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A B S T R A C T  
A boundary layer analysis is performed for convection from a uniform tem- 
perature vertical heated surface in the presence of inertia and surface suction. 
The resulting boundary layer flow is non similar and detailed solutions are 
presented. At relatively small distances from the leading edge surface suc- 
tion is negligible and at large distances from the leading edge suction effects 
dominate for there the boundary layer attains a constant thickness. At any 
fixed value of x the boundary layer becomes thinner and the local rate of 
heat transfer increases as the rate of suction increases. The approach to the 
constant thickness state becomes more rapid as 7, the scaled rate of suction, 
increases. A detailed asymptotic analysis is undertaken which determine how 
quickly this asymptotic state is attained for large values of 7. 
© 2000 Elsevier Science Ltd 

I n t r o d u c t i o n  

This study deals with boundary layer flow induced by a heated semi infinite surface 

embedded in a porous medium. Such configurations are of interest in modelling convetion 

from hot magma intrusions in subterranean aquifers; it was this aspect which motivated 

Cheng and Minkowycz [1] who considered a vertical heated surface. Corresponding hori- 

zontal plane and vertical axisymmetric configurations were analysed by Cheng and Chang 

[2] and Minkowycz and Cheng [3], respectively. 

Most of the studies of flow in porous media assume that Darcy's law is valid. However 

this law is known to be valid only for relatively slow flows through the porous matrix. 

In general, we must consider the effect of fluid inertia, as well as of viscous diffusion at 

boundaries which may well become significant for materials with very high porosities, such 

as fibrous media and foams. Plumb and Huenefeld [4] treated the vertical configuration 

showing that the flow remains self-similar with the inclusion of inertia, but that the rate of 

775 



776 N. Banu and D.A.S. Rees Vol. 27, No. 6 

heat transfer decreases as the inertia parameter increases, reflecting the increasing thickness 

of the boundary  layer. 

Merkin [51 considered the effect of uniform surface transpiration on Darcy convection 

from a vertical surface. A series expansion in powers of the square root of the distance 

from the leading edge was first obtained. This expansion was extended by a numerical 

solution of the full non-similar boundary layer equations. In the case of surface suction 

the boundary  layer is found to approach a constant thickness and that  the approach is 

through terms which are exponentially small for large x. Merkin [5] also considered the 

effect of surface blowing. 

In this paper we extend Merkin's analysis by studying the combined effects of fluid 

inertia and surface suction on the boundary  layer flow induced by a uniform temperature 

vertical surface embedded in a porous medium. At large distances from the leading edge 

suction effects dominate and boundary  layer attains a constant thickness. Close to the 

leading edge suction is weak compared with buoyancy- induced convection and the flow 

field is but  a per turbat ion of the Cheng and Minkowycz [1] flow. These behaviours are 

confirmed by a numerical solution using the Keller-box mthod.  It is also found that  the 

constant thickness solution is attained more quickly (in terms of x) as the suction rate 

increases - -  an asymptotic  analysis for larger rates of suction quant i fes  this speed of 

at tainment.  

Governing Equations 

We consider a heated vertical surface which is embedded in a homogenous fluid- 

saturated porous medium through which fluid is withdrawn at a uniform rate. The surface 

is held at the constant temperature,  T1 whilst the ambient temperature  of the medium is 

To. We assume that  T1 > To and examine the two dimensional flow which is induced by 

buoyancy forces along the surface. We take as our governing equations, 

Ou' Ov ' 
Ox ---v + Oy' = 0, (1)  

,OT v, OT [02T 02T] 
u cgx~+ ~y, = g[Oxn + Oyt~ j (4) 

where primes indicate dimensional variables. In equations (1-4) x J and yr are the Cartesian 

coordinates along and perpendicular to the heated plate, respectively, u J and v ~ are the 

respective fluid velocity fluxes,/3 is the coefficient of cubical expansion, and a the thermal 

diffusivity of the staurated medium. Further, q' is the fluid flux speed which is given by 

(q,)2 = (u,)2 + (v,)2. In (2) and (3) I (  is the permeability of the medium and / (  is a 
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material parameter  which may be thought of as a measure of the inertial inpedance of the 

matrix, p is the fluid density, # the coefficient of viscosity, p is the dynamic pressure, and 

g is the acceleration due to gravity. 

Equations (1)-(4) may be nondimensionalized by introducing the substitutions 

(x',y') = l(x,y), (u',v') = --[(u,v), T =  To + ( T 1 -  To)O, (5c) 

where l is a macroscopic lengthscale, and by defining a stream function %b, such that 

0¢ 0¢ 
(u,v) = ( ~ y ,  Ox ) - t - ( 0 ' - R a l / 2 ) '  (6) 

The second term on the right hand side of (6) accounts for the uniform suction velocity 

into the vertical surface. The size of this term is such that the present analysis fits into 

the theroretical framework of Cheng and Minkowycz [1]. On elimination of the pressure 

terms theres result the following equations, 

7Q ~2 , 7 2 (%b~%bx~ + 2¢~%b~gb~y + ~l,y%byy) Ra Oy, (7) 

V20 + O~Ra -1/2 = Cy0~ - ¢~0y. (8) 

The Darcy-Rayleigh number Ra and the Darcy-Grashof number, % are given by 

Ra = pg/3t((T1- To )l ( p ) 2 
#k , 3' = If[x'g/~(T1 - To). (9, 10) 

The term Q is a dimensionless fluid flux given by Q2 = ~b~ + ¢~, and V 2 is the two- 

dimensional Laplacian. The terms involving Ra -1/2 in (6) and (8) arise from assuming 

that the dimensional suction velocity is precisely -~" -1/2. not only is this magnitude 

sufficiently large that it affects the boundary layer flow when x = O(1), but this velocity 

scale allows the definition of a natural length scale for the flow, as follows. If V denotes 

~Ra -1/2 may be rearranged to yield the magnitude of the suction velocity, then V = T 

13 = s2K# (11) 
g # ( r l  - To)V  ~ 

where all the terms on the right hand side are known for a particular configuration. 
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Boundary Layer Analysis 

If we assume tha t  x = O(1) as Ra --+ oc, then the boundary  layer approximat ion is 

valid when y << 1. Under these conditions, equations (7) and (8) reduce to 

(1 + 21¢ylTRa-])¢yy = RaCy, Oy~ + OyRa -]/2 = ~yO~ - ~Oy (12, 13) 

and are subject  to the boundary  conditions, 

= 0 ,  0 =  1 on y = 0 ,  (14) 

04 
Oy ~ 0, 0 -+0 as y---~oo. (15) 

We now introduce the following boundary  layer scalings 

¢=Ral /2@,  y=Ra-1/2f l ,  x = ~ ,  0 - - 0 ,  (16) 

into equations (12) and (13). We obtain the following equations: 

(1 + ~ ) ~ y y  = 0~, ~ + 0~ = ~0~ - ~ .  (17, is) 

In (17) we have omit ted the moduli around z}~ since this quanti ty is always positive. Now 

we have to introduce a set of pseudo-similari ty variables, (~, r/) , the 77 value of which, in 

the absence of inertia and suction effects, corresponds precisely to the similarity variable 

used in Cheng and Minkowycz [1]: 

= S ~ f ( , 7 , ¢ ) ,  o = 9 ( ~ , ~ ) ,  ~ - ~ / ~ ,  

Equations (17) and (18) reduce to the forms 

---- ~ 1 / 2  (19) 

t tt 1 I 
( 1 - 1 - T f ' ) f "  = g ,  g -t-~g'-t-~fg = ½~(f'g~- f~9') (20,21) 

The  corresponding boundary  conditions are 

7 7 = 0 :  f = 0 ,  g = l  and ~7--+oo: f ' -+O,g--+O. (22) 

If we integrate equation (20), rearrange the resulting expression and set I7 = 0, then we 

get the following expression for the slip velocity: 

2 
f ' ( 0 )  - (23) 

1 + ,/1 + 2 7 

From this simple analysis we see that  the slip velocity decreases as 3' increases which reflects 

the increasing resistance to flow. When 3' is very large we have the asymptot ic  relation 

f ' ( 0 )  ~ (2/7)  ' /2.  
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N u m e r i c a l  Resul t s  

A complete numerical solution uses the Keller Box scheme to integrate the sets of 

equations (20,21) for 2 << 1 and (17,18) for 2 >> 1; these separate sets of equations are 

used in their appropriate domains of validity. The latter equations are taken because the 

final asymptotic state is a boundary layer of uniform thickness where ~) may be taken as the 

similarity variable. Integration proceeds in a stepwise manner from 2 = 0. The equations 

are first reduced to first order form in 7] or ~), and are discretised using central differences 

based halfway between the grid points in both directions. Such a central difference scheme 

gives second order accuracy. There results a set of nonlinear difference equations for 

the unknown variables at 2 = 2i in terms of their values at 2 = 2i-1. The difference 

equations are solved iteratively using the multi-dimensional Newton-Raphson method 

where the Jacobian matrix is computed numerically. For a given value of ~ or 2, the 

iterative procedure is stopped when the maximum absolute pointwise change between 

successive iterates is less than 10 -s. Given the very different similarity forms at the leading 

edge and far downstream, it is necessary to present the evolution with 2 of the surface rate 

of heat transfer in two forms, each being appropriate for its own regime. Therefore one a 

set of curves presented in Fig. 1 is suitable for describing well the heat transfer near the 

leading edge and is given by 

-07 for 2<< 1 and -21/23,) for 2>> 1, (24) 

and the other set, presented in Fig. 2, is more appropriate for viewing the approach to the 

suction-dominated state and is given by 

--xl/20r/ for 2 << 1 and - g 0  for 2 >> 1, (25) 

Both graphs are plotted against ~ = 21/2 for different vMues for 7- 

Near the leading edge suction effects are weak and the rate of heat transfer corresponds 

exactly to those given in [6]. The decreasing rate of heat transfer as 7 grows is a direct 

consequence of the decreasing ability of buoyancy forces to drive the flow. Therefore 

heat conducts more easily from the heated surface and the boundary layer thickens. At 

increasing distances from the leading edge suction effects become more important. This 

causes the boundary layer to become thin relative to when suction is absent, and hence 

the rate of heat transfer, as given by (24), increases with 2. At large distances, (25) is the 

more appropriate formula to use to present the rate of heat transfer. From Figure 2 we 

see that the approach to the constant-thickness state becomes more rapid as 7 increases, 

a qualitative confirmation of the analysis of the next subsection. Again, the decreasing 

streamwise velocity caused by increasing inertia effects renders suction more effective and 

explains why the approach to the asymptotic state becomes more rapid as 7 increases. 
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FIG. I. 

The rate of heat transfer given by -0~ In=o for 7 = 0, I, I0, I00, I0000. 
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FIG. 2. 
The rate of heat transfer given by -0~ [~=o for 7 -- 0, I, I0, I00, I0000. 
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Asymptotic Analysis 

Given the results of Merkin [5] on the effects of suction without inertia, it was to be 

expected that  the boundary layer should attain a constant thickness for large values of ~?. 

Equations (17) and (18) admit the straightforward ~-independent solutions, 

e -~ = ~B ~ = 2e-~ 
= - (26) 

1 + VII + 23`e-Y 

where the B-subscript  denotes the basic solution. The detailed approach to this solution 

is found by perturbing equations (17) and (18) about the solution given in (26). Therefore 

we substitute 

~b = ~I'B + F(9)e  )~, ~ = ~u + G(~))c xi (27a, b) 

into equations (17) and (18) and linearise to obtain the equations 

(1 + 3`¢~)F" + 3`F'¢~ = G', G" + aG '  = £ ( ~ G  - F/}~) (28, 29) 

Integrating equation (28) once, we get 

Y'  = G/(1 + 3'¢~) (30) 

Equations (29) and (30) were solved subject to F(0) = G(0) = G ( ~ )  = 0 and G'(0) = 1 

to obtain values for ~, the exponential rate of growth of the perturbation. Solutions were 

obtained using a straightforward shooting method with the fourth order Runge-Kutta 

scheme. The four boundary conditions together with the 3 ~a order system, (29) and (30), 

were supplemented by the fourth equation, M = 0. It is found that the value of ~ varies 

over many orders of magnitude and therefore numerical values are given in Table 1. 

TABLE 1 

Values of A for various values of 3'. 

3` 

0 -1.4458 cc 
1 -1.7579 -1.7579 
2 -1.9814 -1.4011 
5 -2.4691 -1.1042 

I0 -3.0461 -.9633 
20 -3.8804 -.8677 
50 -5.5540 -.7855 

I00 -7.4494 -.7449 
I0000 -65.8408 -.6584 

I000000 -649.8129 -.6498 
100000000 -6489.5311 -.6490 
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When 7 = 0 we recover the result of Merkin [5], that  h = -1.4458. It is clear 

from Table 1 that  the rate of decay increases rapidly as inertia effects become stronger. 

Furthermore )~ seems to become proportional to @/2 at leading order when "/is very large; 

this observation motivates the following asymptotic analysis. 

We take 7 >> 1, and we assume that  g << (In~/) -1, (i.e. that  7e -y  >> 1; see (26)) 

and therefore we may take 1 + 27e-Y ~ 2"/e-Y. Hence we have 

V~2 _y/ (31) 
~ 2 2, 

and therefore the momentum equation (30) and the energy equation (29) reduce to 

F ' ' ~  , / ~  + = A  e-Y/2G+e-YF. (32,33) 

Given the results shown in the third column of Table 1 we rescale according to 

= c = 0 a n d  F = (34)  

and let 7 ---+ oo. Equations (32) and (33) reduce to the following form at leading order, 

1 2- O' ~[v~e-Y/ZG e-Y~ '] (35,36) - P ' =  ~ e  y/ G, G ' +  = + 

and these are to be solved subject to the boundary  conditions, 

f'(O)=O, G(O)=O, G'(O)=I for y = 0  and G ~ 0  as y ~ e c  (37) 

We find that  ~ = -0.6490,  which confirms to 4 decimal places the asymptot ic  behaviour 

of ~ indicated by the third column of Table 1. Figure 3 shows how lOgl0(-A ) varies with 

log10(7); when 7 -> 106 the asymptotic results are correct to at least three figures. 

C o n c l u s i o n  

We have extended Merkin's [5] analysis of the effect of suction on free convective 

boundary  layer flow from a vertical surface in a porous medium by introducing Forchheimer 

inertial effects. In the absence of suction these terms cause the boundary  layer to become 

thicker, and the surface of heat transfer to decrease, but the solutions remain self-similar. 

(see [4] and [5]). However, suction causes the boundary  layer equations to be nonsimilar. 

Near the leading edge suction effects are weak and the rate of heat transfer corresponds 

exactly to those given in [6] The decreasing of the rate of heat transfer as the inertia effect 

strengthens is a direct consequence of the decreasing ability of the buoyancy forces to 
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FIG. 3. 
The variation of the rate of decay with 3 .̀ 

drive the flow. Far from the leading edge suction effects dominate, and the boundary layer 

attains a constant-thickness state. This approach is more rapid as 3  ̀ increases. Table 1 

gives the rate of decay towards the uniform state, and we see that this increases rapidly 

as 3' increases and we see that A becomes proportional to v ~  at leading order when 3  ̀ is 

very large. An asymptotic analysis has confirmed this numerical result. 
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