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A B S T R A C T  
We consider the onset of convection in a porous layer heated from below. 
The layer is anisotropic with respect to both its permeability and diffusivity 
and is inclined at a small angle to the horizontal. The aim of this work is 
to determine analytically by how much the critical Rayleigh number varies 
when the layer first ceases to be horizontal. For nearly isotropic layers we 
show that rolls may be either longitudinal or transverse depending on the 
nondimensional parameters; this is unlike the case of O(1) inclinations the 
results of which are presented in a companion paper. © 2001 Elsevier Science Ltd 

Introduction 

One of the most widely studied and fundamental processes in the study of convection in 

fluid-saturated porous media is the onset and development of convection in layers heated 

from below. The pioneering works in the field were carried out by Horton and Rogers 

[1] and Lapwood [2], and the general problem has become known as the Horton-Rogers- 

Lapwood or Darcy-BSnard problem. A fairly comprehensive account of the current state- 

of-the-art may be found in Rees [3]. In its classical formulation a porous medium is 

sandwiched between two uniform temperature plane surfaces and is heated from below. 

While there are many different extensions to Darcy's law, we focus solely on the ef- 

fects of introducing anisotropy where the principal axes of the permeability and diffusivity 

tensors coincide with the coordinate directions. The first work to deal with such prob- 

lems was undertaken by Castinel and Combarnous [4], and detailed reviews of anisotropic 

convection may be found in Storesletten [5] and Vasseur and Robillard [6]. 
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Here we investigate how small angles of tilt of the layer away from the horizontal 

direction affects the criterion for the onset of anisotropic convection. For isotropic layers it 

is well-known from theoretical investigations that longitudinal vortices with axes directly 

up the layer are favoured; see Rees and Bassom [7], for example, who give a very detailed 

analysis of tilted isotropic layers. 

To date, only one published paper deals with the combined effects of anisotropy and 

layer inclination. Storesletten and Tveitereid [8] assume that the preferred mode of con- 

vection at onset is either a longitudinal vortex, or a transverse roll which has its axis 

perpendicular to the direction of the basic flow. In that paper the authors give conditions 

under which transverse modes may be preferred to longitudinal vortices at low but O(1) 

inclinations. One of the aims of this paper and its sequel [9] is to determine whether the 

assumption of [8] is valid. Indeed, for O(1) inclinations we demonstrate in [9] that it is 

invalid. However, for small inclinations the assumption is indeed correct. A second aim 

of the present paper is to determine by how much the critical Rayleigh number varies 

when the inclination from the horizontal is small, since it is highly likely that experimental 

devices would be slightly misaligned with respect to the direction of gravity. In fact, we 

show that the magnitude of this 0(~ 2) correction (where a is the inclination) can achieve 

very large values. 

Equations of Motion 

We consider the onset of convection in a tilted anisotropic porous layer heated from 

below. The layer, of thickness h, is inclined at an angle a to the horizontal. The horizontal 

z-axis forms the direction about which the layer has been rotated, the y-axis is perpen- 

dicular to the bounding surfaces, and the x-axis lies in the lower surface pointing up the 

plane. We assume that Darcy's law and the Boussinesq approximation hold, that the solid 

matrix and the saturating fluid are in local thermal equilibrium. Therefore the flow and 

heat transfer are taken to be modelled by the continuity equation, Darcy's law and the 

equation of conservation of energy: 

V.u_u_.= O, (1) 

pu_. + K__.(Vp + po~(T - Tm )~  = O, (2) 

OT 
~-&-+ ~_.VT = V.(D.VT), (3) 

where the permeability and diffusivity tensors have their principal axes in the coordinate 

directions and are given by 

K =  A' l i i  q- g 2 j j  q- I(3klc, 1)= Dli_i -[- D 2 j j  'b D3k._..kk. (4) 
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The vectors , / ,  3" and k_. are the unit vectors in the z, y and z directions, respectively. Terms 

in (1) to (3) have their familiar meanings in the porous medium context: u = (u, v, w) is 

the velocity flux vector, p is the pressure, T the temperature, t the time, p0 a reference 

density,/3 the coefficient of cubical expansion, g__ the gravity vector,/~ the fluid viscosity 

and a the ratio of the heat capacities of the saturated medium and the fluid. The lower 

surface at y = 0 is impermeable and is held at the temperature Th, while the impermeable 

upper surface is held at T = Te where Tc < Th. The mean temperature is Tm = ~(Tc+Th). 

( x , u , z )  = h ( ~ * , y * , z * ) ,  

These equations may be nondimensionalised using the following substitutions, 

ah 2 . D2p . 
_u = D2hu*,_ t = - - ~ t  P =  --K2 p , T = T~ + (Th - Tc)O. 

(5) 

We obtain 

v . ~ =  0, (6) 

op  ~), (7,8) _~,:Op +R(O_~)sino), , ,= - (N+R(o-~)cos  
u = K2 kOx 

Kn Op O0 Da 020 020 D3 020 
w =  K2Oz '  Ot + u ' V O =  D 2 0 x  2 F ~ +  DaOz 2' (9,10) 

where asterisk superscripts have been omitted for clarity. In this paper we consider both 

two-dimensional and three-dimensional modes of instability; in the former case it proves 

convenient to define a streamfunction, ¢, using 

0¢ 0¢ 
u = ---Ou v =  --Oz w =0, (11) 

whereas in the latter ease we eliminate u_ to obtain a system of equations in terms of 

pressure and temperature. For two-dimensional disturbances we consider the equations 

02¢ 02¢ = R ~ a ( 0 ~ c o  s~  00 . - ~sm%,] (12) 

00 0 ¢ 0 0  0 ¢ 0 0  020 020 
Ot + Ox Oy Oy Ox - th ~ + Oy 2' (13) 

subject to 

¢ = 0 ,  0 = 1  on y = 0  and ¢ = 0 ,  0 = 0  on y = l ,  (14) 

and for three-dimensional disturbances we consider 

02p 02p 02p O0 . O0 a] 
~, ~-~ + ~ + ~3 0-y = R[~,~sln~ + ~cos 

y 
(15) 

~+R[~' o° s in '+~  e ° s È ~ x  e_~,~O xoe Oyo~OP O0 ~3XO O0 ~ 6  02# 02# 
- ,1~-~ +N~-~+,7~o-- ~ ,  (16) 
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subject to 

aP -= f cosa, 6’=1 on y=O and 8P 

dY 
- = -+osa, 
dY 

B=O on y=l. 

(17) 

The nondimensional parameter, R = pogpKz(Th - Tc)h/&, is the Darcy-Rayleigh num- 

ber based upon the permeability and diffusivity in the y-direction, and 

v1 = 2 and (18) 

are permeability and diffusivity ratios. 

As we are concerned with linear stability characteristics, we linearise equations (12) and 

(13) and equations (15) and (16) about the basic flow profiles by means of the substitutions, 

1c, = -iR&(y - y’)sina + @‘, 8=1-y+@, p= ;R(y-y2)coscr+P, (19) 

where the magnitudes of 0, 0 and P are assumed to be infinitesimally small. We obtain 

the linearised perturbation equations, 

(20) 

(21) 

and 
a2p a2p a2p +s- + dy2 + CT3 az2 -=+I~ ao 

sina t -COSQ ay 1, (22) 

ao a20 a% 
-=yj-p+ 
at 

w+%$-tRcosa@+R[lsino(y-f)g-g, (23) 

subject to 

e=@=g=O onboth y=Oand Y=l. 
aY 

(24) 

Finally we Fourier-decompose the disturbances in the 2 and z directions which will 

reduce the perturbation equations to ordinary differential eigenvalue form. Thus we sub- 

stitute 
* = ;f(y)ei”x+xt 0 = g(y)e’k=+y (25) 

into (20) and (21) to obtain 

f” - k2tlf = RJl[(k cosa)g t (i sina)g’], (26) 

g” - Ic2q1g = Ef - (Rik& sinCy)(Y - i)g + Xg, (27) 
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subject to f = g = 0 at y = 0,1. Here k is the wavenumber of the disturbance and ~ is 

the exponential growth rate. For three-dimensional disturbances we substitute 

p = q(y)eik(z cos ¢+~ sin ~)+xt, 0 = g(y)e  ik( . . . .  ~+z sin ~b)+Xt, (28)  

into equations (22) and (23) to obtain 

q" - ks (6  sin s ¢ + ~3 cos s ¢)q = n [(cos ~)9' + ( ik6  sin ¢ sin ~)a] (29) 

+ [Rcosa  - kS(,h sin s ¢ + '73 cos s ¢)]g = q'  - ( R i k ~ ,  sinCsina)(y - ½)g + Ag, (30) g" 

subject to q' = g = 0 at y = 0, 1. Here ¢ represents the orientation of the axis of the vortex 

disturbance relative to the x-direction. The value ¢ = ½~r represents the two-dimensionai 

case and is termed a transverse roll, ¢ = 0 represents the longitudinal roll, and rolls of 

other orientations are called oblique." 

In this paper we consider first two-dimensional disturbances, for although there exist 

parameter sets for which three-dimensional disturbances are more destabilising, it is al- 

ways possible to eliminate three-dimensionality by restricting the layer sufficiently in the 

spanwise (or z) direction with impermeable insulating sidewalls. 

T w o - d i m e n s i o n a l  I n s t a b i l i t y  

We begin the general analysis of stability by performing a small-a series solution to 

determine an expression for the leading order change in the critical Rayleigh number for 

small changes in the inclination of the layer from the horizontal. The following power 

series is introduced into equations (26) and (27), (,) (,o) (,) 
+ °  + °  + . . . .  

Rs 
(31) 

At leading order we obtain the following eigenvalue problem for R0, 

1~' - k s 6 / 0  - R0k~l go = 0, 9~' - k%,g0 - k/0 = Ago, (32, 33) 

which has the solution 

fo = - ( r~ +~ ksrh ) -  - sin~ry, go = sinTry, Ro : (71"2 -~- k2~l)(Tr2 nt- ks"l) , (34) 
k2~, 

with ,k = 0. As this is a linear problem we have chosen the normalisation condition to be 

such that g0 is a sine with unit amplitude. The value of R0 varies with the wavenumber 

and takes its minimum value when 

ke = 7t ' / (~17]1) 1/4 (35) 



646 A. Postelnicu and D.A.S. Rees Vol. 28, No. 5 

and the corresponding 'critical' value of R0 is 

(~"1 ~ R0~ = ~r 2 [1 + L ] J 

At O(~) the equations are 

(36) 

• I I I  f ~ ' - k2~ l fa -Rok~ag l  = Ro~,go, ga - k 2 ~ l g ~ - k f l  = - R o i k ~ ( y - 1 ) g o ,  (37,38) 

and their solution may be written in the form 

fa = A(v - v2)cos ~v + B(v - ~ ) s i n ~ y ,  (39) 

ga = C(y - y2)cosTry + D(y - ½) sin Try, (40) 

where 
C = R°ik~x(Tr2 + k2~a) -- -Roik~lC,  (41) 

47r(27r 2 + k2~l + k2th) 

D =  il{°ik~l[27/4+71"2k2(5~l - r l l )+k4~l (~a  +r]l)] =-~ Roik~lD (42) 
47r2(27r 2 + k2~l + k2rh) 2 

and which defines the constants C a n d / )  which axe used below. The values of A and B 

may be found easily, but they are not required when finding R2 and therefore we omit 

their presentation. 

At O(~ 2) we have 

f~' - k2~lf2 - Rok~l g2 = Ro~i(-½kgo + ig~) + R2~ lkgo  = TQ, (43) 

t¢ 2 
g~ - k ,~192 - k f 2  = - n o i k ~ ( v  - ~ )g~  - -  T~g. (44) 

The forcing terms on the right hand sides of (43) and (44) contain components which 

axe proportional to the eigenfunction of the equivalent homogeneous system and therefore 

we need to employ an orthogonality condition which will find the value of R2 for which 

solutions exist. Such a procedure is quite standard in stability analyses and in this context 

we require that 

~01 [7~f f0 + T~,Ro~lgoldy=O. (45) 

Application of this condition yields 

2 2 2 
1 121r3 ( ~r2k ~IR0+ 2~.2)) ~ _  = vR0 - k2ql) [ (2(~r 2 + k2qa)(~r 2 - 3) - Ro(3 + R2 

- 6r 2 - 6k2Th)/)]. (46) +Tr(R0~r 2 
J 



Vol. 28, No. 5 CONVECTION IN AN ANISOTROPIC POROUS LAYER 647 

1og1071 R2/~r2 = 10 6 

R2/~r 2 = 107 

-b  -4 -Z U ~ 4 

log10~1 

FIG. 1. 
The variation with ~1 and 71 of R 2 / r  2 for two dimensional convection. We take 
R2/Tr 2 = 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2 . . .  10, 20 - . .  100, 200 - . .  1000, etc. When 
~1 = 71 = 1, then R2 = 5~r 2, and when ~1 = 106 and 71 = 10 -8 then R2 -~ 1011~ "2. 

This expression reduces to that  given by Rees and Bassom (2000) for the isotropic layer, 

~1 = 7 1  = l ,  and i s  

R2 = (7r2 + k2)2 327r4k 4 (Tr s + 23r4k 2 + 117r2k 4 + 5k s) + (7r2 + k2)4(cr2 - k2) (47) 
967r 2 k 4 

The dependence of R2 upon ~I and 71 in (46) is complicated, and the full expression 

obtained when the critical values of k and R0 are substituted is very lengthy. However, a 

contour plot of R2 as a function of ~l and 71 is given in Figure 1 showing by how much the 

critical value of R varies from R0 when the inclination is small. The value of R2 always 

remains positive, al though it may achieve small values when 71 is small. It is clear that  R2 

varies over many orders of magnitude as ~1 and 71 vary. Although it represents a rather 

extreme example of a porous medium, when ~1 = 10 s and 71 = 10 -6, the critical Rayleigh 

number  is approximately Rc "~ 7r 2 + 10117r2a 2. Therefore the inclination must be less than 

approximately 10 -11/2 for the change in the Rayleigh number  to be given accurately by 

the horizontal value. Such tolerances are unlikely to be achieved in practice. 

Three-dimensional Instability 

We turn now to the more physically realistic situation of rolls at orientations other 

than the above two-dimensional cases for which ¢ = ~¢r.] In this section we sketch briefly 
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the results of the equivalent analysis to tha t  of the last section. 

At leading order, which corresponds to a horizontal layer, we obtain 

[rr 2 + k2(r/, sin 2 ¢ +  r/3 cos 2 ¢ ) -  Ro] 
~ s i n  ~r~,  (48,49) q0 = [ Ir ] COS Try, go 

R0 = [~2 + k2(6 sin 2 ¢ + ~3 cos ~ ¢)] [~s + k2(~1 sin ~ ¢ + ~3 cos ~ ¢)1 (50) 
k2(~l sin 2 ¢ + ~3 cos 2 ¢) 

The minimising wavenumber  is 

7r 

kc = (~, sinZ ¢ + ~3 cos 2 ¢)1/4(~1 sin 2 ¢ + r/3 cos s ¢)1/4 (51) 

and the value of R0 is 

r/a sin 2 ¢ + ,/3 cos ~ 6~1/212 
R0o : [1+ ( sinS j 

Given tha t  the orientation of the roll is at our disposal, it is s traightforward to show tha t  

extreme values of R0~ occur when ¢ = 0, ¢ = 1 ~r  or when  ( y ~ / ~ )  = (rla/~s). W h e n  

( r i l l S1 )  < (q3/~3) then Roc = 7r2[1 + ( r l l /~x)1 /2]  2 with ¢ = 1 ~-rr, a transverse roll. When  

(Yl/~l) > (r/3/~3) then Ro~ = rr2[1 + (r/3/~3)a/2] 2 with ¢ = 0, a longitudinal roll. The  traal- 

sitional case is when (r/1/~1) = (,/3/~3) = 7, say, when Ro~ = 7r s [1 + 71/2] 2 independently 

of the roll orientation. 

At O(a )  the solutions are, 

ql = A ( y  - y2) sin~ry + B ( y  - ½) cos ~ry, (53) 

g,  = C ( y  - yS) cos Try + D ( y  - ½) sin Try, (54) 

where A and B are different from those introduced in (39) and where C and D are a 

generalisation of those in (40). We find tha t  

C = R o i k ~ l  sin ¢(7r 2 + k 2 ( )  = - R o i k ~ x  sin ¢ C, (55) 
4z(2rr s + k2~ + k2r/) 

D = R o i k ~  sin ¢[27r 4 + 7r2k2(5~ - r/) + k4~(~ + ?)] = - R o i k ~ ,  sin ¢ /9  (56) 
4rr2(2rr 2 + k2~ + k2q) 2 

where 

= ~1 sin 2 ¢ + ~3 cos 2 ¢ and r / =  r/1 sin s ¢ + ,13 cos 2 ¢. (57) 

The solvability condition at O(c~ s) yields the expression, 

k 2 ¢ 2  D2 sin s ¢ 
[ (2(r 2 + k2,/)(~ s - 3)- Ro(3 + 2~s)) O 

x 

R2 = ½Ro - 12rs(  7r2"1''° + kSr/) 

+Tr(RoTr s -- 67r 2 - 6k2r/)/~]. (58) 
.I 
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In all circumstances R2 > 0 indicating that small inclinations from the horizontal causes 

the critical Rayleigh number to rise above that for the horizontal layer. For the isotropic 

layer the critical Rayleigh number reduces to 

R2 = 2zr ~ + 37r 2 sin 2 ¢, (59) 

which shows that longitudinal rolls, for which ¢ = 0, form the preferred mode of instability 

in this case. 

When the layer is anisotropic, the variation in R0c is typically of O(1) as any one 

or more of ~1, ~3, 7/1 and 7/3 vary, and therefore the O(a 2) correction given in (58) is 

subdominant. However, when the layer is nearly isotropic, the critical value of R0 + a2R2 

may be simplified considerably. If we set ~1 = 1 + a2~1, with similar expressions for ~3, 7/1 

and 73, then (51) becomes 

ko = ,r + (60)  

and the critical Rayleigh number is 

Ro~ + a2R2c " 41r 2 + a~zr ~ [2 + (3 + ~}, - 3~,)sin s ¢ + (r)3 - 3~3) cos 2 ¢]. (61) 

A straightforward analysis is sufficient to show that when (3 + r}l - 3~1) < (~3 - 3~3) then 

transverse rolls (¢ = ½7r) are preferred, but longitudinal rolls are preferred when the 

inequality is in the opposite direction. All orientations are equally likely when equality 

pertains. 

Finally, when (~h/~1) -- (T/3/~3), the value of R0 is independent of ¢. A detailed 

numerical investigation of the value of R2 in such circumstances shows that ¢ = 0 always 

yields the most unstable roll direction. 

Conclusion 

We have undertaken an analytical study of how the critical Rayleigh number changes 

when an anisotropic porous layer is inclined at a small angle to the horizontal. In general 

the most unstable mode is of either longitudinal or transverse form, depending on the 

relative values of (7/1/~1 ) and (73/~3). When the layer is nearly isotropic a simple analytical 

condition has been presented which determines which of the two roll directions is preferred. 

When (r/1/~1) = (73/~3), which corresponds to the case when there is no overall preferred 

roll direction for a horizontal layer, we have found that the O(a 2) correction favours 

longitudinal modes. 

The present work is currently being extended by Rees &: Postelnicu [9] who are consid- 

ering the effects of large inclinations from the horizontal. Unlike the cases described here, 
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preliminary results indicate that it is possible for oblique modes to become the preferred 

mode of instability. 
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