non-symmetric three-layer system
displaying three minima simultaneously. The values of the defining parameters are: r, = 0.26,
r, = 0.539056, ry; = 0.200944, K,/K, = 0.0214724, K,/K, = 1.7 and k, =k, =k,. The critical
Rayleigh number is 11.932788 and the critical wavenumbers are 0.455707%, 3.076458n and
4.081870m. For this general three-layer system there still remain two free parameters (say K,/K,
and r,) which may be varied to track loci of triple-minimum points.

modes, and the absence of resonant-forcing terms at second order) we cannot easily
prove it since we lack an analytic form for the solvability condition.

Recent work by Rees & Riley (1986, 1987, 1989a, b) and Rees (1990) on the effect
on convection in a single layer of non-uniform boundary conditions such as
undulating isothermal boundaries or non-uniformly heated plane boundaries, has
shown that there exists a vast array of different types of cellular planform which are
linearly stable. The presence of thermal non-uniformities and undulations is well
known in the geothermal context and it is natural to question the combined effects
of both non-uniformities and layering. This is a project of considerable algebraic
complexity, but it is possible to infer some of the qualitative features of the resulting
flows. Assuming that the parameters are far from a double-minimum locus and that
the stable mode in the absence of imperfections is the roll, then the results
summarized above should apply for the composite problem also. If square cells were
stable for the unmodulated problem, it would then be possible to use the amplitude
equations derived in Rees & Riley (1989a) for this imperfection.
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