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Sumraary. We present an account of the linear instability of Darcy-Boussinesq convection in a uniform, 
unstably stratified porous layer at arbitrary inclinations c~ from the horizontal. A full numerical solution 
of the linearized disturbance equations is given and the detailed graphical results used to motivate various 
asymptotic analyses. A careful study shows that at large Rayleigh nmnbers two-dimensional instability 
can only arise when c~ < 31.30 ~ However it is also demonstrated that the maximum inclination below 
which this instability may be possible is the slightly greater value of 31.49 ~ which corresponds to a critical 
Rayleigh number of 104.30. 

1 Introduction 

Natural convection in porous layers heated from below has been studied extensively since the 
pioneering works of Horton and Rogers [1], and Lapwood [2]. The horizontal layer, studied 
in detail by Lapwood, forms one the simplest problems of linearized stability theory in fluid 
mechanics. When the layer is of infinite horizontal extent the linearized equations yield roll 
solutions of any phase and orientation, and more complicated patterns may be expressed sim- 
ply in terms of sums of suitable roll solutions (e.g., rectangular and hexagonal patterns) or 
integrals of roll solutions (e.g., the axisymmetric roll pattern described in terms of  the zeroth- 
order Bessel function, J0). The realized roll pattern then depends on the precise form of the 
initia]l disturbances and their subsequent nonlinear interactions. A weakly nonlinear analysis 
of rolls was presented by Palm, Weber and Kvernvold [3], and the nonlinear stability proper- 
ties of these rolls may be gleaned from the papers by Rees and Riley [4], [5]. 

Some of this degeneracy in the instability mode is removed when the layer is inclined, for 
then the first instability to occur as the Rayleigh number increases takes the form of longitudi- 
nal rolls (Weber [6]). Experimental work by Bories, Combarnous and Jaffrenous [7], Bories 
and Combarnous [8], and Hollard et al. [9] shows that this simple theoretical scenario is actu- 
ally more complicated in practice. For instance, polyhedral cells tend to arise when the incli- 
nation from the horizontal is less than about 15 ~ . The existence and stability of polyhedral 
cells may be caused by nonlinear effects (e.g., the temperature dependence of viscosity) 
according to Weber [6], or perhaps by spatial restrictions imposed by having a finite layer in 
experiments. However, these practical results are yet to be fully explained. 

Numerous other papers exist on this topic; see for example Bories and Monferran [10], 
Walch and Dulieu [11], and Caltagirone and Bories [12], [13] for further numerical solutions. 
Studies into the effect of incorporating Brinkman's extension to the ubiquitous Darcy law 
(see Nield and Bejan [14]) have been conducted by Vasseur, Wang and Sen [15] while Stores- 
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letten and Tveitereid [16] were concerned with the effect of material anisotropy. Work by 
Lewis, Rees and Bassom [17] has quantified and confirmed Gill's [18] classic result that con- 
vection in a vertical layer is stable, although another paper by Kwok and Chen [19] shows 
that the inclusion of the Brinkman terms is sufficient to allow destabilisation at sufficiently 
high Rayleigh numbers. Notwithstanding the substantial literature on this topic (the reader is 
referred to text [14] for comprehensive details) there remain some unresolved questions 
regarding the seemingly straightforward linearized stability problem for Darcy flow in an 
inclined layer. Although longitudinal rolls are theoretically the most dangerous disturbance, 
this is true only in certain circumstances, such as when the layer is of  infinite spanwise extent. 
When insulating sidewalls are present there are consequent restrictions on the wavelength of 
the longitudinal roll, and the preferred pattern may then take the form of pairs of oblique 
rolls (pairs are required to satisfy the sidewall boundary conditions, and the resulting plan- 
form is rectangular), or two-dimensional transverse rolls. Apart from a few results at low 
inclinations and an estimate for the maximum angle for which transverse rolls are unstable, 
very little has been presented in the open literature on this aspect. 

The primary objective of this present work is to provide an account of the linear stability 
properties for Darcy flow in an inclined layer and thereby to address some of the outstanding 
issues mentioned above. Of importance for our work is the observation that solutions of the 
linearized equations for general roll orientations may be reduced to a corresponding trans- 
verse roll solution which means that it is sufficient to restrict attention to two-dimensional 
solutions. Below we present a comprehensive set of neutral stability curves and show that the 
estimate forwarded by Caltagirone and Bories [13] that two-dimensional disturbances are line- 
arly unstable for a < 31.8 ~ is slightly too large. The neutral stability curves display distinctive 
behaviors in the large wave number, small inclination angle limit as well in the O(1) wave 
number, large Rayleigh number case. Asymptotic analyses of these limits are undertaken, and 
very good agreement with the numerical results is obtained. 

The remainder of this work is laid out as follows. In the coming section we formuiate the 
governing equations for the problem of Darcy flow in an inclined porous layer and conduct 
the stability analysis in Sect. 3. Here numerical calculations are used to delimit the fairly com- 
plex geometry of the neutral curves, and the various asymptotic limits of these are addressed. 
The paper closes with a short discussion. 

2 Formulation 

Consider the problem of free convection in an infinite layer of a saturated porous medium 
bounded by two impermeable surfaces a distance d apart and inclined at an angle ~ to the 
horizontal. The temperatures of the upper and lower surfaces bounding the medium are taken 
to be uniform and equal to Tc and Th, respectively, with Th > T~. Cartesian co-ordinates 
(~, 9, z) are orientated such that the q-axis is normal to the bounding surfaces of the layer, 2~ is 
aligned up the layer, and ~ is the spanwise coordinate which is horizontal. The fluid is 
assumed to be such that Darcy's law holds and the Oberbeck-Boussinesq approximation is 
valid. Further, the fluid and the isotropic porous matrix are taken to be in a state of thermal 
equilibrium, and it is assumed that t1~ere is no influence of either inertia and boundary effects 
as would be the case if either Forchheimer or Brinkman type terms (Nield and Bejan [14]) 
were present. The governing dimensional equations are then 

ue + ~5~ + t~z = 0~ (2.1.1) 
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K 
(a, ~, e)  = _ _ :  ( ~ ,  p~, p~) 

# 
gg /3K(T  - Tc) (sin a, cos a, 0), (2.1.2-4) 

# 

~T~ + ~T~ + vT~ + ~T~ = ~(T~x + T~ + T~-) (2.1.5) 

where u, v and ~ denote the fluid flux velocities in the x, y and z directions, respectively, { 
is the time, i0 the pressure and T the temperature. Further, Q denotes the density of the satu- 

rating fluid at T = T~, # its (assumed constant) viscosity and /3 the coefficient of  cubical 

expansion. The permeability and thermal diffusivity of the saturated medium are taken to be 

K and ~, respectively, and cr is the ratio of the heat capacity of the saturated porous medium 
to that of the saturating fluid. Lastly, g denotes gravity. 

In this paper we shall concentrate exclusively on the two-dimensional onset problem and 
therefore will set w = 0 and require all z-derivatives to vanish. The rationale behind this 

restriction lies in the following observations: first we note that the presence of sidewalls placed 
at ~ = constant has no effect on a two-dimensional flow in a porous medium in which bound- 
ary effects are absent. Secondly, suitably located sidewalls will enable two-dimensional or 

oblique modes to be realisable in practice as more dangerous three-dimensional longitudinal 
vortices will be inhibited. Thirdly, it is possible to use a simple transformation along the lines 

of that used in Squire's theorem to show that disturbances aligned at an oblique angle may be 

reduced mathematically to an equivalent two-dimensional disturbance at a different wave 

number, Rayleigh number and angle of  inclination; details of this transformation are given in 

the Appendix. The upshot of these properties is that the analysis of this paper forms the basis 
for a complete linearized theory and is not just a specific simplified case. Finally, we remark 

that the two-dimensional porous medium equations, when nondimensionalized, are identical 

to those governing convection in a suitably inclined Hele-Shaw cell. Thus the problem tackled 
here ihas practical relevance in two areas and is not merely an abstract mathematical exercise. 

The variables are nondirnensionalized by setting 

K z T - T ~  (~ ,v]  : - d  ( ~ , ~ ) ,  (~:,v) : d - ~ ( e , Y ) ,  p : - - ~ ,  t : ~, 0 -  , (2.2) 

so that Eqs. (2.1) reduce to 

uz + Vy = 0, (2.3.1) 

u = --p~ + RO sin a ,  (2.3.2) 

v = --p~ + RO cos a ,  (2.3.3) 

Ot + uOx + vO v = Ox~ + Ovv, (2.3.4) 

in which the Darcy-Rayleigh number is defined as 

R = ~g/3Kd(Th - Tc) (2.4) 

The introduction of the streamfunction, r according to 

= - ~ ,  v = r  (2.5) 

simplifies the equations further, and what remains is the coupled system 

0 ~  + Oy~ = ~pzOy - r + Or, (2.6.2) 



106 D.A.S.  Rees and A. P. Bassom 

which has to be solved subject to the boundary  conditions that  ~ = 0 on both y = 0 and 

y = 1, and 0 = 1 on y = 0 and 0 = 0 on y = 1. In the following section we consider the onset 
o f  convection in detail. 

3 Stability analysis 

3.1 Analysis and numerical results 

The basic flow solution corresponding to Eqs. (2.6) is given by 

1 
r 1 6 2  O = O b = l - y  (3.1) 

and is valid for all values of  R and c~. I f  this solution is subtracted f rom the full system (2.6) 

by setting g) = % + r 0 = Ok + Op and the resulting equations linearized we obtain 

V2~ = R[Oz cos c~ - Oy sin c~], (3.2) 

Ot = V20 + r + (Rsinc~)(y-~ ) Oz. (3.3) 

Here the 'p' subscript, which denotes the perturbation,  has been omitted for the clarity of  pre- 
sentation, and V 2 is the usual two-dimensional Laplacian in the x - y space. 

The linear stability of  the basic state (3.1) is determined by setting 

= i f(y)  exp {ikx + At}, 0 = g(Y) exp {ikx + At}, (3.4) 

where k is the wave number  of  the disturbance, and it is recalled that  this two-dimensional 

ansatz is justifiable for the reason given in Sect. 2. Of  course neutral modes arise whenever 

Re(A) = 0 and the functions f and g satisfy 

f" - k2f = (k_R cos c~) g + i(R sin c~) g ' ,  

9" -  k29= kf - ikR s inc~(y-2 ) g + A9, 

subject to the boundary  conditions 

f(O) = f(1)  = g(O) = g(1) = 0 

and the (chosen) normalisat ion constraint 

g'(O) = 1. 

(3.5.1) 

(3.5.2) 

(3.6) 

(3.7) 

System (3.5)-(3.7),  which constitutes an eigenproblem for Im(A) and R, cannot  be solved 
analytically save for the choice c~ = 0 al though the possibility of  analytical solutions at iso- 
lated points in the parameter  space cannot  be precluded. For  various angles of  inclination c~ 
neutral curves may  be computed which delimit the relationship between R and k, and these 
curves were computed using a finite difference method coupled to a matrix eigenvalue solver. 
The system was solved on a uniform grid, and the corresponding vector of  values of  f and g 
at these nodes was determined by the following strategy. Equations (3.5.1) and (3.5.2) were 
approximated  using a 2nd-order accurate central difference approximation,  and therefore the 
continuous functions were replaced by a pair  of  vectors containing the values of  f and g at the 
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Fig. 1.. Neutral curves corresponding to the first four modes of convection in an inclined layer, a The full 
set of curves for 0 ~ < c~ < 31 ~ at intervals of 1~ b Curves for 0 ~ < c~ < I0~ e Curves for 10 ~ < c~ < 20~ 
d Curves for 20 ~ < c~ < 31 ~ 
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grid points. Equat ion (3.5.1) was then used to find the vector of f-values in terms of the 9- 

values, and this was done by inverting the tridiagonal system of equations which arises from 

the finite difference approximation. This vector was substituted into the discrete form of 

(3.5.2) which led to a matrix eigenvalue problem for A and the 9-vector. The eigenvalue pro- 

blem 'was solved by use of the routine F02AJF taken from the N A G  library, and some experi- 

menta t ion suggested that sufficiently accurate solutions for the range of values of R and k 

used in Fig. 1 could be determined by using about  twenty points between y = 0 and y --- 1. 

The eigenproblem (3.5)-(3.7) was solved on a rectangular grid in the k - R parameter space 
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given by 0 < k < 57r, 0 < R < 1000 with a spacing of  Ak = 7/50 and A R  = 2.5 in the respec- 

tive directions. Given these results a contour interpolation program was used to isolate the 

neutral curves for which Re(A) = 0, and it was found that this parameter domain is large 

enough so as to include the first four modes. This method, though formally less accurate than 

say a more straightforward fourth-order Runge-Kutta  code with a multiple-shooting facility, 

yields the neutral curves very much more quickly. Moreover,  a very significant advantage of  

the methodology adopted here is that disconnected solution branches cannot be overlooked, 

and therefore the results presented in Fig. I are guaranteed to be complete. The geometry of  

the neutral curves is quite complicated and, in order to aid interpretation, the full solutions 

for o~ up to about  31 ~ shown in Fig. la  are divided into approximately ten degree bands in 
Fig. l b - d .  

When a = 0 Eqs. (3.5) can be solved analytically by setting both f(y) and 9(Y) propor-  
tional to sin nTry, and the corresponding neutral curves, given by 

R - (k2 + n2~2)2 
k2 , (3 . s )  

are clearly seen in Fig. l: these neutral modes are stationary (i.e., Ira(A) = 0) and the neutral 

curves (n = 1, 2 , . . . )  exist for all k > 0. There are a number of  features of  Fig. 1 that are deser- 

ving further attention, and these issues are tackled below. When a = 0 the neutral curves cor- 

responding to modes 1 and 2 (i.e., for n = 1 and n = 2 in (3.8)) are distinct from one another, 

as are those corresponding to modes 3 and 4, modes 5 and 6 and so on. When a is small we 

see that these respective pairs join together at a turning point where dk/dR = 0 at finite values 

of  k. As an example of  this phenomenon it is observed that for c~ = 3 ~ this critical wavenum- 

ber is about  4.6: for smaller values of  k there are the two stationary mode branches from 

which a travelling mode emerges and proceeds towards larger values of  k. The point at which 

the travelling mode branch appears is not  the turning point of  the stationary mode curve, but 

is slightly above it; this is seen more clearly in Fig. lc. As a increases to larger values the sta- 

t ionary mode neutral curves pinch off to form closed loops - these may be seen clearly in Fig. 

ld  for a = 30 ~ and 31 ~ At such inclinations there are no travelling mode curves, but  an 

"open" loop remains at higher Rayleigh numbers. Eventually the closed loop disappears as 

increases still further, and all computed values of  Re(A) on the (R - k)-grid are negative. A 

similar phenomenon occurs for modes 3 and 4, al though the corresponding closed loops dis- 

appear at an angle just above a = 12 ~ 

3.2 Some specific neutral locations 

We commence our study into the result of  Fig. 1 by concentrating initially on the angle at 

which the stationary neutral modes cease to exist. I f  Fig. 1 is visualised as a two-dimensional 

projection of  a three-dimensional surface, then the maximum value of  c~ corresponds to where 

both 

OR 0 and --k = 0. (3.9) 

If  we denote f = Of~OR and f = Of~Ok, with corresponding definitions for ~ and 9, then 
separate differentiations of  (3.5.1, 2) with respect to R and k, and the insistence that  the for- 
mulae in (3.9) be satisfied yield the equations: 

f"  - k 2] = (Rk cos a)  t~ + (iR sin a) y + (k cos a) g + (i sin a)  g, (3.10.1) 
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O"-k2g=k]  -iRksinoz V - ~  ~ - i k s i n c ~  y -  g+Ag+ O~ (3.10.2) 
OR ' 

]" - k 2] = (Rk cos a)  ~ + (iR sin ct) g' + 2kf + (R cos a)  g, (3.10.3) 

j ' - k 2 ~ ) = k f - i R k s i n ~  y -  O + @ + 2 k g + f - i R s i n c ~  g+ g. (3.10.4) 

As )~ is purely imaginary at onset, OA/OR and O)~/Ok are also purely imaginary. The critical 
values for R, c~ and k are found by solving (3.5) and (3.10) subject to the boundary  conditions 

(3.6),, (3.7) and 

f =  f - - - ~ = ~ = 0  at y = 0 , 1  and f f ' = ] ' = l  at y = 0 ,  (3.11) 

where the final two boundary  conditions in (3.11) have be chosen as suitable normalising con- 
ditions. The system comprising (3.5) and (3.10) is not suited to solution using the matrix 
eigenvalue strategy, and therefore we resorted to a shooting method code founded upon New- 
ton-Raphson  iteration and a fourth-order  Runge-Kut ta  scheme. This gave 

Re = 104.2959, c~ = 31.49032 ~ (0 .54961rad) ,  k = 2.55532 = 0.813 387r, (3.12) 

and also showed that  Im(,~) = Im(O,~/OR) = Im(OA/Ok) = 0. The conclusion therefore is that 
this value of  c~ represents the largest inclination of  the layer for which linearized disturbances 

can grow. 
The presence of  a local max imum value of  c~ is not restricted to solutions obtained from 

the first pair  o f  modes. Figure 1 shows clearly that  another  occurs between the third and 

fourtlh modes. Use of  the same code revealed that  the critical parameter  values are 

Rc = 569.53, c~ = 12.29029 ~ (0 .21451rad) ,  k = 7.75339 = 2.46798~r, (3.13) 

and iL is presumed that  further maxima occur between higher modes, al though we have not  

investigated this. Indeed, the precise evaluation of  the results (3.13) proved to be very difficult 
principally because the large value of  k yields a stiff system of equations. However  use of  
Richardson extrapolat ion enabled the accuracy of  the critical values to be improved and the 

values quoted in (3.12) to (3.14) are correct to the given number  of  decimal places. 

One other position of  interest is that just above the first local c~-maximum and is the 
saddle point  which marks  the stage at which the single neutral curve pinches off  and sub- 

divides to form separate open and closed curves. The calculation of  this point  again presented 
severe numerical difficulties, but was found to be positioned at 

Rc = 249.548, c~ = 29.234 ~ (0.510 24 rad) ,  k = 2.774 3 = 0.883 l~r. (3.14) 

It is clear that  predictions (3.12)-(3.14) are all consistent with the evidence provided in Fig. 1. 

3.3 The large-k, small-c~ asymptotic analysis 

We turn now to the behavior  of  the stat ionary mode curves at their turning points, that is, at 
those values of  k for which Ok~OR = 0, i.e. where the tangent to the neutral curve is vertical. 
Of  particular interest is the behaviour of  the turning point as c~ --+ 0 for we know that  this 
must  be a singular limit since the horizontal result (3.8) for c~ = 0 holds for all k. We com- 
mence by investigating the behavior  of  the neutral curve when a is small but take k to be arbi- 
trary. 
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The solution to Eq. (3.5) may be expanded as power series in o~ by introducing 

(f ,  9, R, A) =)fo,  9o, Ro, Ao) + a ( f l ,  91, R1, A1) + c~2 (f2, g2, R2,/~2) + " "  , (3 .15)  

and the resulting equations at the first three orders arc 

fo" - ~2s = ao~go, (3.16.1) 
/ /  

go - I329o = kfo + Aogo, (3.16.2) 

k " -  ~?k = Ro(kgl + igo') +/~,kgo, (3.17.1) 

9t rt - 1v29l = k f l  - iH0k y - ~ 90 + A091 + A~90, (3.17.2) 

J)" - k2f2 = Ro kg~ + igl' - ~ k9o + R l ( k g l  + 1go ) + R2kg0, (3.18.1) 

9 2  - -  k~92 = k fe  - iRok - -~ gl - ikR1 y - 9o + A092 + kz91 + A29o, (3.18.2) 

subject to the boundary conditions that each f~ and g~ (n = 0, 1,2) vanishes at both y ~-0 
and y = 1. 

For  the first mode the leading order problem yields 

(~  + k2) (~2 + ~2)~ 
fo = k sin roy, 90 = sin 9ry, Ro - k2 , X0 = 0, (3.19) 

where the normalization chosen is that the coefficient of  sin try in the definition of g0 is unity. 
For  neutrality Re(AQ = 0, and solutions of  (3.17) can only be obtained if R1 = Im(A1) = 0, 
whereupon 

(~rs+ k2) 3 (er2+ k2) 2 (k2 + 5r?) ( ~ )  
fl - 8~rk 2 i ( y - y  2) cos~-y-~ 89r2k2 i y -  sittrry, (3.20.1) 

\ 

gl = - ~  ~(Y - yU) cos~ry - 8rc2/c i y - sinrry. (3.20.2) 

Given the above results, Eqs. (3.18) may be written in the simplified forms: 

f2" - k2 f~ - Rokg2 = Ro ( ig l  ' 1 ) - - ~  k9o + R2k9o =_ TQ , (3.21.1) 

,, ( 
g 2  - -  k 2  g 2  - -  k f2 = - i R o k  y - gl + A29o =- R.2, (3.21.2) 

which define 7r and 7~2. Solutions to (3.21) subject to the appropriate boundary  conditions 
can be obtained only if 

1 

f (~zf0 + n~90R0) dy = 0, (3.22) 
0 

and the satisfaction of  this solvability condition requires 

R= - (~r2 + k2)2 (rc~ + k~)4 (~r2 -/~2) (re 2 +/~e) A2 (3.23) 
32~_4k4 ( ~r~ + 237r4k 2 + 117r2k 4 + 5k a) + 967rak4 r k 2 

Setting A2 = 0 yields the O ( a  2) correction to the critical value of  the Rayleigh number in the 
absence of  tilt, Ro. When k = ~r, the critical wave number for c~ = 0, the corresponding 

D. A. S. Rees and A. P. Bassom 
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Rayleigh number  reduces to 

Re =: 47r 2 + 57r2a 2 + O(c~3), (3.24) 

which should be compared  with Re = 47r2/cos c~ = 47r 2 + 27r2a 2 + O(cd) which is the corre- 

sponding result for longitudinal rolls. 
For  the second mode we obtain all the above results f rom (3.19) onwards subject to the 

alteration that  all appearances of  7r in the formulae are to be replaced by 27r. Indeed, the sub- 
stitution of  nor in the place of  7r yields the corresponding result for the n th mode. 

Turning to the question of  the location of  the turning point as c~ --+ 0 there is an obvious 

need to consider the limit k ---+ ec. Given the definition of  R in (3.15), R0 in (3.19) and R2 in 

(3.23) we obtain the following expressions in the limit of  k >> 1: 

M o d e l :  R~(k2+27r2+. . . )+a2(k6(15-Tr~)  ) + (3.25.2) 

Mode 2: R~(lc2+87r2+.. .)+a2(ka(15-Tr2) ) ~g-36-~ + " "  + 0 ( 5 4 )  (3.25.2) 

These expressions indicate that  the O(cd) correction is positive for the first mode but negative 

for the second - qualitatively the same as depicted in Fig. 1. Clearly, if k is sufficiently large 
and, in particular, is as large as O(c~ -1/3) then the terms in (3.25) which are formally O(a  ~) 

will be as large as the second term in the 0(2)  expressions, and a rescaling is necessary. To 

pursue this requires the definitions 

ct =/3/k 3 , R = k2So + $2 + " "  , /~ = i~7 + O(k-2) ,  (3 .26.2-3)  

f = kF0 + k-iF2 + ".. , 9 = Go + k-2G2 + ' " ,  (3.26.4, 5) 

to be incorporated within (3.5). At  leading order F0 and Go satisfy 

F0 + ~q0G0 = 0, F0 + Go = 0, (3.27.1, 2) 

f rom which all we can infer is that  So = 1. At next order 

~J2 - S2G0, F2 + G2 = Go" + i/3 y - Go, (3.28.2, 2) 

which are consistent only if 

Fo"+~ i y -  / 3 - i ~ + $ 2  F 0 = 0 ,  (3.29) 

subject to F0(0) = F0(1) = 0. This complex valued Airy equation can be easily solved when 

/3 = 0 for then 

F 0 ec sin nTry, 5'2 = 2n27r 2 ; (3.30) 

this form of  F0 recovers the shape of  the leading order eigenfunction when k = O(1) while $2 
yields the second term on the right hand sides of  (3.25). The numerical solution of  (3.29) for 

various values of /3  is shown in Fig. 2 where it may  be seen that  a pair of  stationary modes 

(a = 0) eventually coalesces into a pair of  travelling waves (with ~r r 0) as the scaled wave 
number /3  increases. For  the first pair  of  modes this occurs when $2 ~ 57.00 and/3 ~ 296.997; 
these values were obtained by solving simultaneously (3.29) and the equation obtained by dif- 
ferentiating (3.29) with respect to $2 and setting 0/3/c3S~ = 0. Figure 3 shows the variation of 
R with k at the turning points obtained f rom both the numerical and asymptotic  approaches,  
and it is clear that the agreement is excellent. 
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Fig. 2. Numerical solutions of eigenproblem (3.29) 
giving critical values of $2 as a function of/3 
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Fig. 3. A comparison between the values of R and k 
at the turning points in the curves obtained from (i) 
the fully numerical solution of system (3.5) and (ii) 
the asymptotic result R ~ k 2 + 57.0 + ..-, c~ ~ 197/ 
k a + . . .  valid for k >> 1 (see text) 

3.4 The large-R asymptotic analysis 

Next we examine stationary mode solutions of  the system (3.5) in the limit of  large R and 

c~, k = O(1). The symmetries o f  these equations when )~ = 0 make it clear that  solutions can 

be arranged so that Re(f )  and Re(9) are functions which are even-valued about y = 1/2 while 

Im( f )  and Im(9) are both odd about  this point. In view of  this, Eq. (3.5) was tackled asympto- 

tically as R --+ ~ on 1/2 _< y < 1 subject to the impositions Im(f )  = Im(g) = 0 on y = 1/2. 

Away from y = 1/2 it is anticipated that 

f = ]o + " "  , g = R-19o + . . .  , (3.31.1, 2) 

and substitution into (3.5) gives that at leading orders 

] o " -  k2]o = (k cos ~)go + (i sin oL)go', (3.32.1) 

sin c~ ( Y - 1 ~  90, (3.32.2) ]0 \ z ]  
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which combine to give 

(y-- ~ ) ([7o" - k2~o) + ~o~ + (ik cotc~) ~o = O. (3.33) 

It is an elementary exercise to develop series solutions of  (3.33) valid for small values of  

(y - (1/2)),  and linearly independent solutions exist, say r (y) and r which have leading 

order behaviours r ~ in (y - (1//2)) + . . . ,  r ~ 1 + . . -  as y -~ 1/2. By choice of  normalisa- 

tion we take 

t)a = r + fir (3.34) 

where the choice of/2 is to be fixed. Our  outer solution (3.31) is clearly of  "inviscid" nature, 
and a thin layer surrounding y ~ 1/2 must  be examined so as to ensure that  the solution satis- 

fies the necessary conditions on the symmetry line. This "boundary  layer" is of  depth O(c), 
where e 3 = R -1, and if the O(1) coordinate Y is defined according to 

1. 
y = ~ +  eY (3.35.1) 

then the eigensolutions must  take the forms 

f = ~:h~eF0 + cF~ + . . .  , 9 = ~ 3 h ~ d 0  + cad~ + (3.35.2,3) 

These functions satisfy 

d2PJdy 2 - i sin c~ ddJdy ' d2dJdY 2 - kFj - (ik sin c~) YOj (3.36.1, 2) 

for j : 0, 1. 

Matching with the outer solution gives G0 = 1, F0 = i sin c~Y while G1 satisfies 

d3di  dr 
d y  a + (ik sin c~) Y ~ -  -- ik sin c~ , (3.37) 

subject to G1 --~ ln(2kY) +/2 + o(1) as Y ~ oo. The formal solution of  (3.37) is 

O~ = ~, 3Ai(0) Ai'(0) Ai(t) at - 0 {Ai(q)}2 dq at., (3.33) 

where: r = ( - i k  s i n a ) l / 3 Y  and Ai denotes the usual Airy function. Our expectation that 

I ra ( f )  and Ira(g) should be odd-valued about  y : 1/2 implies that the constant  7 in (3.38) is 
real. Using well known properties of  the Airy function, it follows that  for (3.38) to have the 
correct behavior  as Y ~-~ ec then 

1 
Ira(/2) = - ~ 7r. (3.39) 

Given this condition we are now able to find the dependence of  c~ on k for large R. Equa- 
tion (3.33) was solved numerically subject to g0 = 0 at y = 1 and the behavior (3.34) as 
y ~ 1/2 where/2 satisfies (3.39). The results are depicted in Fig. 4 where we compare  the form 
of  the neutral curves as predicted by the present asymptotic  analysis with their form as found 
by numerical solution of  the full governing system (3.5) with the Rayleigh nmnber  R = 103. 
The similarity is striking, and we note the significant prediction f rom the asymptotic  work 
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Fig. 4. A comparison between the neutral curves in the c~-k space obtained from (a) the fully numerical 
solution of system (3.5) at R = 10000, and (b) the large-R asymptotic analysis derived using the numerical 
solution of (3.33) subject to (3.34) and (3.39) 
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Fig. 5. The locus in the c~-R parameter space of the 
maxima and minima (taken over the wave number k) 
of the curves of Fig. 1. At points above and to the left 
of the curve all perturbations of the form (3.4) are 
stable while below and to the right are the regimes in 
which some bands of wave numbers are unstable 

that  as R --* oc no neutral  disturbances are possible for c~ greater than approximate ly  31.30 ~ 

Note  that  a l though the compar ison  of  the asymptot ic  and full numerical  findings is very good 

for most  values of  a ,  the discrepancy in the results increases as ~ --~ 0. The reason for this can 

be t raced to the fact that  the asymptot ic  analysis outl ined above holds good for a = O(1). 

Once c~ becomes small the analysis needs some modif icat ion:  that  this is so is easily seen from 

the exact result (3.8) valid for ~ = 0; we can see that  for prescribed R we can deduce a family 

of  values of  k ~ 0 for neutral  modes.  Thus the asymptotes  on Fig, 4a cannot  legitimately be 

extended all the way to c~ = 0 for the assumptions underlying this der ivat ion break down 

before then. Nevertheless, it is of  considerable interest that  the agreement between full numer-  

ical solutions and the corresponding asymptot ic  predict ions is so good over a significant 

range of  inclination angles. 
I t  is concluded that  the local max imum value o f  c~ given in Eq. (3.12.2) would seem to be 

the global  max imum for the inclined layer, and this is confirmed by the results given in Fig. 5 
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where we plot the locus of the maxima and minima of the neutral curves over all wave num- 

bers k. We remark on the global maximum at a as given by (3.12.2), a local minimum at the 
"pinch-off" point (3.14) and the large-R asymptotic value of a ~ 31.30 ~ 

4 Closing remarks 

We have studied in detail the onset of convection in an inclined layer when the disturbances 

take the form of transverse rolls. As mentioned previously, these results are also applicable 
for oblique modes given a suitable transformation of the disturbance equations (see the 

Appendix) and are therefore of much wider use than might first appear. A numerical solution 
of the linear stability equations using a matrix eigenvalue solver based on discretised finite dif- 

ference disturbance equations has shown that a = 31.490 32 ~ is the maximum inclination 
angle, at which transverse modes can become unstable. This qualitative result is very different 
from that for an inclined fluid (as opposed to porous) layer for which transverse modes may 

be destabilised even in the vertical case c~ = 7r/2. Given that Darcy-Brinkman flow in a verti- 

cal channel is also unstable, it would seem that the qualitatively different results arise because 
of the presence of diffusion terms in the momentum equations. 

The detailed asymptotic analysis of turning points in the small-a, large-k limit gives very 
good agreement with the numerical results and shows that sufficiently large wave length dis- 

turb~.nces must take the form of travelling modes. Further analysis has shown that when R is 
sufficiently large the practical limit on the inclination angle for instability is about 3l .30 ~ . It is 
of some interest that the critical angle in the large Rayleigh number limit is marginally less 
than the overall maximum angle for instability. 

Recent years have seen a much increased study of non-Darcy effects in general but this 

has not been greatly in evidence for porous layers. He and Georgiadis [20] showed that the 

presence of Forchheimer inertia terms does not affect the onset criterion for convection in a 
horizontal layer, but that the subsequent nonlinear development is changed: a result which 
was confirmed and quantified by some weakly nonlinear stability analysis given by Rees [21]. 

Further, when a mean horizontal pressure gradient is applied the induced flow serves to 
increase the critical Rayleigh number for the onset of convection in the presence of Forchhei- 
mer inertia (Rees [22]). But these three studies are concerned with horizontal layers. At pre- 
sent there are no papers which deal with either boundary or inertia effects with regard to their 
influe.nce even on the linear stability of flow in an inclined layer. Thus an obvious next stage 
in the present line of  study would be an adaptation so as to take these effects into account. 

The papers cited in the paragraph would suggest that such modifications to Darcy's law are 
very likely to play a significant role and thereby would modify the various stability criteria 
described herein. 

Finally, it is necessary to point out that no conclusions may be drawn over whether 
strongly nonlinear convection exists at inclination angles greater than c~ = 31.49032 ~ A 
thorough investigation of this would need to use weakly nonlinear theory to determine how 
finite-amplitude solution branches behave as a -+ 31.490 32 ~ Further work might involve the 
corresponding large amplitude analysis using bifurcation continuation techniques, or the use 
of an energy stability analysis. 
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Appendix 

In this appendix we derive the three-dimensional linearized stability equations and indicate 
how they may be reduced to an equivalent two-dimensional form. Beginning with the three- 
dimensional generalisation of system (2.3) 

u x + v v + W z  = 0 ,  

u = - p z  + RO sin ct, 

v = -Pv  + RO cos c~, 

w = --Pz 

Ot + uOz + vOu + wO~ = O~x + Ovy + Ozz , 

(A1.1) 

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

the flux velocities may be eliminated to obtain the equivalent pressure/temperature formula- 
tion, 

V2p = R(Ox sina + Oy cos c~), (A2.1) 

~720 = RO(O x sin a + 0y cos a) - pxO~ - pvOy - pzO~ + Or, (A2.2) 

for which the basic solution is 

p = p b = R  y _ ~ y 2  c o s a + ~ R x s i n c ~ ,  O = O b = l - - y ,  (13.1,2) 

where the b-subscript denotes the basic flow and V 2 is three-dimensional Laplacian operator. 

Equations (A2) may be linearized about the basic solution to give 

V2p = R(Ox sinc~ + 0 v cosc~), (A4.1) 

V20 = R[(1 - y) 0x sin ~ - 0 cos ~] + Pv + Or, (A4.2) 

for which solutions exist in the form: 

p = f ( y )  exp[ik(x cos r + z sin 4)) + Atl, 0 --- 9(y) e• cos r + z sin r + At], (AS) 

where r is the orientation of the roll away from that corresponding to the transverse roll. The 
functions f and g satisfy the equations 

f " -  k2 f  = g( ikR  cosr sin(~) + g~(R cos~),  (A6.1) 

g" - k29 = 9[R{ik(1 - y) cosr s ins  - cosa} + A] + f ' ,  (A6.2) 

subject to the boundary conditions f~ = 0 and 9 = 0 on both y = 0 and y = 1. Equations (A6) 
have four parameters, R, a, k and 6, but these may be reduced to three using the transforma- 
tion 

S =  R v/sin2 a COS2 (~ ~- COS2 a ,  t a n " / = t a n a  cosr (A7) 

with which the equations reduce to 

f "  - l~2f = g[ikS sin ~/] + 9'[S cos'y], (A8.1) 

g" - k29 = g[S{ik(1 - y) sin7 - cos f} + A] + f ' ,  (A8.2) 
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where the parameters  are now S, 7 and k. When  ~ = 0 we have S = R and 7 = a ,  and (A8) 

represents a set of  dis turbance equations with precisely the same solutions as Eqs. (3.5). When  

r 7r/2 the dis turbance takes the form of  longitudinal  rolls with 7 = 0  and 

S~ = 47r 2 = R / c o s  c~, as given by Weber  [6]. When  q5 r 0 with _R, c~ and k cos ~ being set (the 

lat ter  being the spanwise wave number  o f  the disturbance; see (A5)) the corresponding values 

of  S and 7 are given by (A7), and the solut ion obtained is identical to that  found by solving 

(3.5) with the values o f  R and a taken to be the current  values of  S and 7. Therefore every 

oblique mode  is equivalent  to a transverse mode. 
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