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Abstract

We consider the onset of convection in a porous layer heated from below. The layer is anisotropic with respect to
both its permeability and diffusivity and is inclined to the horizontal. The aim of this work is to determine not only by
how much the critical Rayleigh number varies when the layer is inclined, but also the wave number and the angle the
roll makes with the direction about which the layer is inclined. We find that there is not always an abrupt transition
between longitudinal and transverse rolls as the governing parameters are varied, but there is often a smooth transition
between these states. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the most widely studied and fundamental
processes in the study of convection in fluid-saturated
porous media is the onset and development of convec-
tion in layers heated from below. The pioneering works
in the field were carried out by Horton and Rogers [1]
and Lapwood [2], and the general problem has become
known as the Horton-Rogers-Lapwood or Darcy—
Bénard problem. A fairly comprehensive account of the
current state-of-the-art may be found in Rees [3]. In its
classical formulation a porous medium is sandwiched
between two uniform temperature plane surfaces and is
heated from below.

While there are many different extensions to Darcy’s
law, we focus solely on the effects of introducing an-
isotropy where the principal axes of the permeability
and diffusivity tensors coincide with the coordinate di-
rections. The first work to deal with such problems was
undertaken by Castinel and Combarnous [4], and de-
tailed reviews of anisotropic convection may be found in
Storesletten [5] and Vasseur and Robillard [6].
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In this paper, we investigate in detail how the incli-
nation of the layer away from the horizontal affects the
criterion for the onset of anisotropic convection. It is
well-known from theoretical investigations that longi-
tudinal vortices with axes directly up the layer are
favoured when the layer is isotropic; see Rees and Bas-
som [7], for example, who give a very detailed analysis of
tilted isotropic layers.

Apart from the companion paper [8], only Stores-
letten and Tveitereid [9] deals with the combined effects
of anisotropy and layer inclination. The authors of [9]
assumed that the preferred mode of convection at onset
takes the form of either a longitudinal vortex (where the
vortex is aligned parallel to the mean flow direction), or
a transverse roll (which is perpendicular to the longi-
tudinal roll). In that paper conditions are given in which
transverse modes are preferred to longitudinal vortices
at relatively low but nevertheless O(1) inclinations.

One of the aims of this paper and of its predecessor
[8] is to determine whether the sharp transition as-
sumption found in [9] is valid. The results contained in
[8], which considers small inclinations from the hori-
zontal, show that Storesletten and Tveitereid were cor-
rect in assuming a sudden transition but we show here
that this assumption is, in fact, invalid for O(1) incli-
nations. We find that there are parameter regimes where
there is a smooth transition, in terms of the preferred
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Nomenclature z horizontal ~ Cartesian  coordinate
across the layer

D diffusivity tensor

= . Greek symbols

f,8,9,F,G,Q small perturbations reer Symoo:s viscosit

g gravity vector K Y .

7 height of layer 00 reference density

ik unit vectors in the x, y and z p coeflicient of cubical expansion

2 _7 = K . . 9 h p P : .

directions, respectively ? eat 'capac1ty rath . .

k wave number ¢ modified permeability ratios

K permeability tensor €153 permeability ratios

; pressure n modified diffusivity ratios

R Darcy—Rayleigh number o 13 diffusivity ratios

p time o layer inclination

t4 functi

T: temperature of cooled surface g’ Zﬁiitt?grclti)()fnroll

Th temperature of heated surface

T temperature 0,0 scaled temperature

v mealil temperature A complex exponential growth rate

m

u fluid flux velocity in the x direction Superscripts and subscripts

v fluid flux velocity in the y direction ! differentiation with respect to y

w fluid flux velocity in the z direction i imaginary part

X Cartesian coordinate up the inclined 1,2,3 x, y and z components of the

layer permeability and diffusivity tensors,

y Cartesian coordinate across the layer respectively
roll orientation, between the transverse and the longi- i+ K- (Vp+ pof(T — Tnn)g) = 0, (2)
tudinal roll as the angle of inclination increases. There
are also regimes where the transition is smooth until a oT
particular oblique orientation is achieved, and then there ey +u-VI'=V-(D-VT), 3)

is a sudden change to the longitudinal roll. The funda-
mental problem we solve has five independent parame-
ters (two diffusivity ratios, two permeability ratios and
the angle of tilt) and therefore we cannot hope to give a
comprehensive account of the whole of parameter space.
Nevertheless, we hope that the results presented allow a
good qualitative understanding of the preferred form of
destabilisation of an anisotropic layer.

2. Equations of motion

We consider the onset of convection in a tilted
anisotropic porous layer heated from below. The layer is
of thickness ~ and is inclined at an angle o to the
horizontal. The horizontal z-axis forms the direction
about which the layer has been rotated, the y-axis is
perpendicular to the bounding surfaces, and the x-axis
lies in the lower surface pointing up the plane. We
assume that Boussinesq approximation holds, and that
no other extension to Darcy’s law is present except
for anisotropy in the permeability and diffusivity.
Therefore, the flow and heat transfer are governed by
the equations

V-u=0, (1)

where the permeability and diffusivity tensors have their
principal axes in the coordinate directions and are given
by

K = Kiii + Kyjj + Kskk, 4)

D = Diii + D,jj + Dskk. (5)

The vectors, i, j and k are the unit vectors in the x, y and
z directions, respectively. Terms in (1)-(3) have their
familiar meanings in the porous medium context and
these are given in the nomenclature.

We non-dimensionalise using the following substitu-
tions:

ah?
(x7y>z):h(X*7)’*7Z )> ﬂ:DZhﬂ*7 t:_[*v (6)
D,
D
==y T=T.+ (% - T)0, (7)
K
and obtain
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op 1
v=— (ay—o—R(H—i)cosoc), (10)
K3 ap
—_ 2 11
W= (11)
o0 D, 629 0%0 D; 2?0
a e V=5 e T, a2 (12)

where the asterisk superscript has been omitted for
clarity of presentation. As in [8] we consider both two-
dimensional and three-dimensional modes of instability.
For two-dimensional convection we define a stream-
function, y, using

oy oy

S . S 13
u ay’ v ax7 w ) ( )

whereas for three-dimensional convection we eliminate u
to obtain a system of equations in terms of pressure and
temperature only. Thus, in the former case we consider
the equations

Gzlp %y . (00 a0 .
& — e ay2 —Rg1<—cosocf—y sma), (14)

o dyo0_dyao_ 0 0 15)
% axdy oyox Nz g2

subject to

Yy=0,0=1o0ny=0
and Yy =0,0=0o0ny=1 (16)

and in the latter case we use

51 &p @p+ 3212) R{fl smoc+2—zcoscx (17)

6@0 R|& — smoc+2icosoc}9—f,%%—2—i2—z
I oo

subject to

2—;) ;cosoc 0=1ony=0

and %D}:—%cosoc7 0=0on y=1. (19)

The non-dimensional parameter,

PogPK(Th — T)h
uD,

R= (20)

is the Darcy-Rayleigh number based upon the per-
meability and diffusivity in the y-direction, and

Kl K3 Dl D3

57 53:E7 ’11:[72’ '13:52

&= (21
are permeability and diffusivity ratios.

The linear stability characteristics are obtained
by first linearising Eqgs. (14) and (15), and Eqgs. (17) and
(18) about the basic flow profiles by means of the sub-
stitutions

1
Y= —ERél(y—yz)sina—i— Y, 0=1-y+0,

1
p= ER(y—yz)cosac—i-P7 (22)

where the magnitudes of ¥, ® and P are assumed to be
infinitesimally small. We therefore obtain the following
linearised perturbation equations in two-dimensions:

62‘1’ o’y 00 00
—=R& | — - 23
él 6y €1< 3y SO o smoc) (23)
6_@7 o’e 62@+6 4 RE sin _1\oe
o " Mae Top o Trasne(v =5 )50
(24)
and in three-dimensions,
?p o? 00 . 00
(51a'ZJF@’ZJF@@*Z'Z:R{@&SIH“JF@COS“},
(25)
00 e d’e o’e
gz’ﬁﬁ 3 = T3 = + Rcosa® + R¢,
00 0P
xsma(y_i)a-@ (26)
subject to
oP
qf:@:a:o on both y=0and y =1. (27)

As in [8] we Fourier-decompose the disturbances in the x
and z directions which reduces the perturbation equa-
tions to ordinary differential eigenvalue form. We
therefore substitute

— if(y)eik"“’,
into (23) and (24) to obtain

O = gy (28)

' —R&f = R& [(keos0)g + (isina)g], (29)

o !
g' = Kng = kf — (Rik¢, sin ) (y - z)g +ig  (30)

subject to f=g=0 at y=0,1. Here k is the wave
number of the disturbance and A is the exponential
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Fig. 1. Detailed neutral curves for the onset of two-dimensional convection in layers with 7, =1 for: (a) & =3, (b) & =1,
(c) ¢, = 0.3. The lowest curve in each case corresponds to a horizontal layer (o = 0°) and each successive curve corresponds to an

increment of 2°.

growth rate. For three-dimensional disturbances we
substitute

P = q(y)eik(z €Os p+xsin ¢)+Ar
e = g(y)eik(:cos ¢+xsin p)+Air (31)

into Egs. (25) and (26) to obtain

q" — K*(& sin> ¢ + & cos® g
= R[(cosa)g' + (ik¢, sin ¢ sina)g], (32)

g+ [Rcoso — k(i sin’ ¢ + n cos® §)| g
= ¢ — (Rik¢, sin ¢ sin ) (yf%)ngA'g (33)

subject to ¢ =g =0 at y =0, 1. Here ¢ represents the
orientation of the axis of the vortex disturbance relative
to the x-direction. The value ¢ = 90° represents the two-
dimensional case and is termed a transverse roll, ¢ = 0°
represents the longitudinal roll, and rolls of other ori-
entations are called oblique.
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a (degrees)

Fig. 2. Variation of the critical values of R with o for two-di-
mensional convection for different values of £; with 5, = 1. The
curves for ¢ =3, 1 and 0.3 correspond to the maximum and
minimum values of the neutral curves shown in Fig. 1. An-
isotropy corresponds to the dashed line.

In this paper, we consider first two-dimensional dis-
turbances, for although there exist parameter sets for
which three-dimensional disturbances are more de-
stabilising, it is always possible to eliminate three-
dimensionality by restricting the layer sufficiently in the
spanwise (or z) direction with impermeable insulating
sidewalls.

400
R.
350}
300¢
250}
200F
1507
100F

50

0 5 10 15 20 25 30 35 40 45
o (degrees)

Fig. 3. Variation of the critical values of R with o for two-di-
mensional convection for different values of #, with & = 1. The
values of #, are 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5, 2.0,
2.5, 3.0, 5.0 and 10.0. Anisotropy corresponds to the dashed
line.

3. Two-dimensional instabilities

At O(1) inclinations Egs. (29) and (30) must be solved
numerically. The method chosen to elucidate the global
stability properties is identical to that used in Rees and
Bassom [7] who considered the equivalent isotropic layer.
The ordinary differential eigenvalue problem was trans-
formed into a matrix eigenvalue problem by first dis-
cretising the equations using central differences on a
uniform grid, then solving for the vector of f-values in
terms of the g-values using the approximation to Eq. (29),
and by substitution of this into the approximation of Eq.
(30). The resulting complex matrix eigenvalue problem
for A was solved using the NAG library routine FO2AJF.
This method was applied over a range of values of R and
k for distinct values of o and the neutral curves were
obtained by employing a contouring routine to Re(4) to
identify where this is equal to zero.

Typical results of this process are shown in the
various subfigures of Fig. 1 which correspond to the
cases & =3, & =1, & =0.3, where 5, = 1. Isotropy
corresponds to the case ¢ =1 and it is clear in all
three cases that the critical Rayleigh number increases
with increasing inclination. Of most importance is the
lowest point of these neutral curves where OR/0k = 0
and Fig. 2 shows the variation of such values of R
with o. Of course this zero-slope condition also cor-
responds to maxima in the curves; see the top of the
o = 30° curve in Fig. 1(b), for example. For & = 1 the
maximum slope for which there is instability is
o =31.49° and the neutral curve given in Fig. 1(b)
tends towards the asymptotic value o = 31.30° at large
values of R; see [7]. Therefore, = 31.49° is the largest
inclination for which two-dimensional linear instability
may arise. This maximum inclination decreases as ¢&,
increases — o,y 1S approximately 21° for &, = 3.0, and
is greater than 47° for ¢; = 0.3. Once &, is less than 0.4
then the asymptotic value of « at large values of R
assumes importance since the local maximum and
minimum which exist at lower values of R have co-
alesced.

In Fig. 3, we see the equivalent behaviour for the
anisotropic diffusivity cases with &, = 1. For a fixed in-
clination the critical Rayleigh number typically rises as
1, increases. Again we see a pronounced local maximum
inclination for the presence of instability for any chosen
value of #,, although this is true only for values less than
roughly 3.0.

4. Three-dimensional instabilities

The analysis in [7] shows that ¢ = 0° forms the pre-
ferred mode for all inclinations of an isotropic layer.
However, Storesletten and Tveitereid [9] showed that
there are many circumstances when transverse modes
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Fig. 4. Variation of R, with « for various roll orientations from ¢ = 0° to ¢ = 90°. Curves are plotted at increments of 5° in ¢. Here
we assume that the layer is thermally isotropic (7, =n; =1) with & =1 and (a) & =3, (b) & =1, (¢) & =0.7, (d) & =0.15,

(e) & = 0.05.

(¢ =90°) are favoured over longitudinal modes. The
aim of this section is to examine in detail the behaviour
of oblique modes and to determine if and when these
supercede both longitudinal and transverse modes in

importance. A secondary aim is to provide a good
qualitative understanding of modal transitions as the
non-dimensional parameters vary. Given that there are
five parameters (namely, o, &;, &, 1y, #3) it would be
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« (degrees)

Fig. 5. A close-up view of the neutral curves for & = 0.3 (with
& =mn =n;=1) for roll orientations between ¢ = 0° and
¢ = 90°. Curves are plotted at increments of 2° in ¢. This figure
shows the smooth transition in the preferred roll orientation as
the layer inclination changes.

unreasonable to be comprehensive in presenting quan-
titative results. Therefore, we restrict our quantitative
presentation to the thermally isotropic case for which
m=mn=1

It is only possible to make analytical progress at O(1)
inclinations for longitudinal rolls. In this case the onset
Rayleigh number for general values of k is

(% + R&) (% + Ky)

R =
k2&;5 cosa

(34)

The minimising wave number and the corresponding
critical Rayleigh number are

I

ke =———7
(&ms)

(35)

and

0 1272
R.=1m*|1+ (é_3> cos o. (36)
3

Here we see clearly that R, — oo as o — (1/2)m, the
vertical limit. This is consistent with the integral argu-
ment of Gill [10] who showed that the transverse dis-
turbances always decay for vertical isotropic layers; also
see [11] for further analysis of this problem. Other roll
orientations require numerical solution and, given the
relatively straightforward nature of the stability problem
as evidenced by Fig. 1 (i.e., that neutral curves are uni-
modal and that onset corresponds to stationary

(Im(4) = 0) modes rather than to travelling (Im(1) # 0)
modes) we may simply find the critical Rayleigh number
in each case by imposing the condition OR/0k = 0.
Therefore, we need to solve Eqgs. (32) and (33) together
with those formed by taking 0/0k of (32) and (33).

If we define Q = 0g/0k and G = 0g/0k, then the full
system we solve is

q" — k(& sin’ ¢ + & cos® ¢)g — R[(cos o)g’

+ (ik&; sin ¢ sina)g] =0, (37)
g"+ [Reosa — k(i sin ¢ + ; cos’ P))g—q

+ (Rik¢, sin ¢ sin o) (y — %)g —ilig =0, (38)
Q" — k(& sin® ¢ + & cos® )0 — R [(cos )G

+ (ik¢&, sin ¢ sin «) G|
= 2k (&, sin® ¢ + &5 cos® Pp)g — (Ri&, sin psina)g,

(39)
G" + [Rcoso — K*(y sin® ¢ + nycos’ ¢)]G — O
1
+ (Rik¢, sin ¢ sin o) (y — 5) G—iuG
= 2k(, sin® ¢ + 175 cos® Pp)g — (RI&, sin ¢ sin «)
1 .04
x (yfi)gﬂag, (40)

where /; is the imaginary part of A (which was always
computed to be zero), with Re(4) =0 defining neu-
trality. The appropriate boundary conditions are that

¢d=¢g=0=G=0 at y=0,1. (41)

There are four eigenvalues to find, namely R, k, A; and
0/;/0k and therefore we require four normalisation
conditions. Given that Eqs. (37)-(40) are complex, these
four conditions are that

g0)y=1, ¢'(0)=0. (42)

Eqgs. (37)-(41) form a 16th-order system of real equa-
tions and they were solved by means of a variant of the
Keller box method first introduced by Keller and Cebeci
[12] in the context of boundary layer theory. Here we use
a form suitable for ordinary differential eigenvalue
problems and which was developed by Lewis et al. [13],
although an independent study by Hsu and Wilks [14]
uses a similar methodology. The equations are again
approximated using second-order accurate central dif-
ference approximations whilst retaining second-order
form in y, although the standard Keller box method
reduces the equations to first-order form. The resulting
system of algebraic equations are solved using a multi-
dimensional Newton Raphson method. When properly
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Fig. 6. Variation of (a) R.cosa, (b) k. and (c) ¢, with o. Minimisation of R, over both k and ¢ has been imposed. Here we take
& =n =ny=1for & = 0.05,0.1,0.15,0.2,0.3,...,0.9.

ordered the iteration matrix takes a modified block tri-

diagonal structure as illustrated below

B C
Ay By G
A3 B; C3

Av-1 By Cyoa
Ay By
D, D, D; ... Dy Dy

E,
E>

E;

Eyn_1
Ey
0

Un-1

Uy

I'n
o/ /I//‘

Here v; represents the error in the solution vector
containing ¢, g, Q and G at the ith gridpoint; / is the
error in the eigenvalues; r; represents the finite differ-
ence approximation to the full Eqgs. (37)-(40); 4;, B;
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and C; are 8 x 8 matrices forming part of the Frechét
derivative of r; with respect to ¢, g, Q and G; A is
composed of the four normalisation conditions sup-
plemented by four dummy conditions in order to
maintain eight rows in each block for convenience; D;
is the Frechét derivative of the normalisation condi-
tion; and E; the Frechét derivative of r; with respect to
the eight eigenvalues (including the four dummy
eigenvalues). All the entries in the matrix are computed
using a straightforward numerical differentiation within
the code, rather than being specified explicitly. Eq. (43)
is solved by an extension of the block Thomas
algorithm to account for the extra row and column as
compared with the standard block tridiagonal struc-
ture.

On a practical note, this method, as expounded
above, is of second-order accuracy and gives reason-
ably accurate results even when using a grid of 10 in-
tervals. However, we found that much better accuracy
was obtained by differentiating Eqgs. (37) and (39) with
respect to y and solving for ¢’ and Q' rather than for ¢
and Q. The difference in the absolute accuracy of the
two approaches seems to lie with the fact that the
former requires the satisfaction of derivative boundary
conditions whereas the latter does not. In each run of
the code the initial parameter set always corresponded
to o =0 for which analytical solutions are available.
For a chosen set of values of &, &, 1, and #; the code
followed the neutral curve using a straightforward
curve-following methodology drawn from numerical
bifurcation theory. In practice each new point on the
curve was constrained to satisfy a proximity relation of
the form

s ’ R, — R, ’

(=) + (B™) - m
where the subscript # denotes the number of steps taken
along the neutral curve, and doy,,, and dRy., the maxi-
mum possible increments in o and R along the curve
from point to point. This approach was deemed
necessary because the neutral curves frequently have
turning points, as depicted in Fig. 1 and which was also
computed using this method.

We now present a comprehensive set of neutral
curves for various values of & , o and ¢ with n, =
ny = 1. In Fig. 4(a)-(e) are shown the respective cases
=3, 1, 0.7, 0.15 and 0.05, where we show how the
critical Rayleigh number varies with inclination for a set
of roll orientations, ¢. When &; = 3 (see Fig. 4(a)) lon-
gitudinal rolls form the preferred mode of instability for
all inclinations of the layer. In fact this is true whenever
&3 > 1. When &, =1 we recover the isotropic case dis-
played in Fig. 4(b). Here all modes have the same critical
Rayleigh number when the layer is horizontal, but
whenever the inclination is non-zero longitudinal modes

are again preferred. Therefore, we concentrate on cases
for which &; < 1 for the detailed results are more in-
teresting. The variation of R, with o is shown in Fig. 4(c)
for £&; = 0.7 and shows that when « is less than roughly
23.5° then transverse modes are dominant. It appears to
be the case that there is then a sharp transition to lon-
gitudinal modes at higher inclinations. We will see later
that this is not always true and that the transition may
be smooth with the preferred orientation passing
through all possible values from 90° to 0° over a short
range of inclinations. That this truth may be seen in Fig.
5 where we show a close-up view of the transition point
for the case & = 0.3.

At smaller values of &; the local maximum (in terms
of o) which is shown in Fig. 2 becomes crucially
important. When ¢; is as low as 0.05, as shown in
Fig. 4(e), then there is now an abrupt change in the
preferred mode as « increases, and this arises because
of that maximum. However, unlike the cases consid-
ered by Storesletten and Tveitereid [9], the sudden
change in modes is also accompanied by a jump in the
critical Rayleigh number and wave number. A transi-
tional case is shown in Fig. 4(d), where &; =0.15.
There is again an abrupt change in the preferred mode
from ¢ =90°, but now it is to a mode of non-zero
orientation which then proceeds to vary smoothly to-
wards zero as o increases.

These cases, and others are summarised in Fig. 6(a)-
(c), where we show ming R as a function of o together
with the associated values of k. and ¢_. All the obser-
vations derived from the subfigures of Fig. 4 may also be
seen in these graphs. The critical orientation and the
range of inclinations over which it changes smoothly are
seen clearly in Fig. 5(c). The abrupt nature of the tran-
sition when ¢&; is sufficiently small is also seen clearly in
all three subfigures of Fig. 6. In Table 1 we indicate the

Table 1
Minimum and maximum values of o over which the transition
from ¢ = 90° to ¢ = 0° takes place®

53 Omin Omax d)jump
0.9 14.26 14.42

0.8 19.63 20.00

0.7 23.35 23.99

0.6 26.15 27.11

0.5 28.31 29.59

0.4 29.94 31.52

0.3 31.06 32.86 77
0.2 31.46 33.37 73
0.15 31.46 33.09 33
0.1 31.46 32.08 13
0.05 31.46 31.46 0

#When ¢; > 0.35 the transition is smooth. When ¢&; < 0.05 the
transition is sudden. In the intermediate range of values there is
a sudden jump from ¢ =90° to ¢y, followed by a smooth
variation in ¢ towards 0°.
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range of inclinations over which the smooth transition
takes place.

The general pattern of behaviour for values of &
which are larger than unity is roughly the same as for
when &, = 1. The general shape of the ¢ = 90° curve re-
mains the same with a well-defined local maximum value
of o at relatively small values of R and an asymptotic
value of o when R is large. This means that the qualitative
nature of the curves shown in Fig. 7, for which &; = 3, is
the same as for those in Fig. 6. Now we find that longi-
tudinal modes are always preferred when &; > 3. In fact,
for thermally isotropic layers longitudinal modes are
preferred whenever &; > &,. The maximum value of o for
transverse modes becomes larger as &; increases as does
the critical Rayleigh number and wave number.
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The corresponding curves for & = 0.3 are shown in
Fig. 8. For this value of &; the ¢ = 90° curve does not
have a local maximum, and as shown in Fig. 2, the neutral
curve has not yet attained an asymptotic value of the
inclination. Therefore, we see a small qualitative differ-
ence between the respective curves shown in Figs. 7 and 8.
For example, in Fig. 7(a) we see that the critical value of R
for small values of ;3 increases gradually as o increases,
but then changes discontinuously to a constant value at
o~ 21°. By contrast there appears not to be such a
discontinuity in the corresponding curve in Fig. 8(a). The
analysis of Rees and Bassom [7] evaluates the large-R
behaviour of the neutral curve for the isotropic layer
showing that it becomes vertical, and although a similar
analysis is outside the scope of this paper, we assume that
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250 F 6t
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Fig. 7. Variation of (a) R. cosa, (b) k. and (c) ¢, with o. Minimisation of R, over both k and ¢ has been imposed. Here we take &, = 3
and n, = n; =1 for & = 0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.7, 1.0, 1.5,2.0 and 2.5.
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and 1, =n; =1 for & = 0.02,0.05,0.1,0.15,0.2 and 0.25.

such a similar behaviour exists for anisotropic media
since the structure of the analysis should be identical.

5. Conclusions

In this study, we have made a detailed and extensive
numerical analysis of the effects of anisotropy on the
form of instability in an inclined porous layer heated
from below. We have confirmed the results of Stores-
letten and Tveitereid [9] concerning circumstances when
transverse rolls are to be favoured above longitudinal
rolls. We have also extended the work contained in [9] to

a wider parameter set. In general, either longitudinal
rolls are favoured for all inclinations (such as when
&3 > ¢ in a thermally isotropic medium), otherwise
there is a transition from transverse rolls at lower in-
clinations to longitudinal rolls at higher inclinations.
However, we have found that this transition is not a
straightforward exchange between transverse and
longitudinal rolls, but rather the transition may be
smooth (in terms of the angle of orientation of the
favoured roll) or partly smooth and partly discon-
tinuous when the anisotropy is more extreme. In the
most extreme cases an immediate discontinuous
transition between transverse and longitudinal modes
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occurs. The critical wave numbers and Rayleigh num-
bers follow the same general behaviour as the critical
orientation in terms of the degree of continuity of their
dependence on the angle of inclination.
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