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ABSTRACT 
A boundary layer analysis is performed for the free convective plume in- 
duced by a uniform line source which is placed at the intersection of two 
semi-infinite planes. Particular emphasis is placed on how the presence of 
the planes, which are not placed symmetrically with respect to the vertical, 
affects the direction of the plume. To this end, a two-term boundary layer 
expansion together and a one-term approximation of the flow in the outer 
regions either side of the plume are performed using the method of matched 
asymptotic expansions. A closed-form solution is deduced which determines 
the orientation of the plume in terms of the inclinations of the bounding 
planes. We find that symmetrically placed planes result in a vertical plume, 
but that the plume is aligned differently otherwise. 0 2001 Elsevier Science Ltd 

Introduction 

The free convective flow induced by a uniform line source of heat in a porous medium 

is one of the fundamental problems in fluid mechanics. Wooding [l] w~ls able to show that, 

subject to the boundary layer approximation, the resulting plume may be determined 

analytically in terms of hyperbolic functions. In particular, the temperature field may be 

written in terms of a sech’ profile. Ingham [2] extended this analysis to the case of (form- 

drag) inertia-dominated flows in porous media. Once more a self-similar flow results which 

may be solved analytically, although the temperature field now exhibits a sech4 profile. 
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In common with many other boundary layer analyses Afzal [3] considered the detailed 

effects of the external flow generated by entrainment from the region outside the boundary 

layer. He performed a high-order asymptotic analysis of this situation and found correc- 

tions to the leading order flow first studied in [l]. H owever, the work contained in [3] is 

restricted to cases where the external domain is symmetric with respect to the vertical. 

The aim of this present paper is to extend Afzal’s analysis to cases where the external 

domain is not symmetric. A closed-form equation relating the orientation of the plume to 

the orientations of the bounding surfaces is obtained. We confirm Afzal’s assumption that 

the plume rises vertically when the domain is symmetric, but find that in all other circum- 

stances the plume is affected by the external flow to such an extent that its centreline lies 

at an angle to the vertical. 

Mathematical Formulation 

The present work deals with natural convective flow arising from a horizontal line 

source of heat which is embedded in an isotropic porous medium. A Cartesian frame of 

reference is chosen where the x-axis is in the upward vertical direction and the y- and 

z-axes are both horizontal, and aligned normal to and along the line source, respectively. 

We consider two-dimensional steady flow and assume that Darcy’s law and the Boussinesq 

approximation are both valid. Therefore the full governing equations take the form 

L + %I, = $$/ez - *zey, (lb) 

where r,6 is the streamfunction defined in the usual way, and 0 is the temperature. All the 

variables in (1) have been made dimensionless using a lengthscale obtained by setting the 

appropriate Rayleigh number to unity. 

Far away from the heat source the velocity and temperature approach their respective 

ambient values: 

*!I -+ 0, e+o as y+cXl, (2) 

although we note that this is correct only from the point of view of the leading order 

boundary layer; appropriate conditions in the external region are given later. The equation 

for the global conservation of heat then takes the form, 

J Oi) (be - e,) dy = 1, 
-co 

(3) 

where the unit value on the right hand side is the dimensionless rate of heat production 

per unit length of the source. 



Vol. 28, No. 1 CONVECTIVE PLUMES IN POROUS MEDIA 33 

FIG. 1. 
Schematic diagram of the flow configuration depicting the two bound- 
ing surfaces at $ = CY+ and q5 = cr-, and the plume with centreline 
along 4 = S. Also shown are the x and y axes (q5 = 0 and d = 90”, 
respectively) and the direction of gravity. 

The line source is placed at the intersection of two bounding planes, see Fig. 1, and 

we will be concentrating on the behaviour of the plume at large distances from the source 

for which the boundary layer approximation applies. The flow will be divided into three 

regions, a boundary layer (inner) region which is thin relative to the flow domain, and two 

outer regions either side of the plume. 

Analvsis of the Inner Region 

In solving Eqs. (l), (2) and (3) we use the method of matched asymptotic expansions 

to determine series solutions for II, and 0. A similar method is used by Afzal [3] in the 

case of symmetrically placed bounding surfaces. A straightforward application of Afzal’s 

method fails when trying to solve for the first correction to the leading order boundary 

layer flow, as it becomes impossible to apply all the boundary conditions when the plume is 

assumed to remain vertically orientated. The key to the analysis is to rotate the coordinate 

axes through some angle, 6, which is to be determined from the analysis. Relative to polar 

coordinates (T, 4) the positive z-axis corresponds to 4 = 0, the y-axis to 4 = 90”, and the 

bounding surfaces to 4 = cy+ and 4 = (Y-, as shown in Fig. 1. The new coordinates, X 

and Y, obtained by rotation, are given by 

X = XCOSS +ysin6 Y = -xsin6 +ycos6. (4) 

The transformed governing equations are then 

*xx + *YY = 0~ sin6 + ey ~0~6, exx + eyy = $xey - lclyex, (5) 
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and the energy constraint becomes 

J”r $x&ins +$y&osS -0xcosS +&sin6 dY =cosS. 1 -co (6) 
In the inner, or plume boundary layer, region the solution takes the following form as 

x --t 03: 

* = x”3fo(v> + fl(17) + . . . , e = x-“3go(7)) + x-2’3gl(v) + . . - ) (7~ b) 

where the similarity variable is 

17 = Y/X2? (7c) 

This means that the plume is taken to lie around Y = 0 and is aligned at an angle, S, to 

the vertical. After substitution of (7) into (5) and (6) the boundary layer approximation 

is invoked (X >> Y) and l’k p I e owers of X are equated to obtain, 

f; 1 g;coscY = 0, s: + $(foso)’ = 0, @a, b) 

fy -gg:cosS = -+sins(go+2rjgh), 9:’ + ifog: + ff; + Qfiso = 0, (85 4 

and the heat flux conditions are: 

J mf;godrl = 1, 
-cm 

PaI 

J”[ fh _-oo + f:so + [$(fo - %f;) + dl t=6] dq = 0, 

The boundary conditions are that 

WI 

fo(0) = d(O) = 0 and f;,go,gl +o as 77 --+ foe. (10) 

The other boundary conditions necessary to solve Eqs. (8) must be determined by asymp- 

totic matching with the solutions from the two outer regions. 

Following Afzal [3] there exist exact closed-form solutions of the leading and first 

order Eqs. (8a) to (8d) which satisfy the heat flux relations (9). We introduce a scaled 

independent variable 

c = +orl (11) 

and the new coefficient functions, To, go, 7, and ijr by setting 

- 
fo(s) = aof o(C), 90(71) = bog,(C>, Pa) 

- 
fl(77) = %f1(6)7 a(a) = blu,(l), (12b) 
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where 

a0 = (13a) 

al = 4, b&f& 
3cos6 (13b) 

Substitution of (ll), (12) and (13) into Eqs. (8) and (9) yields the following equations, 

Tb’ - & = 0, g; + 2(f,g,)’ = 0, 

1; - 3 = B(T:, + r’sb’>, 8; t 2J,& +4&s, + 27:Tjo = 9, 

where 
B= 3bs$nb, 

a0 

and the constraints, 

J mf;godC=4 O” --I 
3’ 

--oo J 
_Jfo81 + 7koo)dC = 0. 

The closed-form solutions are 

f. = tanhc, go = sech’ C, 

71=+f,-21 ( n cash C)] + Cl + C& + C3( 67; + 70 - 2C), 

91 = q-&j + CzJb’ + C3(CX + m, 

(14a, b) 

(I4c, d) 

(I4c) 

(15) 

(16) 

(ITa) 

(17b) 

were we have imposed exponential decay on the temperature as C + foe. The values, Cl, 

Cz and Ca are constants of integration. 

Note that 7, N -(fB + ‘X3)< as 5 + &co, which provides a symmetric and an- 

tisymmetric parts for the outer region matching conditions. As B is dependent on the 

unknown direction of the plume, 6, via (14e) and (13a), th e satisfaction of the matching 

conditions will yield this angle. But matching with the outer regions requires the use of 

polar coordinates. In terms of polar coordinates we have 77 = r1i3 sin G/(cos @)‘I3 where 

@ = 4 - 6 is the angle relative to the direction of the plume. If we expand for small values 

of 0, then the behaviour of 1c, as q + foe is 

4 N r113 [a0 - $xoal(B + 2C3)@] as77--,W (ISa) 

$ N rr/s [-ao+ ~aoa1(B-Z3)0] ZLS~+-oO. W) 

These expressions will be used for matching purposes. 
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Analysis of the Outer Regions 

In the outer regions it is convenient to use polar coordinates. As the thermal field de- 

cays exponentially out of the boundary layer we may neglect thermal effects. The governing 

equation becomes 

r/&T + t+,T + &lp* = 0, 09) 

where we have used @ as the angular coordinate for convenience. The corresponding 

expansion in the outer region is 

* = T1/3Fo(q + ‘. . 1 (20) 

where Fo satisfies 

F;’ + ;Fo = 0. (21) 

This equation will be solved in the outer region to the left of the plume and the solution 

denoted by F:, while the solution to the right of the plume will be denoted by F[. As the 

two bounding plane surfaces.meet at the position of the line source, both form streamlines, 

and therefore we set 

F,‘(cY+ - 6) = F,-(cx- - 6) = 0. (22) 

Given the form of (18), asymptotic matching with the flow field just outside the plume 

yields the conditions, 

F,- -+ --ao, [Fc]’ + iaoa~(B - X3), as @ -+ O-, (234 

F,+ + ao, [F$]’ + -iuoul(B + 2C3), as @ --+ O+. (23b) 

Therefore we have a fourth order system of equations to solve with two unknown constants, 

6 and C3, and six boundary conditions, (21) to (23), t o satisfy. The solution proceeds 

analytically and easily, and we obtain 

F$ =uo[cos(~) -cot(F)si Pa) 

F; =-uo[cos(f> +cot(y)sin(%>], (24b) 

where 6 is given by the transcendental equation, 

Cot(F) -Cot(y) = -2tanS. 

This closed-form equation gives the plume orientation, 6, in terms of the bounding surface 

inclinations, cy+ and o-. 
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Results and Discussion 

The focus of attention in this paper lies in determining how a two-dimensional plume 

reacts to the location of two external impermeable planes meeting at the line source. 

Intuition would normally dictate that the plume should rise vertically. But some account 

must be taken of the influence of the flow induced in the regions outside the plume, for fluid 

must be entrained into the plume as it rises and thickens. Thus if one surface is very much 

closer to the vertical than is the other, then it is possible that the plume will be attracted 

towards the nearer surface (such an effect may be seen in the impressive photographs of 

clear fluid plumes displayed in Gebhart [4]) and w IC is caused by a lack of available h’ h 

fluid to maintain the required rate of entrainment. Alternatively, the plume will maintain 

itself in a direction dictated by the results of the analysis of this paper where the flowfield 

consists of three regions with the plume forming the central region. 

Eq. (25), which gives the plume orientation, 6, in terms of the values of cr+ and (Y-, 

*may be solved in a fairly straightforward manner using Newton-Raphson iteration since 

the relation is nonlinear. However, it is much easier to find, say, CY+, in terms of (Y- and S 

as (25) may be rearranged to give cy+ explicitly. The results of doing this are displayed in 

Fig. 2 where we confine presentation to positive values of S. 

Figure 2 shows which values of o+ and CK- are required to yield certain inclinations of 

the plume. The line corresponding to S = 0” represents the symmetric case studied by Afzal 

[3]. Here the line is straight and corresponds precisely to o+ + (Y- = 0. The corresponding 

loci of o+ and C-Y- pairs for other values of 6 are also given. The termination of each line 

at the lower end corresponds to where cy+ = cy- = S, i.e. to when the wedge angle of the 

porous medium has been reduced to zero. The upper end of each line corresponds to a 

wedge angle of 360” and is equivalent to the presence of one semi-infinite surface, rather 

than to two. For example, when an isolated surface is present at -150” (i.e. (Y+ = 210” 

and (Y- = -150”), then the plume centreline is at S 1~ 9.3”. 

The rightmost line displayed corresponds to S = 85”; this is a rather extreme case 

where the plume is almost horizontal. For such a value of 6, the ‘right hand’ surface (01~) 

is just above the plume. We feel that this solution is very likely to be an example of one 

which is a mathematical possibility, but one which, if it could be set up in practice, would 

be unstable and which would evolve in time to a state where the plume would travel up the 

4 = 01~ surface. Such a state would correspond to an asymptotic structure consisting of 

an inner region and only one outer region, whereas the focus of this paper is on situations 

where the inner region is embedded between two outer regions. The question of stability 

and realisability should be raised, but it is not within the scope of the paper to answer 

that question. However, it is highly likely that the solutions presented in Fig. 2 will be 

realised when both surfaces lie below the plane of the heat source, i.e. when cy+ > 90” and 

01~ < -90”. When (Y- > 0 or when CY+ < 0 it is also likely that the plume will travel along 
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1 

FIG. 2. 
The loci of values of the surface angles, CV+ and (Y-, which yield plumes 
of various orientations. 

that wall which is closer to the vertical. But the present analysis is not able to indicate, 

for example, whether the case (Y + = 10” and cy- = -10” will yield a three-region flow of 

the type considered here, or a two-region flow with the plume firmly attached to one of the 

walls. This would need to be considered by a numerical simulation of the fully unsteady 

elliptic equations of motion. 

It is clear that asymmetrically placed bounding surfaces affect strongly the predicted 

trajectory of the free convection plume. In all cases the plume lies above or on the radial 

line which is precisely half way between the bounding surfaces. The strong dependence 

shows how important the outer flow is in determining the behaviour of the plume, while 

its position above that radial line indicates the expected behaviour of a plume which is to 

try to rise vertically due to buoyancy effects. 
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