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Influence of Fluctuating Surface Temperature and Concentration
on Natural Convection Flow from a Vertical Flat Plate

A linearized theory is used to investigate how a free double-diffusive boundary layer flow is affected by small amplitude
temporal variations in the surface temperature and species concentration. The mean temperature and the mean species
concentration are assumed to vary as a power n of the distance measured from the leading edge. Three distinct methods,
namely, a perturbation method for low frequencies, an asymptotic series expansion for high frequencies, and a finite
difference method for intermediate frequencies, are used. Calculations have been carried out for a wide range of param-
eters in order to examine the results obtained from the three methods. Comparisons are made in terms of the amplitudes
and phases of the surface heat transfer and surface mass transfer. It has been found that the amplitudes and phase angles
predicted by perturbation theory and the asymptotic method are in good agreement with the finite difference computa-
tions.
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1. Introduction

The study of laminar boundary layers in the presence of an oscillatory flow with a steady mean component was first
undertaken by LIGHTHILL [1]. He considered the effects of small fluctuations in the free stream velocity on the skin-
friction and heat transfer for plates and cylinders by employing the Karman-Pohlhausen approximate integral method.
NANDA and SHARMA [2] and ESHGHY et al. [3] later extended Lighthill’s theory for free convective flows. MUHURI and
MArTI [4] and SINGH et al. [5] investigated the free-convection flow and heat transfer along a semi-infinite horizontal
plate with a small amplitude surface temperature oscillation about a non-zero mean by using the approximate integral
method. On the other hand, KELLEHER and YANG [6] investigated the heat transfer response of laminar free convec-
tion boundary layers along vertical heated plates to surface-temperature oscillations. Solutions of the governing nonsi-
milar equations for the fluctuating flow and heat transfer were obtained for both small and large frequencies using
suitable perturbation techniques. With an oscillating surface heat flux, the problem of natural convective flow from a
vertical surface has been investigated by HOSSAIN et al. [7]. The additional effects of a transverse magnetic field on the
problem posed by KELLEHER and YANG, has more recently been investigated by HOSSAIN et al. [8]. In all the above
studies solutions were obtained for both small and large frequencies by using suitable perturbation techniques. For
intermediate frequencies the equations governing the fluctuating flow and heat transfer were obtained by using both an
implicit finite difference method and the local non-similarity method of MINKOWYCZ and SPARROW [9]. In these inves-
tigations involving small-amplitude oscillations, it has been found that in the low-frequency range, the oscillating com-
ponent of the skin-friction always lags behind the plate temperature oscillations while the rate of heat transfer has a
phase lead. In the high-frequency range, the velocity and temperature in the boundary layer are of ‘shear-wave’ type,
predicting a phase lead of 45° in the rate of heat transfer fluctuation and an equivalent phase lag in the skin-friction
fluctuation.

There are many transport processes in industry and in the environment in which buoyancy forces arise for both
thermal and mass diffusion as a result of the co-existence of thermal and concentration gradients. In free convection
these may either hinder or aid one another. SOMERS [10], WiLcox [11], and GILL et al. [12] studied the effects of mass
transfer on free convection. Similarity analysis of the natural convection flows adjacent to both vertical and horizontal
surfaces which result from the combined buoyancy effects of thermal and mass diffusion was first investigated by
GEBHART and PERA [13] and PERA and GEBHART [14]. The combined effect of buoyancy forces from thermal and
mass diffusion on forced convection was studied by CHEN et al. [15]. In this latter paper attention is directed to forced
convection along vertical and inclined plates for which the plate is either maintained at a uniform temperature and
concentration or subjected to a uniform surface heat-flux and mass-flux. Both local nonsimilarity and finite difference
methods for the fluid having Prandtl numbers 0.7 and 7.0 gave solutions of the transformed conservation equations.
HossAIN [16] also investigated the effect of transpiration along with the combined effect of buoyancy forces from
thermal and mass diffusion on forced convective heat and mass transfer from a vertical plate. But all the above studies
are confined to steady flows. Very much less attention has been given to the effects of combined heat and mass trans-
fer on unsteady flow. Among those few investigators HossAIN and BEGUM [17] studied the combined effect of heat and
mass transfer to unsteady convection flow from a doubly infinite vertical permeable surface with small-amplitude fluc-
tuations in the free stream, the surface temperature, and the surface species concentration. Recently, HOSSAIN [18]
investigated the effect of a fluctuating surface temperature on the unsteady two dimensional natural convection flow
with uniform species concentration at the surface by the use of the Karman-Pohlhausen approximate integral method.
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In the present paper we investigate the effect of the buoyancy force arising from both thermal and mass diffusion
in the unsteady natural convection flow from a vertical plate. The surface is subjected to small-amplitude temporal
oscillations in both its temperature and species concentration with non-zero means. In this study we also neglect cross-
diffusional effects as modelled by the Soret and Dufour terms. In the present analysis, the linearised theory used by
KELLEHER and YANG [6] and HOSSAIN et al. [7, 8] has been adopted. The implicit finite difference method used by
HossAIN et al. [7, 8] has also been employed in obtaining the solutions for intermediate frequencies. Numerical results
are expressed in terms of amplitude and phase of skin-friction, the rate of heat transfer and the rate of mass transfer at
the surface and these are obtained for a wide range of the frequency of oscillation. It is found that in the low-frequency
range, the oscillating component of the skin-friction always lags behind the oscillations in surface temperature and
surface concentration, while the rate of heat transfer and the rate of mass transfer have phase lead in presence of
foreign species.

2. Formulation of the problem

A two-dimensional unsteady free convective flow of a viscous incompressible fluid along a vertical flat in presence of a
soluble species is considered. We assume that both the surface temperature and the surface species concentration ex-
hibit small amplitude oscillations in time about a steady non-zero mean temperature and concentration, respectively.
The coordinate system and the flow configuration are shown in Fig. 1.

Fig. 1. Flow configuration and the coordinate system

Given the validity of the Boussinesq approximation, the flow, the heat transfer, and the mass transfer processes
are governed by the following equations:

ou v

ou ou 0*u

Ut @_ o + 9(Br0 + Bc9) , (2)
00 00 a0 026 5
E+U%+U@—a@, ()
dp O O ¢

E_‘_ ax—F’U@—D@, (4)

where u and v are the 1 and y-components of the velocity field, respectively, g is the acceleration due to gravity, 1
and f¢ are the volumetric expansion coefficients for temperature and concentration, respectively, a is the thermal
diffusivity, and D is the molecular diffusivity of the species. Further, 8 = T — T, where T and T, are the temperature
of the fluid and the ambient temperature, respectively, and ¢ = C' — C', where C and C,, are the species concentration
and the ambient concentration.

As suggested by GEBHART and PERA [13], the cross diffusion effects (i.e. Soret and Dufour effects) are assumed
to be negligible compared with the direct effects modelled by Fourier’s law and Fick’s law; these are often neglected in
heat and mass transfer processes.
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The boundary conditions to be satisfied by eqs. (1)—(4) are
u(z,0,t) = v(z,0,t) =0,
0(x,0,t) = 0,(x) {1 + € exp(iwt)}, (5)
P(x,0,1) = ¢, (z) {1 + & exp(iot)},
u(z,00,t) =0, O(x,00,t) =0, ¢(z,00,t) =0

where ¢ is real and much less than unity so that amplitude of oscillation is small. Here w is the frequency of oscillation
and 0,(z) and ¢,(z), are, respectively, the mean temperature and mean concentration as given by GEBHART and
PERA [13]:

0, =60px" and ¢, = ¢ya". (6)

6y and ¢ are, respectively, the scaled form of the temperature and species concentration at the surface of the plate.
The exponent n in (6) can be expressed as

_dInf,(r) dhng,(r) 1)
" dlnz = dhz

and may be considered as the temperature gradient as well as the concentration gradient at the surface of the plate.

3. Transformation of the equations

The surface temperature and the concentration given above in boundary conditions (5) suggest the following group of
transformations:

w(z,y,t) = v Gr/*[f(n) + e exp(iot) F(E )],
B(z,y) = 0,(x) lg(n) + ¢ expliot) G(E )],
B(2.9) = do(x) [h(n) + ¢ expliot) H(E 1), ®)

n= ¥ Grri,/‘l7 E= @ Gr;,l/‘lx
r ° v

0 0
where y is the stream function, defined by u = @W andv = — a—l// which satisfies the continuity equation (1). Here f, g, h and
i
F, G, H are, respectively, the steady parts and the unsteady parts of the stream-function, the temperature, and concen-
tration functions. 5 is the pseudo-similarity variable and £ is the frequency parameter that measures the frequency of
the surface oscillations; & may also be interpreted as being a scaled streamwise variable. Therefore large values of &

correspond either to large values of z at fixed frequencies or to large frequencies at fixed values of z. We define

GI‘I _ g[ﬁTew tﬂCgbz]

” 2 = Gr,. 7+ Gr,. ¢ (9)

as the modified local Grashof number, with Gr, 7 being the local Grashof number for thermal diffusion and Gr, ¢ the
local Grashof number for mass diffusion.

Now, substituting the above group of transformations given in (8) into (2)—(4) and taking the terms upto O(e),
one first obtains the following similarity equations for the steady flow:

n+3 n+1

= == P+ (- w) g+ wh =0, (10)
%g“rn:gfg’—nf’g:m (11)
r ., n+3 ., /o

o= W —nfh=0, (12)
f0)=f(0)=0, g(0)=1, h0)=1,  f(c0)=h(co)=g(co)=h(cc)=0. (13)

In these equations, primes denote differentiation of the functions with respect to 7, as is traditional in boundary layer
theory.

In egs. (10) and (14), w= N/(1 + N), where N = Gr, ¢/Gr, v and w measures the relative importance of solutal
and thermal diffusion in causing the density changes which drive the flow. It is to be noted that N =0 corresponds to
no species diffusion and infinity to no thermal diffusion. Positive values of N correspond to both effects combining to
drive the flow, whereas negative values correspond to opposing effects from the two diffusing components. We further
see that when N=0, w=0 and as N — oo, w — 1.
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Solutions of the eqs. (10)—(12) are already available in the open literature for wide ranges of values of the
governing parameters, Sc, the Schmidt number and n, the temperature-concentration exponent for values of the
Prandt]l number Pr = 7.0 and 0.7 which represent, respectively, the water and air at 20 °C at 1 atmosphere.

The equations for the fluctuating flow are

- oF ., OF
P () k) PF (- 0) 6w i = (f’ -7 a—g>’ (14)
- oG, oF
5 G+ 6 ) (G — 56 =S g (£ G- ). (15)
1 " n+3 ! 1 ! ! . 7(1_71) /aH ,8F

The boundary conditions for the above equations are
F(E0)=F'(§0)=0, GE0)=1, H(E0)=1,

(17)
F/(&,00) = H(§,00) = G(£.00) = G(£,00) = 0.

Here we again follow the usual practice of denoting derivatives with respect to the similarity variable by primes, even
though F, G, and H are functions of two variables. At £ =0 the system (14)—(17) reduces to ordinary differential
form, and therefore the solutions of these equations necessarily form the initial condition.

Once the solutions of egs. (14)—(17) are known, one quickly obtains the values of the shear-stress, the surface
heat-flux and the surface mass-flux, all of which are important from the experimental point of view. Here we propose
to present the available solutions in terms of amplitudes and phases of the surface shear stress and rate of heat transfer
according to the following relations:

A= J+472, A= \J@+@,  An=/m+m? (18)

$r = tanil(ri/rr') ) (pq = tanil(qi/(b') ) P = tanil(mi/mr) (19)

and

where A;, Ar, Ac and @, @1, P are the respective amplitude and phase of the shear-stress, the surface heat-flux, and
the surface mass-flux; (7, 7;), (¢, ¢;), and (m,, m;) are the corresponding real and imaginary parts of F”'(§, 0), G"(§, 0),
and H" (&, 0).

In the following section, we describe the integration of the egs. (14) to (17) with the boundary conditions (18)
using the above-mentioned three distinct methods.

4. Methods of solution

Solutions of the set of similarity equations (10)—(12) for the steady flow are obtained by the Newton-Raphson itera-
tion technique together with the sixth order implicit Runge-Kutta-Butcher initial value problem solver for different
values of the governing parameters. From the present situation one can find the equations developed by GEBHART and
PERA [13] by simply converting w to N. Solutions obtained by the aforementioned authors for the skin-friction, the
Nusselt number and Sherwood number may be reproduced by multiplying the present values of those quantities by the
factor v/2. To avoid repetition of the results presented by earlier authors, we have omitted discussion of the solutions
of the steady-state flow. However, we will obtain the solutions of the eqs. (14)—(17) which govern the small-amplitude
fluctuating part of unsteady flow by employing the perturbation method for both low and high frequencies.

Solutions at intermediate frequencies are obtained using an implicit finite difference method. It should be noted
here that when n=1 eqgs. (14)—(17) reduce to local similarity form in which & can be treated as a parameter. Solutions
of these equations may be obtained easily either by the linear shooting method or by the method of superposition,
since these are linear ordinary differential equations.

Table 1: Numerical values of quasi-steady heat flux and mass-flux coefficients for different Sc and w for Pr = 0.7 and

n=20.5

w 0.0 0.5 1.0

Sc —9,(0) —h;(0) —9,(0) —hq(0) —90(0) —h(0)
1.76 0.57462 0.86448 0.54435 0.82774 0.50162 0.78065
0.94 0.57462 0.65883 0.56409 0.64795 0.55214 0.63568
0.60 0.57461 0.53335 0.58037 0.53907 0.58576 0.54442

0.22 0.57492 0.31691 0.61619 0.35159 0.64791 0.37524
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Table 2: Comparison of the solutions obtained by perturbation method and finite difference method in terms of the
amplitude and phase (degrees) of the local heat-flux number and the local mass flux against the local frequency param-
eter & for different Sc while Pr = 0.7, w = 0.5, and n = 0.5

& Heat-flux Mass-flux
Amplitude (Ar) Phase (@r) Amplitude (A¢) Phase (@¢)
Pertur- Finite Pertur- Finite Pertur- Finite Pertur- Finite
bation Diff. bation Diff. bation Diff. bation Diff.
Sc = 0.94
0.0 0.5640 0.5641 0.0000 0.0000 0.6480 0.6481 0.0000 0.0000
0.2 0.5757 0.5763 9.2678 9.4097 0.6604 0.6610 9.2313 9.3660
0.4 0.6081 0.6101 17.5368 17.7448 0.6960 0.6984 17.6510 17.8531
0.6 0.6569 0.6599 24.2586 24.5915 0.7501 0.7559 24.9432 24.9056
0.8 0.7208 0.7214 28.5085 29.9354 0.8189 0.8283 32.1972 30.3828
1.0 0.8002 0.7907 27.2244 33.8894 0.9238 0.9103 43.0117 34.3845
2.0 1.1372 41.5582 1.3172 41.8794
3.0 1.4159 1.4157 43.6382 43.2498 1.6460 1.6413 43.8286 43.4448
4.0 1.6483 1.6475 44.1227 43.8914 1.9140 1.9102 44.2445 44.0239
5.0 1.8507 1.8497 44.3750 44.2149 2.1479 2.1447 44.4614 44.3121
6.0 2.0326 2.0316 44.5258 44.4054 2.3581 2.3554 44.5912 44.4806
7.0 2.1992 2.1982 44.6243 44.5290 2.5508 2.5484 44.6761 44.5893
8.0 2.3538 2.3528 44.6929 44.6147 2.7297 2.7276 44.7351 44.6645
9.0 2.4988 2.4978 44.7428 44.6771 2.8974 2.8955 44.7782 44.7191
10.0 2.6357 2.6347 44.7806 44.7242 3.0559 3.0541 44.8107 44.7602
Sc =0.60
0.0 0.5805 0.5806 0.0000 0.0000 0.5391 0.5391 0.0000 0.0000
0.2 0.5904 0.5909 8.6410 8.7709 0.5488 0.5493 8.7077 8.8428
0.4 0.6187 0.6205 16.5824 16.7862 0.5762 0.5779 16.5937 16.8010
0.6 0.6619 0.6662 23.4895 23.5689 0.6177 0.6207 23.1899 23.4698
0.8 0.7165 0.7242 29.9406 28.9847 0.6716 0.6741 27.9493 28.7983
1.0 0.7897 0.7906 38.1269 33.0859 0.7365 0.7350 29.1706 32.8558
2.0 1.1338 41.3247 1.0503 41.1463
3.0 1.4147 1.4132 43.5895 43.1534 1.3073 1.3082 43.4735 43.0407
4.0 1.6474 1.6456 44.0916 43.8379 1.5233 1.5231 44.0175 43.7601
5.0 1.8501 1.8483 44.3529 44.1800 1.7113 1.7107 44.3004 44.1224
6.0 2.0321 2.0304 44.5090 44.3803 1.8800 1.8793 44.4693 44.3356
7.0 2.1987 2.1972 44.6111 44.5098 2.0345 2.0337 44.5797 44.4738
8.0 2.3534 2.3520 44.6821 44.5994 2.1779 2.1770 44.6564 44.5696
9.0 2.4984 2.4970 44.7338 44.6645 2.3122 2.3114 44.7123 44.6393
10.0 2.6353 2.6340 44.7729 44.7136 2.4391 2.4382 44.7546 44.6920

4.1 Perturbation solutions for small frequency

The effect of free convection on the flow near the leading edge or, equivalently, for small frequencies of oscillation, may
be found by expanding the functions F, G, and H in powers of § as given below:

FEn) = EFm), G(E,n):ki EGun),  H(E7)

k=0

00
= > EHi(n). (20)
k=0
On substituting these into eqs. (14)—(16) and equating the terms of like powers of & to zero the following sets of
equations are obtained:

Fy "2 R PR — (0 1) PR+ (U w) G wHy =0, (21)

o G+ " (16 4 ) (G + gF) = 0, (22)

o Hy TS (H 4 W) (£ Hy + ) =0, (23)

B(0)=F0)=0, Go0)=1, Hy(0)=1,  Fl(o0) = Go(o0) = Hy(c0) =0 (24)
and

F,;”+n13 fF,;’+{n13+% (n—1) k} ' — [(n+1) +% (1—n)k| fF.+ (1 —w) Gy +wH, = Fj_1,

(25)
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1 +3 +3 1 1
EGg+n4 fG;c+{n4 +2(n—l)k}g/Fk—{n+2(n—1)k} "Gy + ngF, = Gy, (26)
1 +3 +3 1 1
§Hg+n4 fH,’€+{n4 +2(n1)k} W Fy, — [n+2(n1)k} [ Hi+nfF, = Hy1, (27)

Fy(0) = F(0)=0, Gi(0) = Hi(0) =0, Fj(00) = Gg(oo) = Hi(o0) =0 for k=1,2,3,....
(28)

It may be seen that egs. (21)—(24) have exact integrals which, according to KELLEHER and YANG [6], may be
written in the form

Fy=i(f+nf), Go=g+ingd. Ho=h+h'. (29)

Physically, when the frequency of oscillation is small, the boundary layer behavior should be predicted well by
the steady-state theory based on instantaneous temperature and concentration differences. It may also be seen that the
zero-th order solutions, as presented by eqs. (29), represent the quasi-steady solutions. As the frequency increases,
deviations from these solutions occur, and hence more terms in the series (20) must be taken into account. The exact
solutions obtained from the egs. (29) are entered in Table 1 for different values of the Schmidt number and the expo-
nent n while Pr = 0.7 and w= 0.5. From this it can be seen that the presence of a variable species concentration causes
the quasi-steady heat-flux coefficient to decrease and the mass-flux coefficient to increase given decreasing values of the
Schmidt number. On the other hand increases in the combined buoyancy effects lead to decreases in both the quasi-
steady heat-flux and the mass-flux.

It can be seen that egs. (21)—(27) for k=1,2,3,... are linear, but coupled, and may be solved independently
setwise one after another. In the present analysis, the implicit Runge-Kutta-Butcher initial value solver together with
Nachtsheim-Swigert iteration scheme is employed to solve the system of equations up to O(E'°). Computed results are
shown in Table 2 and Figs. 2—5 in order to be compared with the finite difference solutions. We note that these small-&
solutions are asymptotic solutions and will be valid and accurate for sufficiently small values of &; as with all boundary
layer analyses of this type we have no guarantee that the series converge.

4.2 Asymptotic solutions for large frequency

In this section attention is given to the solutions of eqs. (14) and (17) when & is large. Actually when the frequency of
oscillation of the surface temperature and surface mass concentration is very high, the boundary layer response should
be confined to a thin region adjacent to the surface. Thus as the frequency approaches infinity the solutions tend to be
independent of the distance from the leading edge to downstream, similar to the shear wave solution in the correspond-
ing forced flow problem. Here we again seek a series solution in the high frequency range, utilizing the limiting solution
as the zeroth-order approximation. For this region following transformations are introduced:

Y=y,  MEY)=8PFEn), GEY)=GEn, HEY)=HEn. (30)
Egs. (14) and (17) then become

3 3 1 3
M +n1 571/2fM// + n: 573/2f/ . nj; Eflf/M/ M+ (1 —w) 0+ we
_ (1 ; n) [f/ <Mé1 _~_% YEIM”> _ 571/2]0// <M§ +% YEIM/>} , (31)
1 5 1-— 1 1
E G/l+n1_3 E,I/QfG/_’_nEfo/QGM/ —iG = ( 5 n) |:f/ <G§+§ Y&lGl> _573/29/ <M§ _’_5 Y&lMl)] ,
(32)
éHuﬁ%EEWmumgmququgm[ﬂ&+%YE%M—EWMCm+%YEWQ}

(33)

The high frequencies affect only the region immediately next to the surface. Consequently the functions f, 8, and ¢ in
this region can be represented well by the following power series:

f=am’ +agn’ +amy' +---,
0 =14 b+ boy® + by’ + -+, (34)
¢ =1+an+en +on’+- -
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where according to egs. (10)—(13) we get

B=30),  a=-b  a=-{0-w)g0)+urO), )
blzg,(O),..., Clzh/(O),....
Based on the above expansions, the solutions to egs. (40)—(42) may be obtained in the following forms:
M(f, Y) = Z g_m/QEm(Y)v G(g, Y) = Z é_m/QLm(Y)v H(E, Y) = Z ‘5_7"/257"(}/)' (36)
m=0 m=0 m=0
When egs. (36) are substituted into (31)—(33) and terms of like powers of & are collected, one obtains
Eg, — ZE(,) = —(1 - w) L() - 'LUS()7 (37)
Ei” - ZEi = —( - w) L1 — w51 5 (38)
EY —iF, = —(1 —w) Ly — wSs, (39)
By —iEy=—(1—w) Ly —wSs — az(((3n +1)/4) Y?EJ 4+ ((3n +5)/2) YE, — ((3n +1)/2) Ey), (40)
Ep(0) = Ei(0) =0,  Ei(o0)=0, k=0,1,2,3, (41)
(1/Pr) LI —iLy =0, (42)
(1/Pr) L —iL, =0, (43)
(1/Pr) Ll —iLy =0, (44)
(1/Pr) L —iLy = —as(((3n + 1)/4) YL, + 2nYLy), (45)
LO(O) =1, Lk(o) =0, Lk(OO) =0, k=1,2,3, (46)
(1/Sc) Sj —iSy =0, (47)
(1/Sc) Sy —iS; =0, (48)
(1/Sc) Sy —iSe =0, (49)
(1/Sc) Sy — iS5 = —as(((3n + 1)/4) Y2S) + 2nYSp) (50)
S()(O) = 1, Sk(O) :0, Sk(OO) :O, k= 1,2,3. (51)
Solutions of the above equations yield the following relations:
F'(0) = Ey(0) &2 + E{(0) 7 + 0(&7%) (52)
where
1 1-— w
E0) = — + } ,
(0) Vi {1 +vVPr  1+Sc
EI(0) = (1—w)i 3ap(5n —1)  (1+3VPr) ay(5n—1)i - 2VPr < Pr )
(Pr—1) |16viPr(Pr—1) +Pr—1 4 Pr—1)\4i Pr—1
L wi Bag(5n —1)  (14+3+Sc) ax(5n—1)i +2\/_ ( Sc )
(Sc—1) 116viSc(Sc—1) +Sc—1 4 Sce—1) \4i Sc—1
S3ntl [ 1-w 1+\/PTr(3\/ﬁ—1) w 1+\/SE(3\/§—1)
2T Pr—1 \8 (Pr—1)? Sc—1\8 (Sc — 1)
1—w n w
2(vVPr+1)* 2(vSc+1)°
3n+5 | 1—-w 1 1 w 1 1
+ a s—— |+ =1t
2 Pr—1 (\/ﬂ+1) 4 Sc—1 (\/§E+1) 4
G/(60) = —ViPT "2 (145m) &1+ O(E ), (53)
H'(5,0) = —ViSe — 22 (1+5n) &' + 0. (54)

The above solutions are valid for Pr # 1 and Sc # 1, although the limits as either parameter tends to unity are well-
behaved. But since most fluids have values of Pr and Sc which are different from unity, solutions for Pr =1 and Sc=1



706 ZAMM - Z. Angew. Math. Mech. 81 (2001) 10

are not presented here. Again, these solutions for large values of § are asymptotic solutions and it is unlikely that such
a series continued indefinitely and will yield a convergent series. Indeed it is well-known that such large-& series are
hampered by the appearance of eigensolutions with indeterminate amplitude, and this limits the usefulness of such
series.

4.3 Solutions for intermediate frequencies

For intermediate frequencies we integrate the locally nonsimilar partial differential equations (14)—(17) subject to the
boundary conditions (18) by using an implicit finite difference method. To begin with, the partial differential equations
(14)—(17) are first converted into a system of first order equations in 7. The resulting equations are expressed in finite
difference form by approximating the functions and their derivatives in terms of central differences. On denoting the
mesh points in the (&, #)-plane by &; and #;, where ¢ =0,1,...,M and j=1,2,..., N, central difference approxima-
tions are made, such that those equations involving & explicitly are centered at (&;_; /25 Mj-1 /2) and the remainder are
approximated at (&;, #7,-1/2), where 1;_1/2 = (; + 7;-1). This procedure results in a set of nonlinear difference equa-
tions for the unknowns at &; in terms of their values at &;_;. To solve resulting equations, Newton’s iteration techni-
que, known in this context as the Keller box method, is used. Recently this method was discussed in more detail and
used efficiently by HOSSAIN et al. (1998) in studying the effect of oscillating surface temperature on the natural convec-
tion flow from a vertical flat plate. To initiate the process at § =0, we first prescribe the profiles for the functions
F F' F" G,G',H, and H', which are obtained from the solutions of the egs. (21)—(23). These profiles are then em-
ployed in the Keller box scheme, which has second-order accuracy, to march stepwise along the boundary layer. For
any given value of &, the iterative procedure is stopped to obtain the final velocity and temperature distributions when
the difference in computing the velocity, the temperature, and the species concentration in the latest iteration is less
than 107°, i.e. when ¢} < 107%, where the superscript 7 denotes the number of iterations. Throughout the computations
a nonuniform grid has been used by setting # = sinh(j/a). Such a grid makes efficient use of computational time and
computer memory. In the computations, the maximum 7, ranged from 10.05 to 12.00 as the Schmidt number Sc
ranged from 0.2 to 2.0, which represents the diffusing chemical species mostly present in air at 25 °C 1 atm for which
the value of Prandtl number, Pr, equals 0.7 and for the frequency parameter & ranging from 0.0 to 25.0.

Finally, we note that the Keller box method as described above gives second order accurate solutions in both
directions. As the method is related to the Crank Nicholson method no numerical stability problems were encountered
even though the governing system is nonlinear.

5. Results and discussion

Natural convection flows driven by a combination of diffusion effects are very important in many applications. The
foregoing formulations may be analysed to indicate the nature of the interaction of the various contributions to buoy-
ancy. These may aid or oppose one another and be of different magnitudes characterised by the value of N. When the
thermal and solutal effects are opposed, the value of N is negative in order to ensure that the flow is in the positive x
direction. For example, GEBHART and PERA [13] used Pr = Sc for which N=1 (i.e. w=00). The relative physical
extent (1) of the two effects in the convection region is governed by the magnitudes of the Prandtl number and
Schmidt numbers and by their relative values. For steady state other authors have discussed situations the effects of
varying the parameters Pr, Sc, and N on the nature of the fluid flow and heat/mass transport at length. Here we
restrict our discussion to the aiding or favorable case only, for fluids with Prandtl number Pr = 0.7 which represents
air at 20 °C at 1 atmosphere. Although the diffusing chemical species of most common interest in air has Schmidt
numbers in the range from 0.1 to 10.0, the present investigation considers a range from 0.2 to 2.0.

The results obtained by the aforementioned methods are expressed in terms of amplitude and phase of the rates
of heat chemical species transfer. We restrict attention to air as the fluid for which the Prandtl number is 0.7. The
values of the Schmidt number, Sc, are chosen to represent the presence of the various species Benzene (Sc =1.76),
carbon dioxide (Sc = 0.94), water vapor (Sc=0.60), and hydrogen (Sc=0.22) and that of the conjugate buoyancy
parameter w equals 0.0, 0.5, and 1.0. Values of the parameter n are chosen to be 0.0, 0.5, and 1.0. It should be noted
that from the present solutions, the solutions obtained by KELLEHER and YANG [6] are for the case w= 0.0, i.e., when
the flow is governed solely by natural convection and the presence of other chemical species is deemed passive. Further
it should be noted that results obtained by the present method for the case of w= 0.0 have been compared by HoOs-
SAIN et al. [7] with those of KELLEHER and YANG [6].

The computed values of the amplitude and phase of the local heat flux and the mass-flux at the surface obtained
from the above mentioned methods at Sc =0.94 and 0.60 with n= 0.5 and w= 0.5 against £ in [0, 10] are entered in
Table 2. The comparison shows that the low and high frequency solutions are in excellent agreement with those of the
finite difference solutions. From this table it also observed that an increase in the value of the Schmidt number leads
to a decrease in the value of the amplitude of the local heat flux and also leads to an increase in the amplitude of the
mass-flux. We further observe that the phase angles of both the heat flux and the mass-flux increase owing to increas-
ing values of the Schmidt number.
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Fig. 2. a) The local amplitude and b) the local phase of heat flux against & for Pr = 0.7, Sc = 0.22, and n = 0.5 but for
different values of the combined buoyancy parameter w

The effect of varying the buoyancy parameter, w, on the amplitude and phase of the rates of heat and mass
transfer are depicted in Figs. 2 and 3, respectively, for the case Sc =0.22 and n=0.5. In these figures the dotted
curves and the broken curves represent the solutions obtained for the low frequency and high frequency cases, respec-
tively. From Figs. 2(a) and 3(a) it can be seen that there is an increase in the local amplitudes for both the heat and
mass transfer rates due to the increase in the buoyancy parameter, w. This effect is most significant near the leading
edge, i.e. in the low-frequency range. As the value of the frequency parameter increases, these values tend toward the
asymptotic state analysed above.

It can be seen from Figs. 2(b) and 3(b) that the phase angle of the rate of heat transfer increases, but that of the
rate of mass transfer decreases as w increases. These figures also show that for all values of the buoyancy parameter,
there is a phase lead for both transfer rates and they both approach 45° at large frequencies. It should be mentioned
that, in Figs. 2(a) and 2(b), all the curves for w= 0 represent the results obtained for the cases studied by KELLEHER
and YANG [6] and HOSSAIN et al. [7] (in absence of a magnetic field).
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Fig. 3. a) The local amplitude and b) the local phase of mass flux against & for Pr = 0.7, Sc = 0.22, and n = 0.5 but for
different values of the combined buoyancy parameter w
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Fig. 4. a) The local amplitude and b) the local phase of heat flux against & for Pr = 0.7, Sc = 0.22, and w = 0.5 but for
different values of the combined buoyancy parameter n

Taking w= 0.5 and Sc = 0.22, the effects of varying the temperature-concentration exponent, n, on the ampli-
tude and phase of the surface heat and mass fluxes are depicted, respectively, in Figs. 4 and 5. From these figures we
again see excellent agreement between the results obtained for low- and high frequency with those obtained by the
finite difference method. It can be seen from Figs. 4(a) and 5(a) that near the leading edge, the amplitudes of both the
surface heat-flux and the surface mass-flux increase due to increases in the value of n. On the other hand, from
Figs. 4(b) and 5(b) one can see decreases in the phase angles of the surface heat and mass fluxes in the low to moder-
ate frequency region as the temperature exponent, n, increases. Finally, it is observed from the above figures and the
tables that, in presence of all the pertinent parameters, there is always a phase lead for both the surface heat-flux and
the surface mass-flux, and that these phases tend to 45° at large frequencies.
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Fig. 5. a) The local amplitude and b) the local phase of mass flux against & for Pr = 0.7, Sc = 0.22, and w = 0.5 but for
different values of the combined buoyancy parameter n
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6. Conclusion

A linearised theory has been utilised to study the heat and mass transfer response of the laminar free convective
boundary layer flow of viscous incompressible fluid along a vertical impermeable flat plate to an oscillating surface
temperature and surface species concentration when both the mean surface temperature and the mean surface concen-
tration vary as a power n of the distance measured from the leading edge. Three distinct methodologies, namely, the
perturbation series for the low-frequency range, an asymptotic method for the high-frequency range, and an implicit
finite difference method for the intermediate frequencies, have been used. Detailed numerical calculations are carried
out for wide range of parameters to examine the results in terms of the surface heat-flux and surface mass-flux re-
sponses to surface temperature and surface concentration fluctuations. In particular the amplitudes and phases of the
response were considered. The governing parameters were the surface temperature-concentration gradient n, the
Schmidt number Sc, and the combined buoyancy parameter w. It has been found that the amplitude and phase angles
of the surface heat flux as well as of the surface mass-flux predicted by the perturbation and asymptotic methods are
in good agreement with the finite difference solution. From the present investigations, it may also be concluded that
the amplitude of the surface heat flux as well as the surface mass flux increase as the frequency increases regardless of
the Schmidt number, Sc, the buoyancy parameter, w, and the exponent n. The phase angles for both the surface heat
flux and surface mass flux increase monotonically towards the asymptotic values 45° as & — oo for all values of the
governing physical parameters.
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