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Abstract —We consider a steady two-dimensional laminar forced flow and heat transfer of a viscous incompressible fluid having
temperature dependent viscosity and thermal conductivity past a wedge with a uniform surface heat flux. The governing equations,
reduced to local nonsimilarity boundary layer equations using suitable transformations, have been integrated employing an implicit
finite difference method. Perturbation techniques are employed to obtain the solutions near the leading edge as well as far from it.
The perturbation solutions are compared with the finite difference solutions and found to be in excellent agreement. The results are
presented in terms of local skin friction coefficient and rate of heat transfer for various values of the governing parameters, such
as the Prandtl number Pr, the pressure gradient parameter m, the viscosity variation parameter ε and thermal conductivity variation
parameter γ , against the local permeability parameter ξ . The effect of variations in ξ , ε and γ on the dimensionless velocity, viscosity
and thermal conductivity distributions are also depicted graphically for Pr = 0.7.  2000 Éditions scientifiques et médicales Elsevier
SAS
heat transfer / laminar forced flow / wedge flow / uniform heat flux / temperature dependent viscosity and thermal
conductivity

Nomenclature

x streamwise coordinate . . . . . . . . . . m
y transverse coordinate . . . . . . . . . . . m

u velocity component in thex-direction . m·s−1

v velocity component in they-direction . m·s−1

f dimensionless stream function
β angle factor of the wedge
T temperature of the fluid . . . . . . . . . K
T∞ temperature of the ambient fluid . . . . K
Tw wall temperature . . . . . . . . . . . . . K
Pr Prandtl number
Rex local Reynolds number
Nux Nusselt number
Cf the skin friction
Ω total angle of the wedge

* Correspondence and reprints.
anwar@du.bangla.nd

cp specific heat . . . . . . . . . . . . . . . J·kg−1·k−1

ψ stream function . . . . . . . . . . . . . . m2·s−1

θ dimensionless temperature function

ξ suction parameter

η similarity variable

m pressure gradient parameter

qw wall heat flux . . . . . . . . . . . . . . . W·m−2

U∞ potential flow velocity . . . . . . . . . . m·s−1

Vw suction velocity

ρ fluid density . . . . . . . . . . . . . . . kg·m−3

ν the kinematic coefficient of viscosity . . m2·s−1

µ dynamic viscosity of the fluid . . . . . . kg·m−1·s−1

µ∞ dynamic viscosity of the ambient fluid . kg·m−1·s−1

ε viscosity variation parameter

κ thermal conductivity . . . . . . . . . . . W·m−1·K−1

κ∞ thermal conductivity of the ambient fluid W·m−1·K−1

γ thermal conductivity variation
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1. INTRODUCTION

Steady two-dimensional laminar forced flow and heat
transfer from a wedge was considered in great detail
by Lin et al. [1]. They proposed a similarity solution
for an isothermal surface as well as for a uniform heat
flux surface for a wide range of Prandtl numbers. If the
effect of surface suction/blowing is included, a similarity
solution is possible only when the suction/blowing rate is
proportional tox(m−1)/2 [2], wherex is the distance from
the leading edge andm is the pressure gradient parameter.
Koh and Hartnett [3] studied the incompressible laminar
flow over a porous wedge with suction and a variable
wall temperature. They obtained similarity solutions for
wall temperature and the suction rate variations which are
proportional to a power ofx. From the practical point of
view, a uniform transpiration velocity may be more easily
realized than anx(m−1)/2 distribution. Watanabe [4]
investigated thermal boundary layer flow over a uniform
surface temperature wedge with a transpiration velocity
in forced flow. Yih [5] extended the above problem by
considering the heat transfer characteristics in the forced
flow over a wedge subjected to a uniform wall heat flux.

All the above investigations were carried out for
the fluids having uniform viscosity throughout the flow
regime. However, it is known that this physical prop-
erty may change significantly with temperature. Gary et
al. [6] and Mehta and Sood [7] found that the flow charac-
teristics substantially change due to the consideration of
temperature dependent viscosity. Mindful of this, Hady
et al. [8], Kafoussias and Williams [9] and Kafoussias
and Rees [10] have investigated the effect of tempera-
ture dependent viscosity on the mixed convection flow
from a vertical flat plate in the region near the leading
edge. Very recently Severin and Herwig [11, 12] inves-
tigated the Rayleigh–Benard convection flow with fluid
having temperature dependent viscosity using the appro-
priate asymptotic analysis. For a fluid with viscosity in-
versely proportional to the temperature the problems of
mixed convection flow from a vertical heated flat plate,
of natural convection flow from a vertical wavy surface
and a vertical truncated cone and a wedge has, recently,
been investigated by Hossain et al. [13–16].

For liquid metals, it has been found that the thermal
conductivity κ varies with temperature in an approxi-
mately linear manner in the range from 0◦F to 400◦F (see
Kays [17]) and a semi-empirical formula for the thermal
conductivity of the aforementioned form was deduced by
Arunachalam et al. [18]. Considering the thermal con-
ductivity of the fluid proportional to a linear function of
temperature Chiam [19] investigated the effect of a vari-

able thermal conductivity on the flow and heat transfer
from a linearly stretching sheet.

In the present study we investigate the effect of uni-
form transpiration velocity on the flow and heat trans-
fer of a viscous incompressible fluid having tempera-
ture dependent viscosity as well as thermal conductivity
past a wedge. The surface of the wedge is maintained
with uniform surface heat flux. The various configura-
tions of wedge from Blasius flow(m = 0) to Hiemenz
flow (m = 1) have been considered in this investigation.
In formulating the equations governing the flow both
the viscosity and the thermal conductivity of the fluid
are considered to be a linear function of temperature
(see Charradeau [20]). The governing partial differential
equations are reduced to locally nonsimilar partial differ-
ential equations by introducing the transformations ap-
propriate for the forced flow past a wedge. Solutions of
these equations are obtained by three distinct methodolo-
gies; namely, the perturbation method for small values
of the transpiration parameterξ , the asymptotic solutions
for large valuesξ and an implicit finite difference method
for all values ofξ . Variations of the local skin-friction
and the local Nusselt number and their dependence on
changes in the viscosity-variation parameterε, thermal
conductivity variation parameterγ , and the pressure gra-
dient parameterm are shown in tabular form againstξ

for different values ofPr. The effects of variations in
both ε andξ on the velocity and the viscosity distribu-
tion are shown graphically, for a fluid having the value of
Pr = 0.7 that is appropriate for helium(400◦F), hydro-
gen (near about 370◦F) and oxygen (near about 10◦F).

2. MATHEMATICAL FORMALISM

We consider the steady two-dimensional laminar flow
of a viscous incompressible fluid with temperature de-
pendent viscosity and thermal conductivity past a wedge.
A schematic diagram illustrating the flow domain and the
coordinate system is given infigure 1. According to the
assumption, the two-dimensional boundary layer equa-
tions for the flow of the fluid past a wedge are as follows
(system of a wedge):

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ 1

ρ

∂

∂y

(
µ

∂u

∂y

)
(2)
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Flow past a permeable wedge with uniform surface heat flux

Figure 1. The flow configuration and the coordinate.

u
∂T

∂x
+ v

∂T

∂y
= 1

ρcp

∂

∂y

(
κ

∂T

∂y

)
(3)

whereu,v are fluid velocity components in thex- andy-
direction, respectively,T is the temperature of the fluid in
the boundary layer region;U∞(x) being the free stream
velocity.µ andκ are respectively the dynamic viscosity
and the thermal conductivity, following [20], which are
given as below:

µ = µ∞
[
1+ α1

T − T∞
T0 − T∞

]
(4a)

and

κ = κ∞
[
1+ α2

T − T∞
T0 − T∞

]
(4b)

In (4) µ∞ is the viscosity andκ∞ is the thermal
conductivity of the ambient fluid,T∞ is the temperature
of the ambient fluid,T0 is some reference temperature
andα1 andα2 are constants. Clearlyα1 = 0 andα2 = 0
represent that the dynamical viscosity and the thermal
conductivity be uniform.

Solutions of the above equations have to satisfy the
following boundary conditions:

u = 0, v = −Vw, −κ∞
(

∂T

∂y

)
y=0

= qw

aty = 0
u → U∞ = U0x

m, T → T∞
asy → ∞

(5)

whereVw is the transpiration velocity, which is positive
for suction or withdrawal and negative for injection
or blowing of fluid through the wedge surface;U0 is

the constant velocity of the potential flow outside the
boundary layer,m = β/(2 − β), and β is the Hartee
pressure gradient parameter which is related to the total
angle of the wedge,Ω , by Ω = πβ .

Now we define the following dimensionless variables:

ψ = ν∞
√

2

1+ m
Re1/2

x

[
f (ξ, η) + 1+ m

2
ξ

]
T − T∞ =

√
2

m + 1

qwx

k∞
Re−1/2

x θ(ξ, η)

η =
√

m + 1

2

y

x
Re1/2

x

ξ =
√

2

m + 1

Vwx

ν∞
Re−1/2

x

(6)

whereψ is the stream function that satisfies the conti-
nuity equation,f (ξ, η) is the dimensionless stream func-
tion,η is pseudo-similarity variable,θ(ξ, η) is the dimen-
sionless temperature of the fluid in the boundary layer
region, whereν∞ = µ∞/ρ is the free stream kinematic
viscosity,Rex = U∞x/ν∞ is the local Reynolds number
andξ is termed as the local transpiration parameter which
is positive and negative according as when fluid being
sucked and injected through the surface.

Substituting the transformation given in (6) into (2)–
(3) one obtains the following nonsimilar system of
equations governing the flow and the energy transport:

(1+ εξθ)f ′′′ + εξθ ′f ′′ + ff ′′ + 2m

1+ m

(
1− f ′2) + ξf ′′

= 1− m

1+ m
ξ

(
f ′ ∂f ′

∂ξ
− f ′′ ∂f

∂ξ

)
(7)

1

Pr
(1+ γ ξθ)θ ′′ + γ ξθ ′2 + f θ ′ − 1− m

1+ m
θf ′ + ξθ ′

= 1− m

1+ m
ξ

(
f ′ ∂θ

∂ξ
− θ ′ ∂f

∂ξ

)
(8)

In equations (7) and (8),ε = α1Nux/Res and γ =
α2Nux/Res are termed as the viscosity-variation para-
meter and the thermal conductivity-variation parameter;
whereNux is the Nusselt number defined in equation (10)
andRes = Vwx/ν∞ is the Reynolds number due to blow-
ing/injection of fluid through the surface.

The boundary conditions appropriate for the above
equations are

f (ξ,0) = f ′(ξ,0) = 0, θ ′(ξ,0) = −1
f ′(ξ,∞) = 1, θ(ξ,∞) = 0

(9)
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It can be seen that throughout consideration ofε =
γ = 0, the problem reduces to that investigated by
Yih [5]. Using the local nonsimilarity method the author
obtained the solution valid in the region near the leading
edge.

Here we are proposing to simulate the system of equa-
tions (7) and (8) subject to the boundary conditions (9)
by means of the implicit finite difference method, which
has been used, recently, by Hossain et al. [13–16]. In
introducing this method, the system of partial differen-
tial equations (7) and (8) are first converted to a system
of first order partial differential equations by introduc-
ing new functions ofη and η-derivatives. This system
is then approximated using finite-difference scheme and
the resulting nonlinear system of difference equations
is linearized by the use of Newton’s quasi-linearization
method. These linear difference equations, along with the
boundary conditions (9), are finally solved by an efficient
block-tridiagonal factorization method based on the well-
known Thomas algorithm. The whole procedure was first
introduced by Keller [21] and is known as Keller’s box
method.

Once we know the values of the functionsf (ξ, η)

and θ(ξ, η) and their derivatives, it becomes important
to calculate the values of the local skin-frictionCfx and
the local Nusselt numberNux which are defined by

Cfx = τwx

(1/2)ρU2∞
and Nux = qwx

κ∞(T0 − T∞)
(10)

whereτw is the shearing stress at the surface defined by

τw = µ∞
(

∂u

∂y

)
y=0

(11)

Now incorporating the transformations given in (6) in
the foregoing relations, the following relations for the
skin-friction and the Nusselt number hold:

1√
2(1+ m)

CfxRe1/2
x = f ′′(ξ,0) (12a)

and √
2

1+ m

Nux

Re1/2
x

= 1

θ(ξ,0)
(12b)

Results obtained by the Keller box method are pre-
sented intables I–IV. In tables II andIII the results are
compared with the solutions obtained by other methods
discussed below.

TABLE I
Values of Nux/Re1/2

x for different Pr = 0.1,1.0,10.0 at
ε = 0.0, γ = 0.0 and ξ = 0.0 while m = 0.0,1/3,1.0.

M 0.0 1/3 1.0
Pr Yih [5] Present Yih [5] Present Yih [5] Present

10.0 0.9978 0.9978 1.23177 1.2317 1.33879 1.3387
1.0 0.4589 0.4589 0.54197 0.5419 0.57046 0.5704
0.1 0.2006 0.2006 0.21947 0.2193 0.21950 0.2195

2.1. Solution for small ξ

Since ξ is small near the leading edge, solutions
of the equations (7)–(9) may be obtained by using the
perturbation method. Hence, we expand the functions
f (ξ, η) andθ(ξ, η) in powers ofξ as given below:

f (ξ, η) =
∞∑
i=0

ξ ifi(η) and θ(ξ, η) =
∞∑
i=0

ξ iθi(η)

(13)

Now, on substituting the above expansions in equa-
tions (7)–(9) and taking the terms up to O(ξ2) we get

f ′′′
0 + f0f

′′
0 + 2m

1+ m

(
1− f ′2

0

) = 0 (14)

1

Pr
θ ′′

0 + f0θ
′
0 − 1− m

1+ m
θ0f

′
0 = 0 (15)

f0(0) = f ′
0(0) = 0, θ ′

0(0) = −1
f ′

0(∞) = 1, θ0(∞) = 0
(16)

f ′′′
1 + ε

(
θ0f

′′′
0 + θ ′

0f
′′
0

) + f0f
′′
1 + 1

1+ m
f1f

′′
0

+f ′′
0 − 1+ 3m

1+ m
f ′

1f
′
0 = 0 (17)

1

Pr
θ ′′

1 + 1

Pr
γ
(
θ0θ

′′
0 + θ ′2

0

) + f0θ
′
1 + 2

1+ m
f1θ

′
0

− 1− m

1+ m
θ0f

′
1 − 2(1− m)

1+ m
θ1f

′
0 + θ ′

0 = 0 (18)

f1(0) = f ′
1(0) = θ ′

1(0) = 0
f ′

1(∞) = θ1(∞) = 0
(19)

f ′′′
2 + ε

(
θ0f

′′′
1 + θ1f

′′′
0 + θ ′

0f
′′
1 + θ ′

1f
′′
0

) + f0f
′′
2

+ 2

1+ m
f1θ

′
1 + 3− m

1+ m
f2θ

′
0 + θ ′

1 − 1− m

1+ m
θ0f

′
2 = 0

(20)
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TABLE II
Values of the local skin friction coefficient CfxRe1/2

x /(
√

2(1+ m)) for different ξ at ε = 0.0,0.5 and γ = 0.0,0.5 while m = 0.5
and Pr = 0.7.

ε = 0.0 ε = 0.5

ξ γ = 0.0 γ = 0.5 γ = 0.0 γ = 0.5

Small & Finite Small & Finite Small & Finite Small & Finite
largeξ diff. largeξ diff. largeξ diff. largeξ diff.

0.0 1.0389s 1.0388 1.0389s 1.0388 1.0389s 1.0388 1.0389s 1.0388
0.2 1.1540s 1.1581 1.1540s 1.1581 1.0378s 1.0488 1.0378s 1.0409
0.4 1.2692s 1.2849 1.2692s 1.2849 1.0368s 1.0762 1.0368s 1.0478
0.6 1.3843s 1.4189 1.3843s 1.4189 1.0358s 1.1166 1.0358s 1.0586
0.8 1.4995s 1.5593 1.4995s 1.5593 1.0348s 1.1674 1.0348s 1.0725
1.0 1.6146s 1.7055 1.6146s 1.7055 1.0338s 1.2266 1.0338s 1.0891
2.0 2.6666a 2.5059 2.6666a 2.5059 1.7263a 1.6100 1.3820a 1.2026
4.0 4.3333a 4.3047 4.3333a 4.3047 2.6135a 2.5925 1.5482a 1.5426
6.0 6.2222a 6.2129 6.2222a 6.2129 3.6871a 3.6784 1.9846a 1.9865
8.0 8.1666a 8.1624 8.1666a 8.1624 4.8074a 4.8003 2.4885a 2.4875

10.0 10.1333a 10.131 10.1333a 10.131 5.9463a 5.9377 3.0195a 3.0157
s for smallξ .
a for largeξ .

1

Pr
θ ′′

2 + γ
(
θ0θ

′′
1 + θ1θ

′′
0 + 2θ ′

1θ
′
0

) + f0θ
′
2

− 2(1− m)

1+ m
θ1f

′
1 − 3(1− m)

1+ m
θ2f

′
0 = 0 (21)

f2(0) = f ′
2(0) = θ ′

2(0) = 0
f ′

2(∞) = θ2(∞) = 0
(22)

It can be seen that equations (12) are the very well
known Falkner–Skan boundary layer equations, solutions
of which are available in the literature for different values
of m that measure the wedge angle. Hence later equations
are linear and can be solved easily. Here solutions of
the subsequent equations are obtained by using the
Nachtscheim–Swigert iteration technique together with
the sixth order implicit Runge–Kutta–Butcher initial
value solver.

When we know the value offi(η) and θi(η) for
i = 0,1,2, . . . and their derivatives, we can calculate the
values of local skin-friction and the local Nusselt number
from the expressions given below:

1√
2(1+ m)

CfxRe1/2
x = f ′′

0 (0) + ξf ′′
1 (0) + O

(
ξ2) (23)

and √
2

1+ m

Nux

Re1/2
x

= 1

θ0(0) + ξθ1(0) + O(ξ2)
(24)

For example, forPr = 0.7,m = 0.5, ε = 0.5 andγ = 0.5
the numerical values of the local skin-friction and the
local rate of heat transfer for different values ofξ can
be obtained from the following expressions:

CfxRe1/2
x√

2(1+ m)
= 1.03890− 0.00503ξ + · · · (25)

and
√

2Nux√
(1+ m)Rex

= 1

1.78420− 0.23565ξ + · · · (26)

The resulting values of the local skin-friction coefficient
and the local Nusselt number are entered intables II
and III , and compared with the corresponding values
obtained from finite difference solution.

2.2. Solution for large ξ

Here attention shall be given to the behavior of the
solutions to the equations (7) and (8) whenξ is large.
An order of magnitude analysis of the various terms in
these equations shows that the largest areξf ′′ in (7) and
ξθ ′ in (8). In their respective equations, both terms have
to be balanced and the only way to do this is to assume
that η is small, and hence thatη derivatives are large.
Given thatθ = O(ξ−1) as ξ → ∞, it is necessary to
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TABLE III
Values of the local Nusselt number,

√
2Nux/((1+ m)Rex)1/2, for different ξ at ε = 0.0,0.5 and γ = 0.0,0.5 while m = 0.5 and

Pr = 0.7.

ε = 0.0 ε = 0.5

ξ γ = 0.0 γ = 0.5 γ = 0.0 γ = 0.5

Small & Finite Small & Finite Small & Finite Small & Finite
largeξ diff. largeξ diff. largeξ diff. largeξ diff.

0.0 0.5604s 0.5605 0.5604s 0.5605 0.5604s 0.5605 0.5604s 0.5605
0.2 0.6503s 0.6412 0.5875s 0.5861 0.6357s 0.6314 0.5756s 0.5756
0.4 0.7744s 0.7280 0.6174s 0.6115 0.7344s 0.7108 0.5917s 0.5914
0.6 0.9570s 0.8208 0.6504s 0.6368 0.8692s 0.7981 0.6087s 0.6080
0.8 1.2524s 0.9190 0.6872s 0.6620 1.0648s 0.8926 0.6266s 0.6253
1.0 1.8116s 1.0223 0.7284s 0.6872 1.3739s 0.9936 0.6457s 0.6433
2.0 1.5974 0.8147 1.5699 0.7453
4.0 2.9072a 2.8984 1.2293a 1.0896 2.8838a 2.8823 1.0397a 1.0077
6.0 4.2764a 4.2612 1.4205a 1.4022 4.2559a 4.2505 1.3371a 1.3336
8.0 5.6636a 5.6402 1.7532a 1.7476 5.6426a 5.6323 1.6980a 1.6950

10.0 7.0576a 7.0248 2.1186a 2.1135 7.0350a 7.0185 2.0768a 2.0722
s for smallξ .
a for largeξ .

find the appropriate scaling forf andη. On balancing
the f ′′′ andξf ′′ terms in (7), it is found thatη = O(ξ)

and f = O(ξ−1) as ξ → ∞. Therefore, the following
substitutions are made to the dependent and independent
variables:

f = ξ−1f̂ = 0, θ = ξ−1θ̂ , η̂ = ξη (27)

Substituting this transformation into equations (7)–
(9) and dropping the hats for brevity, these yield the
following equations:

(1+ εθ)f ′′′ + εθ ′f ′′ + 2m

1+ m
ξ−2[ff ′′ + 1− f ′2]

+ (1+ εθ)2f ′′ = 1− m

1+ m
ξ−1

(
f ′ ∂f ′

∂ξ
− f ′′ ∂f

∂ξ

)
(28)

1

Pr
(1+ γ θ)θ ′′ + 1

Pr
γ θ ′2 + θ ′ + 2m

1+ m
ξ−2f θ ′

= 1− m

1+ m
ξ−1

(
f ′ ∂θ

∂ξ
− θ ′ ∂f

∂ξ

)
(29)

The corresponding boundary conditions are

f (ξ,0) = f ′(ξ,0) = 0, θ ′(ξ,0) = −1
f ′(ξ,∞) = 1, θ(ξ,∞) = 0

(30)

Sinceξ is large, solutions of the equations (22)–(23)
may be obtained by using a straightforward perturbation

method. Hence, we expand the functionsf (ξ, η) and
θ(ξ, η) in powers ofξ as given below:

f (ξ, η) =
∞∑
i=0

ξ−2ifi (η)

θ(ξ, η) =
∞∑
i=0

ξ−2iθi(η)

(31)

Now, on substituting the above expansions into equations
(7) and (9) and taking terms up to O(ξ−1) we get

(1+ εθ0)f
′′′
0 + εθ ′

0f
′′
0 + f ′′

0 = 0 (32)

1

Pr
(1+ γ θ0)θ

′′
0 + 1

Pr
γ θ ′2

0 + θ ′
0 = 0 (33)

f0(0) = f ′
0(0) = 0, θ ′

0(0) = −1
f ′

0(∞) = 1, θ0(∞) = 0
(34)

(1+ εθ0)f
′′′
1 + ε

(
θ ′

1f
′′′
0 + f ′′

1 θ ′
0 + f ′′

0 θ ′
1

)
+

(
2m

1+ m
f0f

′′
0 + 2m

1+ m

(
1− f ′2

0

) + f ′′
1

)
= 0 (35)

1

Pr
(1+ γ θ0)θ

′′
1 + 1

Pr
γ
(
θ1θ

′′
0 + 2θ ′

1θ
′
0

)
+ θ ′

1 + 2m

1+ m
f0θ

′
0 = 0 (36)
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TABLE IV
The values of CfxRe1/2

x /(
√

2(1+ m)) and
√

2Nux/((1+ m)Rex)1/2 for different ξ at m = 0.5, ε = 0.5 and γ = 0.5 while
Pr = 0.1,1.0,7.0,10.0.

CfxRe1/2
x /(

√
2(1+ m))

√
2Nux/((1+ m)Rex)1/2

ξ Pr = 0.1 Pr = 1.0 Pr = 7.0 Pr = 10.0 Pr = 0.1 Pr = 1.0 Pr = 7.0 Pr = 10.0
0.0 1.04784 1.03887 1.03886 1.03886 0.32638 0.64199 1.30022 1.47378
0.5 0.86995 1.09556 1.27195 1.29198 0.24728 0.76233 3.56618 4.99378
1.0 0.73126 1.19487 1.59173 1.62400 0.20811 0.90255 6.61359 9.58269
2.0 0.58697 1.48143 2.33040 2.38196 0.17883 1.24597 13.04423 19.02956
4.0 0.48302 2.27068 3.99743 4.08852 0.16337 2.10948 26.00454 37.97893
6.0 0.44229 3.17838 5.76625 5.89843 0.15819 3.05657 38.95710 56.88769
8.0 0.41941 4.12405 7.57237 7.74624 0.15519 4.02089 51.87644 75.71991

10.0 0.40136 5.08458 9.39434 9.61009 0.15362 4.98837 64.74823 94.44832

f1(0) = f ′
1(0) = θ ′

1(0) = 0
f ′

1(∞) = θ1(∞) = 0
(37)

(1+ εθ0)f
′′′
2 + ε

(
θ1f

′′′
1 + θ2f

′′′
0 + θ ′

2f
′′
0 + θ ′

1f
′′
1 + θ0f

′′
2

)
+f ′′

2 + 2m

1+ m
f0f

′′
1 + 2(2m − 1)

1+ m
f1f

′′
0

+ 2(3m − 1)

1+ m
f ′

1f
′
0 = 0 (38)

1

Pr
(1+ γ θ0)θ

′′
2 + 1

Pr
γ
(
θ1θ

′′
1 + θ2θ

′′
0 + θ ′2

1 + 2θ ′
2θ

′
0

)
+ θ ′

2 + 2m

1+ m
f0θ

′
1 − 2(1− m)

1+ m
f ′

0θ1 + f1θ
′
0 = 0 (39)

f2(0) = f ′
2(0) = θ ′

2(0) = 0
f ′

2(∞) = θ2(∞) = 0
(40)

The solution methodology applied in solving the
above sets of equations is the same as for the solution
of the small ξ equations. As before, when we know
the values of the functionsfi(ξ, η) and θi(ξ, η) (for
i = 0 and 1) and their derivatives, we can calculate the
asymptotic values of the local skin-friction and the local
Nusselt number from the following relations:

1√
2(1+ m)

CfxRe1/2
x = ξ

[
f ′′

0 (ξ,0) + ξ−2f ′′
1 (ξ,0) + · · ·]

(41)
and√

2

1+ m

Nux

Re1/2
x

= ξ

θ0(ξ,0) + ξ−2θ1(ξ,0) + · · · (42)

These asymptotic solutions are compared with the solu-
tion of the finite difference method intables IIandIII .

Further, for the above three sets of equations (28)–(36)
it can be seen that whenε = 0 andγ = 0, the analytical
solution becomes straightforward; these have been given
in Hossain et al. [16].

3. RESULTS AND DISCUSSION

Here we have investigated the problem of the forced
convective flow and heat transfer of a viscous incom-
pressible fluid with variable viscosity and thermal con-
ductivity past a wedge with uniform surface mass-flux.
Solutions are obtained for fluids having Prandtl number
Pr = 0.1,0.7,1.0,7.0,10.0 and for a wide range of val-
ues of the variable viscosity parameterε = 0.0, 1, 2.5
and 5.0.

Numerical values of
√

2Nux/((1+ m)Rex)1/2 are de-
picted intable I for Pr = 0.1, 1.0 and 10.0 atε = 0.0 and
for various values ofm = 0.0,1/3,1.0. Suitable compar-
isons with the results of Yih [5] show excellent agreement
between these two solutions. Here we have found that
the value of

√
2Nux/((1 + m)Rex)1/2 increases when-

ever the value of the pressure gradient parameterm in-
creases at a given value ofPr. We also observe that ifPr
decreases, then there is a corresponding decrease in the
value of local Nusselt number for fixed value ofm that
means the boundary layer thickness increasing with the
increase ofPr.

The numerical values of the local skin-friction
CfxRe1/2

x /(
√

2(1 + m)) and the local Nusselt number√
2Nux/((1+ m)Rex)1/2 for various values ofξ on tak-

ing ε = 0.0,0.5 and γ = 0.0,0.5 while Pr = 0.7 and
m = 0.5, which were obtained by the finite-difference
method, are displayed intables II and III . In these ta-
bles, we have also entered the solutions obtained from
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the perturbation solution for small values ofξ and the
asymptotic solutions obtained for large values ofξ . The
comparison between the latter solutions to the finite-
difference solutions for a very large range ofξ values is
found to be excellent. From these tables we may observe
that in the entireξ range the local skin friction coeffi-
cientCfxRe1/2

x /(
√

2(1 + m)) and the local Nusselt num-
ber

√
2Nux/((1+m)Rex)1/2 increase due to increases in

ξ andε, and decreases inγ . But whenε = 0.0 there is
no increase or decrease inCfxRe1/2

x /(
√

2(1 + m)) with
increase ofγ , which is expected.

To investigate the flow behavior with increasing val-
ues of Pr, we have entered the numerical values of
CfxRe1/2

x /(
√

2(1+ m)) and
√

2Nux/((1 + m)Rex)1/2 in
table IV, for variousξ on takingPr = 0.1,0.7,1.0,7.0
while m = 0.5, ε = 0.5 and γ = 0.5, as obtained by
the finite difference method. In these tables, we have
also shown the solution obtained from the perturbation
solution for small values ofξ and the asymptotic so-
lutions for large values ofξ . The comparison between
the latter solutions and the finite-difference solutions for
entire ξ range are again excellent. From this table it
may found that, in the entireξ range, both the local
skin-friction CfxRe1/2

x /(
√

2(1 + m)) and the local Nus-
selt number

√
2Nux/((1 + m)Rex)1/2 increase due to

increases in bothξ and Pr. It should be noticed that
for low Prandtl number, for example, forPr = 0.1 both
CfxRe1/2

x /(
√

2(1+m)) and
√

2Nux/((1+m)Rex)1/2 de-
crease with increasing values ofξ .

Now we discuss the effect of the viscosity-variation
parameterε, thermal conductivity parameterγ and the
local suction parameterξ on the velocity, the viscosity
and thermal conductivity profiles obtained by the finite
difference solutions.

The effect of changes in the viscosity variation para-
meter,ε = 0.0,1.0,2.5,5.0, on the dimensionless veloc-
ity functionu/U∞ and viscosity functionµ/µ∞ against
η at ξ = 1.0,5.0,10.0 for a fluid withPr = 0.7, m = 0.5
andγ = 0.5 is shown infigures 2(a)and2(b). In these fig-
ures the solid, dashed and dotted curves are used to repre-
sent the aforementioned physical variables forξ = 10.0,
ξ = 5.0 andξ = 1.0, respectively. Fromfigure 2(a)it can
be seen that the velocity of the fluid decreases with an
increase in the viscosity-variation parameterε. We also
observe that the velocity of the fluid increases near the
surface of the wedge. On the other hand, fromfigure 2(b)
it can be seen that an increase in the viscosity-variation
parameterε also leads to a greater viscosity distribution.
For fixedε this decreases near the surface of the wedge
and with the increase ofη asymptotic to unit value at the

Figure 2. (a) The dimensionless velocity and (b) the dynamic
viscosity distribution for different ε = 0.0,1.0,2.5,5.0 at Pr =
0.7, m = 0.5 and γ = 0.5 while ξ = 1.0,5.0,10.0.

outer edge of the boundary layer for allξ and that is ex-
pected. For the interest of the experimentalist, we show
the percentage changes in the velocity and viscosity with
the increase of viscosity variation parameter. For exam-
ple, atPr = 0.7, m = 0.5, γ = 0.5, ξ = 10.0 andη = 0.2
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Figure 3. (a) The dimensionless velocity and (b) the thermal
conductivity distribution for different γ = 0.0,0.5,0.8 at Pr =
0.7, m = 0.5 and ε = 0.5 while ξ = 0.5,1.0,10.0.

the velocity decreases by 59.84, 79.30 and 86.83 % with
an increase in the viscosity parameterε from 0.0 to 1.0,
2.5 and 5.0, respectively; the corresponding increases of
viscosity are 29, 95, 75.92 and 146.96%.

The effect of changes in the thermal conductivity vari-
ation parameter,γ = 0.0,0.5,0.8, on the dimensionless
velocity functionu/U∞ and thermal conductivity func-
tion κ/κ∞ againstη at ξ = 0.5,1.0,5.0 for the fluid with
Pr = 0.7, m = 0.5 andε = 0.5 is shown infigures 3(a)
and 3(b). In these figures the solid, dashed and dotted
curves are used to represent the aforementioned physi-
cal variables forξ = 5.0, ξ = 1.0 andξ = 0.5, respec-
tively. Fromfigure 3(a)it can be seen that if the thermal
conductivity variation parameter increases, then the ve-
locity of the fluid decreases. For different values ofγ ,
the profiles become closer in the intermediate region asξ

decreases, and at small values ofξ the effect of changes
in γ is insignificant. On the other hand, fromfigure 3(b)
it may be seen that when the thermal conductivity varia-
tion parameterγ increases, the thermal conductivity dis-
tribution also increases. These profiles all asymptote to
the unit value near the edge of the boundary layer, since
this is where ambient conditions are recovered. Again,
for experimental interest, we show the changes in the ve-
locity and thermal conductivity with the increase of ther-
mal conductivity variation parameter as percentages. For
example, atPr = 0.7, m = 0.5, ε = 0.5, ξ = 10.0 and
η = 0.2 the velocity decreases by 37.83 and 71.36 % with
the increase in the thermal conductivity variation para-
meterγ from 0.0 to 0.5 and 0.8 respectively; the corre-
sponding increases in thermal conductivity are 33.23 and
214.52%.

4. CONCLUSIONS

The effects of temperature dependent viscosity and
thermal conductivity on forced convection boundary
layer flow about a wedge have been studied theoretically.
The local nonsimilarity equations governing the flow in
the leading edge as well as in the asymptotic regime are
solved using suitable perturbation methods. Numerical
solutions of the equations governing the flow in the
forced convection have also been obtained by the use
of an implicit finite difference method. The perturbation
solutions obtained for the two extreme regimes are found
to be in excellent agreement with the fully numerical
solutions in their respective domains of validity. From
the present investigation the following conclusions may
be drawn:

1. In the entireξ range, both the local skin-friction
coefficient and the local Nusselt number increase asξ

increases for allε, γ andm.

2. The local skin friction coefficient and the local
Nusselt number decrease with the increase ofε for all ξ .
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3. The local friction coefficient and the Nusselt num-
ber increase asγ decreases for all values ofξ .

4. The velocity decreases and the corresponding vis-
cosity of the fluid increases near the surface owing to in-
crease in the value ofε.

5. The velocity increases and the corresponding vis-
cosity of the fluid decreases near the surface owing to an
increase ofξ .

6. The velocity decreases and the corresponding ther-
mal conductivity of the fluid increases near the surface
owing to an increase in the value ofε.

7. The dimensionless dynamic viscosity as well as the
thermal conductivity of the fluid approache unity at the
outer edge of the boundary layer for values of all the
pertinent parameters, which is trivial.
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