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ABSTRACT 

The boundary layer approximation to the flow induced by a line source of 
heat embedded in a porous medium predicts that seepage velocities become 
large as the source is approached, and therefore it is expected that inertia 
(form drag) should become significant. 
was studied by Ingham [l], 

Such an inertia-dominated regime 
b u we extend that analysis to intermediate t 

distances from the source by computing the smooth transition between the 
inertia-dominated and inertia-free regimes. Q 2001 Elsevier Science Ltd 

Introduction 

The line source plume has received much less attention in the published literature 

than has any other thermal boundary layer flow in porous media. Wooding [2] was the 

first to analyse the plume subject to the boundary layer approximation and showed that the 

resulting self-similar equations have an analytical solution. Afzal [3] extended this analysis 

to wedge-shaped domains with symmetry about the vertical direction by employing higher- 

order boundary layer theory. Very recently the work of Afzal has itself been extended to 

include the effects of (a) a nonsymmetrical domain [4] and (b) anisotropy [5]. In these last 

two cases the convective plume was shown not to rise vertically, in general. 

Of more interest here is the fact that the solution given by Wooding [2] implies that 

the fluid flux velocities become large as the leading edge is approached. In the context 

of boundary layer flows this usually means that the boundary layer approximation itself 

breaks down, but sometimes this is not true. In Hossain and Rees [6] the present authors 

1137 



1138 D.A.S. Rees and M.A. Hossain Vol. 28, No. 8 

reconsidered and extended the classical boundary layer analysis of the flow induced by an 

upward-facing semi-infinite horizontal surface embedded in a porous medium, a configura- 

tion which was first studied by Cheng and Chang [7], by including inertia effects. It was 

found that there is in fact a region relatively close to the leading edge where inertia effects 

dominate but within which the boundary layer approximation still applies. In the present 

paper we demonstrate that a similar situation arises for the line-source. Thus our aim is to 

extend the inertia-dominated analysis of Ingham [l] by considering the smooth transition 

between the inertia-dominated and inertia-free regimes. To this end the governing non- 

similar boundary layer equations are solved numerically and compared with the analytical 

solutions which are valid asymptotically close to and far away from the source. 

Governine Equations 

The steady dimensional equations for the boundary layer flow induced by a line heat 

source are given by 

(3) 

(4) 

In these equations all the terms take their familiar meanings in the porous medium context: 

I< is the permeability, K* an inertia parameter, g gravity, v the fluid viscosity, 01 the 

thermal diffusivity of the saturated medium and p the coefficient of cubical expansion. 

We have taken f to be the vertical coordinate and jj the horizontal coordinate, with c 

and V the respective fluid flux velocities. T is the temperature of the medium while T, 

is the ambient temperature which is also taken as the reference temperature, and q’ is the 

prescribed rate of heat flux per unit length of the line source. 

Eqs. (1) to (4) may b e simplified by the introduction of the streamfunction, II, according 

to u = & and iT = -qF, and nondimensionalised using the scalings, 

(5,6) T= (-$)(~)h T=Tm+(-&&, 
y’ ($)(~)(!gy, 

We note that these scalings look very different from those used by Ingham [l], but in his 

analysis an undefined lengthscale, 1, was used; if that lengthscale were to be set equal to 

(9) 
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then Ingham’s scalings reduce to those used here. 

Therefore Eqs. (1) to (4) reduce to 

a28 a* ae aqde g+@‘=4 ayz=dyz--&,dy’ (9,10) 

I O” a* 
--oo ayedy = l. (11) 

This latter integral constraint may be recast into differential form using the definition of 

$, as follows, 
&+J -= 3s. 
aY dY 

(12) 

As the plume displays symmetry about its centreline, we may allow for this by applying 

suitable boundary conditions at y = 0. Therefore we will solve Eqs. (9), (10) and (12) 

subject to 

y-+m: e-+0 4-3. (13) 

It is in the nature of a plume that the greatest velocities occur near the line source 

and therefore inertial effects will dominate there. At large distances the induced velocities 

are relatively small, and therefore Darcy flow will be re-established. In view of these 

observations we will employ different boundary layer transformations for small and for 

large values of I. When 2 is small we set 

II, = X2.fK, X)7 e = x37(6,x), 4 = h(C,W (14) 

where 

c = y/x+ and X = r1f5. (15) 

In this regime the equations become, 

f’(X + f’) = 9, d’ + $(f’g + fs’) = gx[f’gx - fxg’], (1% 17) 

h’ = f’g, (18) 

and the boundary conditions are 

f(0) = g’(0) = h(0) = 0 h’(C) --) f as C --+ 00. (19) 

When X = 0 we recover the equations solved by Ingham [l]. For large values of z the 

appropriate transformation is given by 

* = m1710, e = t-‘WI, 0, d = H(17, E) (20) 
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where 

The equations are now 

F’(l + J-IF’) = G, 

q = yfx2/3 and E = 51’3. (21) 

~11 + ;(F’G + FG’) = $~[F’G~ - FOG’], (~23) 

H’ = F’G, (24) 

subject to boundary conditions identical to those given in (19). 

Analvtical Solutions 

Before describing the numerical methodology it is valuable to state for reference the 

exact solutions which exist at z = 0 and at asymptotically large distances from the leading 

edge. In the inertia-dominated regime Ingham [l] h s owed that the solution takes the form 

f = Cl tanh(hClC), g = &Ctsech4(&C1<) (25) 

where 

Cl = [$]“‘. (26) 

On the other hand, the solution at asymptotically large distances is unaffected by inertia 

and is given by 

F = Cz tanh( ;Csq), G = iC:sech’( iC2q) (27) 

where 

c2 = [y”. (28) 

Numerical Solutions 

Both systems (16-18) and (22-24) have been solved using a standard Keller-box im- 

plementation. The switch between the respective systems takes place at 2 = X = E = 1 

at which point corresponding variables (such as f and F or C and v) are equal. We used 

a nonuniform grid of 80 points in the C or q direction in the range 0 5 C, 17 5 20, and a 

nonuniform grid of 401 values of either X or { from X = 0 to 5 = 100, i.e. from x = 0 

to x = 106. As there are no parameters to vary, only one numerical simulation was un- 

dertaken, subject to numerical checking of the accuracy of the overall computation. For 

example, we find numerically that the centreline temperature at X = 0 is 0.37801 which 

should be compared with &(375/4)4/5 z 0.37807, which is the analytical value given in 

(25) and (26). At X = 100 (2 = 106) we have the centreline temperature 0.45425 which is 

to be compared with ;(9/2)‘/” N 0.45428 given in (27) and (28). 
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FIG. 1. 
Variation with x of the centreline temperature in the forms, x’/~~(O, x) 
and s~/~~(O,Z). Also shown are the leading order asymptotic forms 
for small values of x (short dashes) and for large values of x (long 
dashes). 

The transition between the inertia-dominated regime near x = 0 and the inertia-free 

regime at large distances is smooth. But it is necessary to present the variation with x 

of the centreline temperature in two forms, the first of which is finite at x = 0 while the 

other is finite as 2 --t co. In particular we consider the variation with x of z*/~~(O,X) and 

0~/~8(0, xc), which, when rewritten in terms of the appropriate variables become, 

r I I, 
x2/sqo, x) = 

9(0,X) 
(29) 

J”‘G(O, E) r 2 I, 

and 
x-‘j3g(0, X) x I 1, 

x’/3e(o, x) = (30) 
G(O, E) 5 2 1. 

We show the variation of the centreline temperature with log,, z in Figure 1. If we 

regard a 1% relative error as being the criterion indicating departure from the asymptotic 

state, then the inertia-dominated regime extends from x = 0 to z = 2 x 10m8, while Darcy 

flow is established as soon as z exceeds 3 x 103. At intermediate values of z the flow may 

be regarded as transitional and is affected in part by the presence of inertia. 
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Conclusion 

We have extended the analyses of Wooding [2], who considered Darcy (inertia-free) 

flow, and Ingham [l], h w o considered inertia-dominated flow, to those intermediate cases 

between the two regimes. Near the leading edge the flow is controlled by inertia effects, 

but these decay with distance away from the line source until Darcy-flow is re-established 

when the induced flow is sufficiently weak. We have shown that this intermediate regime 

may be taken to lie within the nondimensional range 2 x lo-’ < zr < 3 x 103. For values 

of 2 which are outside of this range the analytical solutions of Wooding [2] and Ingham [l] 

may be taken to apply with a relative error of less than 1%. 
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