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Vortex instability from a near-vertical
heated surface in a porous medium. I
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In this paper we consider the stability of thermal boundary-layer ®ow in a porous
medium. In particular, we are concerned about the susceptibility of streamwise vor-
tex disturbances to growth when the heated surface is very close to the vertical.
This regime allows both the basic ®ow and the disturbance equations to satisfy the
boundary-layer approximation, and hence the present analysis forms a mathemat-
ically consistent framework. It is shown that the usual method of analysing linear
instability is too restrictive and that disturbances grow from positions much closer
to the leading edge than are predicted using the parallel ®ow approximation.
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1. Introduction

In this paper we address one aspect of the classical problem of determining criteria
for the onset of instability in the free convective thermal boundary-layer ®ow from
an inclined heated surface embedded in an otherwise cold porous medium. This
problem was considered ­ rst by Hsu & Cheng (1979) and re-examined by Jang &
Chang (1988), but many other papers considering variations on the general theme
are quoted in the review article by Rees (1998).

The traditional method for analysing such stability problems proceeds initially
by forming a set of perturbation equations for small-amplitude disturbances to the
basic ®ow. The next step involves a speci­ cation of how the disturbance varies in
the streamwise direction and a Fourier decomposition of the disturbance (which is
in the spanwise direction for streamwise vortices or in the streamwise direction for
travelling waves). This results in an ordinary di¬erential eigenvalue problem for the
disturbance, where the eigenvalue, a function of wavenumber, is the streamwise posi-
tion corresponding to neutrality. Such a procedure, although very widely applied,
assumes too much about the form of the disturbance. Although a Fourier decom-
position is very reasonable for the analysis of streamwise vortices, it is suspect in
the case of waves, as the basic ®ow does not have parallel streamlines. Similarly, the
non-parallel nature of the basic ®ow means that there is no a priori rationale for
specifying the streamwise variation of the disturbance. Furthermore, there is also
a major mathematical inconsistency between the application of the boundary-layer
approximation (which implies that x, the streamwise coordinate, is asymptotically
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Figure 1. Sketch of the ° ow domain and boundary conditions.

large) and the result of the stability analysis (which yields a ­ nite value for x). But
the popularity of the method lies in the fact that it often gives reasonable results.

It was shown in Storesletten & Rees (1998) that stability analyses along the above
lines become increasingly reliable as the inclination of the heated surface tends
towards the vertical. In that paper the authors considered the e¬ects of using a
third-order boundary-layer theory to describe the basic ®ow as a means of assessing
by how much the accuracy of the description of the basic ®ow a¬ects the stability
criterion. Here we study the case of a near-vertical surface, since the leading-order
boundary-layer ®ow is particularly accurate in this limit. It is also the case that
the point of neutral stability recedes to in­ nity in the same limit. Indeed, we show
that the near-vertical limit allows both the basic ®ow and perturbation analysis to
proceed in a mathematically consistent manner.

We ­ nd that the streamwise evolution of disturbances is given by the solution
of a parabolic system of partial di¬erential equations. Therefore, it is possible to
compare directly a consistent approach to the linear stability problem with the older-
fashioned method involving ordinary di¬erential eigenvalue problems. In this regard,
the present work is similar to that of Hall (1983). We show that the traditional
method yields qualitatively correct results, but it yields critical distances that are
somewhat larger than those obtained using the parabolic system.

2. Equations of motion and basic ° ow

We consider the stability of the boundary-layer ®ow induced by a uniform tempera-
ture heated surface embedded in a ®uid-saturated porous medium. The ®uid motion
is assumed to be governed by Darcy’s law, while boundary and inertia e¬ects, as
modelled by the Brinkman and Forchheimer terms, are taken to be negligible. The
®uid is Boussinesq, and the ®uid and porous matrix are assumed to be in local ther-
mal equilibrium. The non-dimensional equations of motion were presented by Riley
& Rees (1985) in the form

·u·x + ·v·y + ·w·z = 0; (2.1 a)

·u = ¡ ·P ·x + ·³ cos ¯ ; (2.1 b)

·v = ¡ ·P ·y + ·³ sin ¯ ; (2.1 c)

·w = ¡ ·P ·z ; (2.1 d)
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·³ ·t + ·u·³ ·x + ·v·³ ·y + ·w·³ ·z = r2·³ : (2.1 e)

Here, ·x, ·y and ·z are the streamwise, cross-stream and spanwise Cartesian coordinates,
and ·u, ·v and ·w are the corresponding ®uid ®ux velocities. The pressure is ·P and
temperature is ·³ . In (2.1 b) and (2.1 c), the angle of inclination of the semi-in­ nite
surface from the vertical is ¯ , where 0 < ¯ < 1

2
º corresponds to an upward-facing

surface with the leading edge placed vertically below the rest of the surface. The
con­ guration is illustrated in ­ gure 1. Equations (2.1) have been non-dimensionalized
in such a way that the porous medium Rayleigh number has been set equal to 1. Such
a device, which is discussed in some detail in the review by Rees (1998), is equivalent
to having a natural length-scale based upon the ®uid and matrix properties; thus
a non-dimensional length of precisely 1 is equivalent to the dimensional length, L,
given by

L¡1 = » ĝ­ K¢T=· ¬ ; (2.2)

where » is a reference density, ĝ is acceleration due to gravity, ­ is the volumetric
coe¯ cient of expansion, K is permeability, ¢T is the temperature drop between the
heated surface and the ambient ®uid, · is the ®uid viscosity and ¬ is the thermal
di¬usivity of the saturated medium.

The main interest of this paper is to develop a formal asymptotic theory of vortex
instability in the limit of small inclinations from the vertical. Storesletten & Rees
(1998), in a stability analysis which involves higher-order approximations to the basic
®ow, show that the critical distance from the leading edge beyond which vortex
disturbances grow is given by

·xc ’ 110:7
cos ¯

sin2 ¯
; (2.3)

when using only the leading-order basic ®ow. Hsu & Cheng (1979) analysed the
same stability problem much earlier and obtained the same result, but with the
numerical coe¯ cient equal to 120.7, using slightly di¬erent assumptions. The asso-
ciated wavenumbers which minimize the critical distance were also slightly di¬erent
from one another. Therefore, as the inclination angle, ¯ , becomes small, the point
of incipient instability recedes from the origin. In this limit, the accuracy of the
boundary-layer approximation improves and therefore it is necessary to consider
only the leading-order ®ow in the present paper. The wavenumber of the vortex
disturbances in both papers was shown to be proportional to sin ¯ .

Given the above observations, we may introduce the following rescalings,

·x =
cos ¯

sin2 ¯
x; ·y =

1

sin ¯
y; ·z =

1

sin ¯
z;

·u = (cos ¯ )u; ·v = (sin ¯ )v; ·w = (sin ¯ );

·P = P; ·³ = £ ; ·t =
1

sin2 ¯
t;

(2.4)

into (2.1) to obtain

ux + vy + wz = 0; (2.5 a)
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u = £ ¡ sin2 ¯

cos2 ¯
Px; (2.5 b)

v = £ ¡ Py ; (2.5 c)

w = ¡ Pz ; (2.5 d)

£ t + u£ x + v£ y + w£ z =
sin2 ¯

cos2 ¯
£ xx + £ yy + £ zz: (2.5 e)

The limiting case, ¯ ! 0, may now be seen as being equivalent to invoking the
boundary-layer approximation, since, in this limit, the length-scale represented by
x = 1 is asymptotically greater than that represented by y = 1 (see equations (2.4)).

The basic ®ow whose stability we analyse may be formulated in two di¬erent ways,
either in a streamfunction/temperature formulation (which takes advantage of the
fact that the basic ®ow is steady and two dimensional) or in a pressure/temperature
formulation (which is necessary for the three-dimensional stability analysis). If we
assume that all z and t derivatives are zero and set

u = Áy and v = ¡ Áx (2.6)

into (2.5), with ¯ ! 0, then we obtain the following equations:

Áy = £ ; (2.7 a)

£ yy = Áy £ x ¡ Áx £ y ; (2.7 b)

py = £ + Áx: (2.7 c)

The similarity solution takes the form

Á = x1=2f( ² ); £ = g( ² ); P = q1(² ) + x1=2q2( ² ); (2.8)

where
² = y=x1=2: (2.9)

The variable ² is the vertical similarity variable, which was given originally by Cheng
& Minkowycz (1977) using an analysis involving the local Rayleigh number. The
equations satis­ ed by f , g and q are

f 0 = g; (2.10 a)

g00 + 1
2
fg0 = 0; (2.10 b)

q0
1 = 1

2
(f ¡ ² f 0); (2.10 c)

q0
2 = g; (2.10 d)

subject to the boundary conditions

f(0) = 0; g(0) = 1 and g( ² ) ! 0 as ² ! 1: (2.11)

Boundary conditions for q1 and q2 need not be speci­ ed, as the de­ nitions of q0
1

and q0
2 are all that is required in the linear stability analysis later. The solution

of (2.10 a), (2.10 b) was given in Cheng & Minkowycz (1977) and have appeared
in many subsequent papers, but we note that g0(0) = ¡ 0:443 75 to ­ ve signi­ cant
­ gures.
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Having obtained the basic ®ow using the streamfunction/temperature form, the
vortex stability analysis requires that the full governing equations (in the limit as
¯ ! 0) be written in the pressure/temperature form,

P 00 + ¹ 2Pzz = 1
2
( ¹ £ ¹ ¡ ² £ 0) + ¹ £ 0; (2.12 a)

£ 00 + ¹ 2 £ zz = 1
2
( ¹ £ ¹ ¡ ² £ 0) £ ¡ P 0 £ 0 + ¹ £ £ 0 + ¹ 2( £ t ¡ Pz £ z); (2.12 b)

subject to the boundary conditions

² = 0 : P 0 = 1; £ = 1;

² ! 1 : P; £ ! 0:

The ² = 0 pressure condition may be deduced from (2.5 c). In (2.12), primes denote
derivatives with respect to ² , and ¹ has been de­ ned according to

¹ = x1=2; (2.13)

for notational and numerical convenience.

3. Perturbation analysis

Beginning with (2.12), we perturb about the basic solution given by (2.8) by setting

P = q1( ² ) + ¹ q2( ² ) + p̂( ¹ ; ² ; z); (3.1 a)

£ = f 0( ² ) + ^³ ( ¹ ; ² ; z; t) (3.1 b)

to obtain the following full disturbance equations,

p̂00 + ¹ 2p̂zz = 1
2
( ¹ ^³ ¹ ¡ ² ^³ 0) + ¹ ^³ 0; (3.2 a)

^³ 00 + ¹ 2 ^³ zz = ( 1
2
f 0) ¹ ^³ ¹ ¡ ( 1

2
f)^³ 0 + (f 00)(¹ ¡ 1

2
² )^³ ¡ (f 00)p̂0

+ ¹ 2(^³ t ¡ p̂z
^³ z) + 1

2
( ¹ ^³ ¹ ¡ ² ^³ 0)^³ ¡ p̂0 ^³ 0 + ¹ ^³ ^³ 0; (3.2 b)

where all the nonlinear terms have been retained.
At this point, we see that the disturbance equations given in (3.2) form a nonlinear

set of parabolic equations, which have been derived using the limit ¯ ! 0 as the only
approximation. Therefore, equations (3.2) form a fully non-parallel and mathemati-
cally rigorous set of equations. It is well known (Nield & Bejan 1999; Rees 1998) that
the primary mode of instability for the boundary-layer ®ow from a uniform temper-
ature inclined surface takes the form of streamwise vortices. The remainder of this
paper discusses the linear development of such vortices and therefore, given the form
of (3.2), they may be Fourier-decomposed into discrete spanwise components. Upon
linearization and introduction of the ansatz

p̂( ¹ ; ² ; z; t) = p( ¹ ; ² )eikz; ^³ ( ¹ ; ² ; z; t) = ³ ( ¹ ; ² )eikz; (3.3)

where we also assume that the ®ow is steady with time, equations (3.2) reduce to
the form

p00 ¡ k2 ¹ 2p = 1
2
( ¹ ³ ¹ ¡ ² ³ 0) + ¹ ³ 0; (3.4 a)

³ 00 ¡ k2 ¹ 2 ³ = ( 1
2
f 0) ¹ ³ ¹ ¡ ( 1

2
f) ³ 0 + ( ¹ ¡ 1

2
² )f 00 ³ ¡ f 00p0: (3.4 b)

A study of the fully nonlinear system (3.2) will be given in subsequent papers.
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Figure 2. Neutral stability curve: ¹ c against k¹ .
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Figure 3. Neutral stability curve: ¹ c against k.

4. A straightforward linearized analysis

Equations (3.4) form a parabolic system of equations for the linear development of
disturbances to the basic ®ow, as may be seen by the presence of ¹ -derivatives. In
this section we will determine the points of neutral stability that correspond to the
setting of these ¹ -derivatives to zero. If it were to be objected that such a procedure
is arbitrary, then it has to be admitted that it is, and we will be solving the full
system (3.4) later in the paper in order to compare the results. However, very many
papers dealing with the stability of boundary-layer ®ows invoke assumptions like
this.

Proc. R. Soc. Lond. A (2001)
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Table 1. Critical values for the present stability problem compared with those of
Storesletten & Rees (1998) and Hsu & Cheng (1979)

¹ c xc kc (k¹ )c

current 10:479 69 109:824 0:057 446 0:602 01

Storesletten & Rees (1998) 10:519 19 110:653 0:059 185 0:622 58

Hsu & Cheng (1979) 10:988 41 120:745 0:057 759 0:634 68

Therefore, we solve the following equations,

p00 ¡ k2 ¹ 2p = ¡ 1
2
² ³ 0 + ¹ ³ 0; (4.1 a)

³ 00 ¡ k2 ¹ 2 ³ = ¡ ( 1
2
f) ³ 0 + ( ¹ ¡ 1

2
² )f 00 ³ ¡ f 00p0; (4.1 b)

subject to the boundary conditions

² = 0 : p0 = 0; ³ = 0;

² ! 1 : p; ³ ! 0:

As this homogeneous system forms an eigenvalue problem for ¹ in terms of the
wavenumber, k, it is necessary to supply the normalizing condition, ³ 0 = 1 at ² = 0.
This extra boundary condition means that we may solve (4.1 a) and (4.1 b) together
with ¹ 0 = 0 (where ¹ is regarded as an eigenvalue). A suitably extended version of
the Keller-box method was used to solve this eigensystem (see Lewis et al . 1997 for
details). It was found necessary to perform a parameter sweep over di¬erent values of
k¹ , rather than k, since the neutral curve in terms of k is not single valued. The results
of our computations are displayed in ­ gures 2 and 3. Figure 2 shows the variation of
¹ c with k¹ and this displays the usual behaviour for a B́enard-like problem in that
there is a well-de­ ned minimum value, and that ¹ c, the critical value of ¹ , becomes
unbounded in the limits k¹ ! 0 and k¹ ! 1. The detailed numerical results (not
shown) also indicate that the neutral disturbance becomes con­ ned to a narrow
region close to the heated surface when k¹ is large. Figure 3 displays the variation
of ¹ c with k. Here we see that there is a maximum wavenumber beyond which all
disturbances are stable; this value is ca. 0.092 36. The minimum value of ¹ c was
obtained by solving (4.1) augmented by the system obtained by di¬erentiating (4.1)
with respect to k and setting @¹ =@k = 0; in this case, we used a fourth-order Runge{
Kutta code together with a standard shooting method for two-point boundary-value
problems. Table 1 shows how the present minimization compares with others in the
literature.

The fact that the current value of ¹ c is smaller than those of the other quoted
papers is of little consequence. Storesletten & Rees (1998) and Hsu & Cheng (1979)
made di¬erent assumptions about which terms should be kept in the linearized sta-
bility equations, and given that the ®ows considered by those authors were from
generally inclined surfaces, the computation of a critical distance negates the initial
assumption that the boundary-layer approximation is valid. In the present prob-
lem, the assumption that the surface is nearly vertical implies that the disturbance
equations automatically satisfy the boundary-layer approximation.

For purposes of comparison, we reproduce in the current notation the disturbance
equations solved by the various authors already quoted in order to indicate the
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sources of discrepancy between the above results. The present analysis solves the
equations

p00 ¡ k2 ¹ 2p = ¡ 1
2
² ³ 0 + ¹ ³ 0;

³ 00 ¡ k2 ¹ 2 ³ = ¡ ( 1
2
f) ³ 0 + ( ¹ ¡ 1

2
² )f 00 ³ ¡ f 00p0;

which are equations (4.1), whereas Storesletten & Rees (1998) solve

p00 ¡ k2 ¹ 2p = ¹ ³ 0; (4.2 a)

³ 00 ¡ k2 ¹ 2 ³ = 1
2
(² f 0 ¡ f) ³ 0 + ( ¹ ¡ 1

2
² )f 00 ³ ¡ f 00p0: (4.2 b)

The two terms which form the di¬erence between these two sets of equations ­ nd
their origin in the di¬erent treatments of the x-variation of the disturbance. The
analysis leading to (4.2) assumes no x-variation before the variables are transformed
from Cartesian coordinates to the similarity variables, while the present analysis
makes no such assumption until the full disturbance equations are found.

Hsu & Cheng (1979) assume that the vortex disturbances are independent of the
streamwise coordinate and therefore it is possible to de­ ne a streamfunction in the
yz-plane, which we will denote by ª . Their equations are

ª 00 ¡ k2 ¹ 2 ª = ¡ k¹ ³ ; (4.3 a)

³ 00 ¡ k2 ¹ 2 ³ = ¡ 1
2
f ³ 0 ¡ 1

2
² f 00 ³ + k¹ f 00 ª ; (4.3 b)

while those of the present analysis are

ª 00 ¡ k2 ¹ 2 ª = ¡ k¹ ³ ; (4.4 a)

³ 00 ¡ k2 ¹ 2 ³ = 1
2
( ² f 0 ¡ f) ³ 0 ¡ 1

2
² f 00 ³ + k¹ f 00 ª : (4.4 b)

These systems di¬er from each other for the same reason as above. Equations (4.1)
and (4.4) were checked carefully and they yield precisely the same numerical solution.
However, equations (4.2) and (4.3) yield di¬erent solutions, not only from those
of (4.1) and (4.4), but also from one another. Although both were derived using the
assumption of no x-variation, equation (4.2) assumes that p is independent of x,
whereas Á is independent of x in (4.3); these are essentially di¬erent assumptions,
and this re®ects the inconsistency of the approach.

5. Parabolic linearized analysis

The main assumption used in the last section, namely that all ¹ -derivatives may be
set to zero, is not necessarily valid, and therefore we need to perform a full parabolic
simulation of the linearized disturbance equations (3.4). This is readily undertaken
using the Keller-box method introduced by Keller & Cebeci (1971). Further details
of the implementation, which is more advanced than the standard implementation
described in Cebeci & Bradshaw (1984), is as follows. We use a backward di¬erence
discretization in ¹ , rather than a central di¬erence approximation, in order to maxi-
mize numerical stability. The Jacobian matrix used in the central Newton{Raphson
procedure is computed numerically within the code, rather than speci­ ed explicitly
by the programmer; this increases substantially the speed of implementation of the
method. In our results we have used uniform grids in both the ¹ - and ² -directions
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with 400 intervals speci­ ed in the range 0 6 ¹ 6 40 and 50 intervals in 0 6 ² 6 10.
In our simulation we solved (4.1) subject to the boundary conditions

² = 0 : p0 = 0; ³ = 0;

² ! 1 : p; ³ ! 0:
(5.1)

A thermal disturbance of the form

³ = ² e¡ ² (5.2)

was introduced at various values of ¹ and the Keller-box method was used to march
this disturbance forward in space. It was not necessary to determine a corresponding
initial pro­ le for p because (i) the method is a backward di¬erence method and
(ii) there are no ¹ -derivatives of p in the equations; these two facts mean that the
numerical solution at the next streamwise location in the boundary layer does not
use the p distribution at the previous location.

In the context of the classical Darcy{B´enard convection problem, instability occurs
when disturbances grow in time. In the present problem, we may de­ ne instability
to occur when disturbances grow in space. However, the Darcy{B´enard problem has
no ambiguity in how instability is de­ ned; the use of the maximum disturbance
temperature, surface rate of heat ®ux or disturbance energy as measures of growth
are entirely equivalent. In boundary-layer ®ows, these di¬erent measures of instability
give di¬erent results, and therefore we have monitored the magnitude of all three.
The maximum temperature at each value of ¹ was obtained by locating the maximum
value over all the gridpoints, ­ tting a parabolic curve to that point and its two nearest
neighbours, and ­ nding the maximum value on that curve. The surface rate of heat
transfer is measured in terms of ³ y = ¹ ³ ² at ² = 0 (noting that values of ³ ² at ² = 0
yield less restrictive curves than does ³ y at y = 0 in all cases). Finally, the thermal
energy of the disturbance is deemed to be proportional to

E =
1

0

³ dy = ¹
1

0

³ d ² : (5.3)

In this last case, neutral stability may be said to occur when E attains maximum or
minimum values as ¹ increases. These correspond to where

dE

dx
=

1

2 ¹

dE

d ¹
= 0: (5.4)

Therefore, we determine by linear interpolation those points at which

dE

d ¹
=

1

0

¹
@ ³

@¹
+ ³ d ² = 0: (5.5)

The typical evolutions of the disturbance energies, E, are shown in parts (a) and (b)
of ­ gure 4; these correspond, respectively, to values of k which are less than, equal to
or greater than 0:07. Also depicted are the extreme values of these curves, to indicate
clearly how the value of ¹ corresponding to neutrality varies with the wavenumber.
In these ­ gures, the disturbance was introduced at ¹ = 1 and the energy of the
disturbance decreases at ­ rst before increasing again. In ­ gure 4a we see that, for
values of k less than 0:05, the critical value of ¹ decreases at ­ rst with increasing
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Figure 4. (a) Variation of ln E against ¹ for k = 0:01; 0:02; : : : ; 0:07. The symbol ° denotes
maximum values of E. (b) Variation of ln E against ¹ for k = 0:08; 0:083; : : : ; 0:098. The symbol
° denotes maximum values of E .

k and then it increases for larger values of k. In ­ gure 4b we see a second neutral
location for a certain range of wavenumbers; these correspond to points marking
the re-establishment of stability. When k > 0:094, the energy always decays and
therefore the ®ow is stable. Similarly shaped curves are obtained for the evolution
of the maximum temperature and the surface rate of heat transfer. Likewise, similar
curves are also computed for other initial disturbance pro­ les.

The curves shown in ­ gure 4, and those corresponding to the other two monitoring
functions, are summarized in ­ gures 5{7. Figure 5 corresponds directly to ­ gure 4, as
the disturbance is introduced at ¹ = 1. But ­ gures 6 and 7 correspond to disturbances
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Figure 6. As ¯gure 5, but with disturbance having been introduced at ¹ = 10.

introduced at ¹ = 10 and 20, respectively. A further computation was undertaken for
¹ = 5, but the results were virtually indistinguishable from the ¹ = 1 results. In all
three ­ gures, the neutral stability curve shown in ­ gure 3 has been reproduced for
reference. Referring to ­ gure 5, we see that the criterion based on the thermal energy
of the disturbance yields a curve with a lower minimum than those based on the other
two criteria, and that instability also occurs for a larger range of wavenumbers. Some
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Figure 7. As ¯gure 5, but with disturbance having been introduced at ¹ = 20.

further computations were undertaken to ­ nd more precisely at which wavenumber
the earliest onset criterion may be found. This was determined to be at ¹ ’ 8:970
(i.e. x ’ 80:46) at a wavenumber of approximately k = 0:057 23; these values should
be compared with those given in table 1. Both the maximum temperature and energy-
based criteria yield a minimum critical Rayleigh number below that of the simpli­ ed
linearized analysis discussed in x 4, in which the ¹ -derivatives were neglected. Clearly,
the onset of convection does not correspond to ³ ¹ = 0 everywhere, but is ­ rmly
dependent on how the disturbance evolves.

When the disturbance is introduced at ¹ = 10, the disturbance grows immediately
for k < 0:88 according to the energy-based criterion, which explains the disappear-
ance of the data points in ­ gure 6. This e¬ect is stronger in ­ gure 7, where ¹ = 20 is
the point of introduction of the disturbance. Here the maximum temperature crite-
rion grows initially in all cases except for k = 0:01. In view of the critical values of ¹
displayed in ­ gure 5, it is not surprising that this should happen, as the disturbance
is introduced into the boundary layer well beyond where it may become unstable.

In all three cases, and for all three criteria, the neutral curves seem to become
increasingly close to the simpli­ ed neutral curve as the right-hand branch is traversed
upwards, although the curve corresponding to the energy-based criterion is the closest
of the three methods in this regard.

6. Discussion

In this paper we have put forward what are the ­ rst steps in discussing a consistent
vortex stability analysis for free convective boundary-layer ®ows from inclined sur-
faces in porous media. Mathematical consistency is ensured in this case by requiring
the heated surface to be asymptotically close to being vertical, and this means that
the boundary-layer approximation is valid for both the basic ®ow and the linearized
disturbance equations. Indeed, this is also true for the fully nonlinear disturbance
equations, although we have not considered that aspect here.
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We ­ nd that a straightforward analysis based on an a priori speci­ cation of the
streamwise variation of the disturbance restricts the ®ow to such an extent that
it overestimates the point of neutral stability compared with that obtained using
parabolic simulations. The qualitative behaviour of the stability characteristics, how-
ever, are preserved.

Although we have presented a mathematically consistent analysis, the con­ gura-
tion studied is specialized and it is of interest to determine what happens at other
inclination angles. In general, it is not possible to follow the same analytical pro-
cedure and therefore numerical methods must be used to solve the full equations.
Unsteady nonlinear wave instabilities for the horizontal boundary layer have been
computed by Rees & Bassom (1993), and these authors have found that convection
becomes chaotic immediately. For the vertical case, the numerical simulation of Rees
(1993) and the asymptotic analysis of Lewis et al . (1995) suggest very strongly that
wave instabilities are absent. In the more general case of a porous medium without
local thermal equilibrium between the ®uid and solid phases, numerical simulations
of the vertical boundary layer also suggest stability (see Rees 1999). Work is in
progress on developing an unsteady three-dimensional code to simulate nonlinear
vortex development for generally inclined boundary layers.

Finally, we emphasize again the fact that the analysis above shows that fully
nonlinear vortex development may also be described within this parabolic framework,
the only approximation being the boundary-layer approximation. Detailed numerical
analyses of the nonlinear spatial evolution of vortices and their secondary instabilities
are in progress and will be presented in companion papers.

The author thanks the anonymous referees for their very useful comments.
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