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Abstract

We consider the combined e(ects of suction and transverse anisotropy on the instability of the uniform
thickness boundary layer which is formed on an inclined heated surface in a porous medium. When the
medium is isotropic, the stability characteristics are shown to be very similar to that of the inclined Darcy–
B,enard problem. In particular, longitudinal rolls are always preferred, and transverse rolls are always stable
when the inclination of the surface is greater than approximately 31:9◦. Transverse anisotropy has no e(ect
on the identity of the preferred mode of convection whenever the anisotropy parameter, �, is less than unity.
When �¿ 1, there always exists a range of surface inclinations where transverse rolls are preferred. A detailed
set of numerical results are given showing how the critical Rayleigh number and wavenumber vary with both
inclination and �. c© 2002 Published by The Japan Society of Fluid Mechanics and Elsevier Science B.V.
All rights reserved.

1. Introduction

The 6rst studies concerned with the instability of free convective boundary layer 7ows in porous
media appeared in the late 1970s. The pioneering works were carried out by Hsu et al. (1978) and
by Hsu and Cheng (1979). Respectively, these authors considered the linear instability of horizon-
tal and inclined boundary layers with respect to vortex disturbances. In both cases, neutral stability
curves were obtained relating the critical distance, Xc, and the wavenumber of the vortices, where Xc
is the distance from the leading edge beyond which disturbances grow. More detailed studies have
appeared since, and the main reason is due to the variety of models which are frequently taken to
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Nomenclature
g gravity
k wavenumber
KL longitudinal permeability
KT transverse permeability
p pressure
R Darcy–Rayleigh number
t time
T temperature
u 7uid seepage velocity in the x-direction
v 7uid seepage velocity in the y-direction
Vw surface suction velocity
w 7uid seepage velocity in the z-direction
x Cartesian coordinate up the inclined layer
y Cartesian coordinate normal to the layer
z horizontal Cartesian coordinate across the layer

Greek symbols

� layer inclination
� coeEcient of cubical expansion
� thermal di(usivity
� viscosity
� reference density
� heat capacity ratio
� anisotropy parameter
� orientation of roll
� scaled temperature
� complex exponential growth rate

Superscripts and subscripts

w pertaining to the wall=surface
∞ pertaining to the ambient conditions
∗ dimensionless
′ di(erentiation with respect to y
- reduced disturbance quantities
0 basic 7ow
1 perturbation

describe convective 7ows in porous media. So far, then, there are about 30 publications devoted to
instabilities and a comprehensive review of the subject has been presented by Rees (1998).
In this type of stability analysis, the 6rst step is to determine a suitable representation of the basic

7ow using the boundary layer approximation. Then the governing equations are linearised about that
basic 7ow. For disturbances of the form of longitudinal vortices, a spectral decomposition in the



D.A.S. Rees, L. Storesletten / Fluid Dynamics Research 30 (2002) 155–168 157

spanwise direction is taken, while, for two-dimensional (transverse) waves a similar decomposition
is used in the streamwise direction. The parallel 7ow approximation is assumed implicitly at this
point, by which is meant in practice that the streamwise variation of the disturbance is speci6ed, and
the result of the linearisation is an ordinary di(erential eigenvalue problem for the critical distance
as a function of the wavenumber of the disturbances.
In a recent paper, Storesletten and Rees (1998) re-examined the problems 6rst considered in Hsu

et al. (1978) and Hsu and Cheng (1979) for both horizontal and inclined surfaces. The novelty of
their approach was that they tried to 6nd a more accurate stability criterion by using asymptotic
methods to obtain a better approximation to the basic steady boundary layer 7ow. However, they
found that (i) the stability criterion is a(ected strongly by the external 7ow6eld which is induced
by the main boundary layer, and (ii) that instability occurs too close to the leading edge for the
7ow to be adequately represented by the higher order boundary layer theory described in their work.
Thus, the main conclusion of Storesletten and Rees (1998) is that the use of traditional methods is
usually quantitatively misleading. The one exception to this discouraging result is when the heated
surface is close to the vertical: in this case the critical distance is very large and the boundary
layer approximation is particularly accurate. Indeed, in this near-vertical limit, the full disturbance
equations may be shown to satisfy the boundary layer approximation, and it is also possible to relax
the parallel 7ow approximation and allow the disturbance to evolve in the streamwise direction.
Some very recent linear vortex studies are given in Rees (2001) and nonlinear vortex studies in
Rees (2002).
In the present paper, we consider the instability of 7ow induced by heated inclined surfaces

but also consider the e(ects of (i) a lateral mass 7ux (suction) and (ii) anisotropy. The e(ect of
suction on the basic boundary layer 7ow was studied in detail by Merkin (1978). The basic 7ow,
if the surface has a well-de6ned leading edge, is nonsimilar but after a 6nite distance it becomes
of uniform thickness and independent of the streamwise direction. Therefore, this type of boundary
layer is not subject to the nonparallel-7ow diEculties outlined in Rees (1998) as it bears a much
greater mathematical relationship to the inclined Darcy–B,enard problem. This fact was one of the
motivations for the present work since results obtained here will be precise for any inclination. The
additional e(ect of anisotropy in the inclined Darcy–B,enard problem has been studied recently by
Storesletten and Tveitereid (1999), Postelnicu and Rees (2001) and Rees and Postelnicu (2001).
In Storesletten and Tveitereid (1999), the porous medium was assumed to be transversely isotropic
(i.e. the permeabilities in the x- and z-directions are identical) and the authors found that transverse
rolls were sometimes favoured over longitudinal rolls, unlike the case of an isotropic layer where
longitudinal rolls are always favoured. In addition, they found that whenever transverse rolls are
favoured, there is always a sudden transition to longitudinal rolls as the inclination of the layer
increases. This is in contrast to the work contained in Rees and Postelnicu (2001) which considers
more general anisotropies for which there may be a smooth transition in the preferred roll orientation
as the inclination increases.

2. Mathematical formulation

We consider the instability of free convective boundary layer 7ow in a 7uid-saturated anisotropic
porous medium. The 7ow is induced by an isothermal, upward-facing and permeable surface which
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is at an angle, �, to the horizontal, where 0◦6 �6 90◦. The surface is held at a constant temperature,
Tw, while the ambient temperature of the porous medium is T∞ which satis6es T∞¡Tw. Addition-
ally, there is a normal 7uid 7ux through the surface with velocity −Vw
where Vw¿ 0.
Cartesian coordinates (x; y; z) are orientated such that the y-axis is normal to the bounding surface,

x is aligned up the surface, and z is the spanwise coordinate which also lies in the surface but is
horizontal. Moreover, the porous medium is taken to be transversely isotropic in the permeability but
homogeneously isotropic in its thermal di(usivity. The values KL and KT denote the longitudinal and
transverse components of the permeability, where the x-direction is denoted as longitudinal. Darcy’s
law and the Oberbeck–Boussinesq approximation are assumed to be valid. The governing equations
for unsteady three-dimensional 7ow are then,

@u
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+
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+
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= 0; (1a)
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where u, v and w denote the seepage velocities in the x-, y- and z-direction, respectively, p the
pressure, T the temperature and t the time. Further, �∞ denotes the density of the saturating 7uid
at T = T∞, � its viscosity, and � the coeEcient of cubical expansion. Lastly, g denotes gravity and
� is the ratio of the heat capacity of the saturated porous medium to that of the saturating 7uid.
The boundary conditions are

y = 0: T = Tw; v=−Vm; (2a)

y → ∞: T → T∞; u→ 0: (2b)

Merkin (1978) presented a boundary layer analysis of the basic 7ow and showed that it eventually
attains a constant thickness due to the suction. Thus, the two-dimensional 7ow becomes independent
of both x and z, and it takes the form,

u0 =
KL
�
�∞g�(Tw − T∞) exp(−Vwy=�) sin �; (3a)

v0 =−Vw; w0 = 0; (3b)

T0 = T∞ + (Tw − T∞) exp(−Vwy=�): (3c)
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The governing equations are made dimensionless by setting

(u; v; w) = Vw(u∗; v∗; w∗); (x; y; z) =
�
Vw
(x∗; y∗; z∗); (4a)

p=
��
KT
p∗; T = T∞ + (Tw − T∞)�; t =

��
V 2w
t∗: (4b)

The undisturbed basic 7ow now becomes,

u0 = �(R sin �)e−y; v0 =−1; w0 = 0; (5a)

�0 = e−y; p0 = y − (R cos �)e−y; (5b)

where R is the Darcy–Rayleigh number and � the anisotropy parameter which are given by

R=
�∞g�KT(Tw − T∞)

�Vw
; �=

KL
KT
; (6)

and where the asterisks introduced in Eq. (4) have been omitted in Eq. (5) and hereinafter for
clarity of presentation. We note that Eq. (6) is not the usual de6nition of the Darcy–Rayleigh
number for porous medium convection, but it may be made so if �=Vw is adopted as the reference
lengthscale.
By eliminating the velocity components from Eqs. (1), we eventually obtain the following dimen-

sionless governing equations:
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subject to the boundary conditions,

y = 0: �= 1;
@p
@y

= 1 + R cos �; (8a)

y → ∞: �→ 0;
@p
@y

→ 0: (8b)

3. Stability analysis

The linear stability of the basic 7ow given by Eq. (5) may be investigated by setting

p= p0(y) + p1(x; y; z; t); �= �0(y) + �1(x; y; z; t); (9)
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where the 1-subscript denotes in6nitesimal disturbances. The substitution of Eq. (9) into the gov-
erning equations (7) followed by linearisation yields the following set of perturbation equations:
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@2�1
@x2

+
@2�1
@y2

+
@2�1
@z2

=Re−y
[
�
@�1
@x

sin �− �1 cos �
]

− @�1
@y

+ e−y
@p1
@y

+
@�1
@t
: (10b)

We Fourier decompose the disturbances in the x- and z-directions which reduces the perturbation
equations to ordinary di(erential eigenvalue form. We, therefore, substitute

p1 = Jp(y) exp[ik(x sin�+ z cos�) + �t];

�1 = J�(y) exp[ik(x sin�+ z cos�) + �t]; (11)

into Eqs. (10a) and (10b) to obtain,

Jp′′ − k2(� sin2 �+ cos2 �) Jp= R[ik� sin � sin� J�+ cos � J�′]; (12a)

J�
′′
+ J�

′ − k2 J�= Re−y[ik� sin � sin� J�− cos � J�] + e−y Jp′ + � J�; (12b)

where k is the wavenumber of the vortex, � is the direction of its axis relative to the direction of
the x-axis and � is its growth rate. The boundary conditions are

y = 0: Jp′ = J�= 0; y → ∞: Jp′; J�→ 0: (13)

Eqs. (12a) and (12b) form an eigenvalue problem for R and Im(�) as functions of �, � and k, given
that Re(�) = 0 corresponds to marginally stable disturbances. Therefore, it is necessary to supply
normalisation conditions to enable computation of nonzero solutions of the homogeneous system
(12) and (13):

J�
′
(0) = 1: (14)

As system (12) is complex, we have an eighth order system with two eigenvalues and 10 boundary
conditions to satisfy in order to be able to compute the eigenvalues and eigenfunctions. A variety
of numerical methods were used to solve these equations and these are described brie7y in the
following sections.

4. The isotropic case

Although much is known about the detailed behaviour of small disturbances to the inclined Darcy–
B,enard layer, nothing is presently known about the corresponding suction layer. Therefore, it is
essential to describe 6rst the context into which the anisotropic results will be placed as these are
presently unknown.
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Fig. 1. The 6rst two neutral curves for the onset of longitudinal modes in an isotropic porous medium.

In Fig. 1, we show the neutral curves corresponding to the 6rst two modes of instability for
longitudinal rolls where we display the variation of R cos � with k. We note that these curves
correspond to both the isotropic layer (� = 1) and to the more general anisotropic layers (� �=1),
and, therefore, that R and � appear only in the combination R cos �. In this case Eqs. (12a) and (12b)
are real when � = 0 and we solved the resulting boundary value problem using a straightforward
fourth order Runge–Kutta scheme coupled to an algorithm which implements the shooting method.
The curves display a well-de6ned minimum which, for the 6rst mode is at R cos � = 14:352 and
k = 0:7589, and, for the second mode, at R cos � = 62:439 and k = 1:3478; these values are correct
to the quoted number of signi6cant 6gures.
We note that it is possible to use the argument presented in the appendix of Rees and Bassom

(2000) to prove that modes of other orientations arise at higher values of R for any given inclination.
However, we also note that it is possible to suppress longitudinal modes by restricting the size of
the physical domain in the z-direction using insulating impermeable sidewalls; in such cases it is
possible for transverse rolls to become important. Moreover, given the fact that transverse rolls do
assume importance when the layer is anisotropic, it is also very useful to know about their detailed
behaviour for isotropic media. Therefore, Fig. 2 depicts the neutral curves for various inclination
angles for the 6rst three modes of instability. This 6gure was prepared using the matrix eigenvalue
technique which is described in detail in Rees and Bassom (2000). The numerical method has the
advantage that all neutral curves are guaranteed to be captured when the discretisation is suEciently
6ne. In this case, we used 160 equally spaced intervals in the range 06y6 10, and the 6gure
showed no discernable di(erence from the one obtained using 80 intervals over the same range, or
that using the same steplength over larger ranges. The neutral curves are displayed in terms of R
(rather than R cos �) as a function of k. The 6rst two modes (for �= 0) are graphically identical to
those displayed in Fig. 1, which cross-validates the two numerical methods.
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Fig. 2. Neutral curves for the onset of transverse modes in an isotropic porous medium for inclinations �=0
◦
; 2

◦
; 4

◦
; : : : ; 30

◦
.

Curves corresponding to the 6rst three modes are shown. Modes 1, 2 and 3 are denoted by M1, M2 and M3,
respectively.

It is clear that the critical value of R increases as the inclination increases, and eventually the
closed curves disappear at an isola point at which R � 89:306◦, � � 31:861◦ and k � 1:142. These
values may be compared with those for the inclined Darcy–B,enard channel: R=104:296; �=31:490◦

and k =2:555 (taken from Rees and Bassom, 2000). The closeness of the critical Rayleigh numbers
and of the inclination angles may be explained by appealing to the similarity between the respective
7ow con6gurations. But the great di(erence between the respective critical wavenumbers is caused
by the fact that the nondimensional thicknesses of the respective layers are quite di(erent. The
thickness of the Darcy–B,enard layer is unity, while the thickness for the present problem could be
taken to be the distance over which the basic temperature 6eld (e−y; see Eq. (5b)) reduces from 1
to 0:1, which is roughly 2:3. The variation of the critical Rayleigh number with inclination is shown
in Fig. 3 and the corresponding wavenumber in Fig. 4. The maximum inclination for which neutral
transverse modes exist is clearly visible and corresponds to the above value. At higher values of
R, the curve corresponds to a maximisation over wavenumber which is depicted in Fig. 2 as the
top of each closed loop. Above the closed loop transverse modes decay. Although we do not show
the phenomenon here, the neutral transverse mode becomes thinner as R increases, and this means
that the wavelength of the mode decreases (i.e. k increases) in order to maintain a cell aspect ratio
which is roughly O(1); this is shown quantitatively in Fig. 4.
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Fig. 3. The variation of the critical Rayleigh number with � for transverse modes in an isotropic medium. The points
below the turning point correspond to minima in the 6rst mode neutral curves displayed in Fig. 2, while the points above
are maxima.

Fig. 4. The variation of the minimising wavenumber k with R for transverse modes in an isotropic medium. This curve
corresponds to that shown in Fig. 3. We have chosen R to be the ordinate in order to facilitate direct comparison with
Fig. 3.

5. The anisotropic case

When the porous medium is anisotropic, but transversely isotropic as in Storesletten and Tveitereid
(1999), the Darcy–B,enard layer has the property that the most unstable mode is either the longitudinal
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Fig. 5. The critical Rayleigh number as a function of inclination, �, when �=5, for roll orientations, �=0
◦
, 10

◦
; : : : ; 90

◦
.

The angle �= 0
◦
corresponds to longitudinal rolls, while �= 90

◦
corresponds to transverse rolls.

roll (� = 0◦) or the transverse roll (� = 90◦). The identity of the preferred mode depends on the
precise value of the anisotropy parameter, �, and the inclination angle, �. At the outset it is essential,
therefore, to check carefully whether this property is shared by the present con6guration.
This was undertaken by solving Eqs. (12a) and (12b) in exactly the same manner as were the

corresponding equations in Rees and Postelnicu (2001). Thus, we di(erentiated Eq. (12a) to obtain
a second-order equation for Jp′ as this function satsi6es Dirichlet boundary conditions and numerical
solutions using such boundary conditions yield more accurate solutions for a given number of grid
points. The discretisation used ymax = 10 and 200 equally spaced intervals. The method is a variant
of the Keller-box method and is adapted to solve eigenvalue problems based on discretisations of
systems of second-order equations. In this case, we have solved the appropriate system of equations
which yields the minimum (and maximum) values of the neutral curves. Again, the numerical
solutions obtained compare extremely well with the numerical data corresponding to those displayed
in Figs. 1 and 2, which provides further validation of the accuracy of the encoding of each method.
In Fig. 5, we display the neutral curves (minimised with respect to k) for rolls of various orien-

tations between �= 0◦ and 90◦. For the case �= 5, we have plotted R cos � against �—the reason
for this is because the longitudinal mode then corresponds to a horizontal line. In this 6gure, we
see quite clearly that there is again an abrupt transition between transverse rolls at relatively small
inclinations and longitudinal rolls at higher inclinations. A similar behaviour was found for all cases
for which �¿ 1; whenever �¡ 1 longitudinal modes are always favoured. These stability character-
istics are not surprising, given the results of Storesletten and Tveitereid (1999), but in the light of
the computations presented in Rees and Postelnicu (2001) we think it likely that smooth transitions
could occur for more general anisotropies.
Given the general behaviour illustrated by Fig. 5, it is necessary only to present curves corre-

sponding to transverse modes for various values of � and to show how they compare with the
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Fig. 6. The variation of the critical Rayleigh number corresponding to the most dangerous mode. The straight line
corresponds to the longitudinal mode while more dangerous transverse modes for various values of � correspond to the
other curves.

curve for the longitudinal mode which is independent of �. Such a general comparison is given
in Fig. 6, where we show neutral transverse mode curves for various values of � which are again
minimised with respect to the wavenumber. When � is just above 1 there is only a small range of
inclinations near the horizontal in which transverse modes dominate. As � increases, this range of
inclinations increases to a maximum (06 �¡ 15:614◦) at �=2:107, after which it decreases again.
For large values of �, 7ow in the x-direction is enhanced greatly because of the relatively large
permeability, and therefore the critical value of R (when � is small) decreases as � increases. The
corresponding critical wavenumbers are shown in Fig. 7, and these generally decrease with increasing
values of �.
Finally, in Fig. 8, we show the variation with � of the inclination at which the transverse mode

has the same critical Rayleigh number as the longitudinal mode. This curve is an important sum-
mary of the linear stability characteristics of the basic 7ow since points below the curve corre-
spond to where transverse modes dominate, while points above and to the left correspond to cases
where longitudinal modes form the dominant instability. The general shape of this curve is as de-
scribed in the previous paragraph, and some transitional values of � for larger values of � are given
in Table 1.

6. Conclusions

We have considered the onset of convection in a porous medium where the inclined bounding
surface is held at a uniform temperature above the ambient and through which 7uid is sucked at
a uniform rate. The basic 7ow is uniform and is a function of y, the coordinate perpendicular
to the surface. We have considered the relative importance of longitudinal and transverse modes of
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Fig. 7. The variation of the critical wavenumber corresponding to the most dangerous transverse mode. The curves shown
correspond to the same values of � as in Fig. 6. Also shown is the envelope of critical wavenumbers corresponding to that
inclination at which longitudinal and transverse modes have the same critical Rayleigh number. The critical wavenumber
for longitudinal modes is 0:7589 which corresponds to the intercept of the envelope curve with the k-axis.

Fig. 8. Delineation of �–�-space into those regions for which transverse and longitudinal modes form the preferred mode
at onset.

instability and, in particular, how the balance between these is a(ected by the presence of anisotropy.
We have found that one or other of these modes always dominates, rather than having modes of
other orientations, and that there is always an abrupt transition in the identity of the most dangerous
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Table 1
Values of � and � at which the critical values of R for longitu-
dinal and transverse modes are the same

� �

1.001 0:972
◦

1.010 3:046
◦

1.100 8:830
◦

1.500 14:539
◦

2.107 15:614
◦

5.000 13:013
◦

10.000 9:981
◦

15.000 8:373
◦

20.000 7:350
◦

30.000 6:084
◦

40.000 5:305
◦

50.000 4:764
◦

60.000 4:361
◦

70.000 4:046
◦

80.000 3:790
◦

90.000 3:577
◦

100.000 3:397
◦

mode—see Fig. 5 which shows how the critical Rayleigh numbers of modes of various orientations
vary with inclination. We note that the overall situation is summed up in Fig. 8 which delineates
the separate regions in which the respective modes dominate, and in Table 1.
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